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Abstract

Genetic suppression occurs when the phenotypic defects caused by a mutation in a particular gene 

are rescued by a mutation in a second gene. To explore the principles of genetic suppression, we 

examined both literature-curated and unbiased experimental data, involving systematic genetic 

mapping and whole-genome sequencing, to generate a large-scale suppression network among 

yeast genes. Most suppression pairs identified novel relationships among functionally related 

genes, providing new insights into the functional wiring diagram of the cell. In addition to 

suppressor mutations, we identified frequent secondary mutations, in a subset of genes, that likely 

cause a delay in the onset of stationary phase, which appears to promote their enrichment within a 

propagating population. These findings allow us to formulate and quantify general mechanisms of 

genetic suppression.

Main Text

Although causative variants have been identified for many Mendelian disorders, challenges 

remain in understanding how genetic variants combine to generate phenotypes. Significant 

progress has been made in mapping and interpreting genetic interactions in yeast, using 

growth rate as a proxy for fitness. High-throughput genetic interaction studies have 

identified hundreds of thousands of negative and positive interactions, in which the fitness 

defect of a yeast double mutant is either more or less severe, respectively, than the expected 

effect of combining the single mutants (Fig. 1A) (1, 2). Importantly, positive interactions 

indicate that the phenotypic effects associated with detrimental mutations can be masked or 

overcome, and may explain why certain individuals are healthy despite carrying severe 

disease-causing mutations (3).

Positive interactions can be further classified by their relative strength, ranging from 

masking, in which the double mutant fitness is higher than expected but less than or equal to 

that of the slowest growing single mutant, to suppression, in which the double mutant is 

healthier than the slowest growing single mutant and possibly has a fitness that is 

comparable to wild type (Fig. 1A) (1, 4). These classes of positive interactions can represent 

biologically distinct functional relationships (4, 5). Most positive interactions identified by 

systematic genetic interaction screens in yeast, based on synthetic genetic array (SGA) 

analysis with loss-of-function mutations (2, 6), are relatively weak masking interactions 

(Fig. S1A), such as the positive interactions that occur among genes within the same 

nonessential complex or pathway (7). By contrast, stronger suppression interactions remain 

largely unexplored.

Spontaneous suppressor mutations can be selected to overcome the fitness defect associated 

with a specific mutant allele. Extragenic suppressor mutations encompass two basic classes: 

1) informational suppressors that change the protein translational or mRNA transcriptional 

machinery, such that the primary mutation is reinterpreted; and 2) functional suppressors in 

which a mutation in a second gene functionally compensates for the defect associated with 
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the primary mutation (8). Here, our major goal was to investigate the general principles of 

functional suppression by assembling a global network of these interactions, which should 

provide new mechanistic insights about protein function and enable the ordering of 

components of biological pathways.

A network of literature-curated suppression interactions

To capture existing suppression interactions in Saccharomyces cerevisiae, we examined 

~6000 potential interactions in ~1700 published papers derived from the BioGRID’s 

“synthetic rescue” dataset (9). From each interaction, we annotated the type of suppressor 

mutation (e.g. spontaneous mutation or deletion allele), the type of mutation that is being 

suppressed, which we refer to as “query” mutation, and the use of specific conditions (e.g. a 

drug or specialized carbon source). Suppression interactions that were intragenic, involved a 

specific phenotype other than growth, or included more than two genes, were excluded from 

the final dataset. We also removed suppression interactions derived from high-throughput 

experiments or dosage interactions in which either the query or the suppressor was 

overexpressed. The resulting literature-curated network encompassed 1304 genes and 1842 

unique suppression interactions (Table S1). We visualized this network using a force-

directed layout (10), so that query genes that share a common suppressor tend to be 

positioned together (Fig. 1B). Most query genes (69%) are suppressed by one or two 

suppressor genes, while a small subset of queries (5%) have numerous (10–27) reported 

interactions (Fig. S1B). Despite the relatively low average network degree, genes involved in 

highly studied processes, such as DNA replication and repair or chromatin and transcription, 

tend to group together due to their shared suppression interactions (Fig. 1B).

Combining data from multiple studies can reveal suppression mechanisms between 

pathways or protein complexes that may not be apparent from any individual study. Indeed, 

a sub-network focused on DNA replication and repair pathways showed that many of the 

interactions appear to represent the activation of alternative DNA repair pathways (Fig. 1C). 

For example, mutations that perturb Rad51-dependent homologous recombination (HR) 

often lead to toxic chromosomal deletions or rearrangements due to increased repair of 

double-strand DNA breaks by non-homologous end joining (NHEJ)(11). In this case, 

suppression can occur through NHEJ inactivation, thereby favoring double-strand break 

repair by the compromised but more accurate HR machinery (11). Similar trends are 

observed for genes involved in transcription, for which suppression interactions between 

pathways mainly represent activation or repression of transcription (Fig. 1D). For example, 

mutations in genes encoding Mediator or RNA polymerase II subunits can reduce 

transcription efficiency, which can suppress the toxic effects of derepressed transcription 

caused by loss-of-function mutations in the NC2 transcription regulator complex (12). Thus, 

by integrating data from hundreds of papers, we derived a suppression network that provides 

insight on general suppression relationships and the ordering of pathways and complexes 

within a biological process.
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Suppression interactions within and across cellular processes

Consistent with other biological networks (2, 13–15), many suppression interactions 

occurred between functionally related genes, such that a query mutant tended to be 

suppressed by another gene annotated to the same biological process (Fig. 2A). Genes 

connected by suppression interactions also tended to be co-expressed and encode proteins 

that function in the same sub-cellular compartment and/or belong to the same pathway or 

protein complex (Fig. 2B). The extent of functional relatedness between suppression gene 

pairs did not depend on the conditions under which the interaction was identified (e.g. a 

specific drug or carbon source), or whether the suppressor was isolated as a spontaneous 

suppressor mutation as opposed to an engineered allele that was directly tested for an 

interaction (Fig. S2A). However, the frequency of shared complex membership was 

significantly higher for gene pairs in which the suppressor gene carried a gain-of-function 

mutation compared to loss-of-function suppressor mutations (p=0.01, Fisher’s Exact test). 

Thus, when a query mutation perturbs a subunit of a complex, compensating mutations in 

another subunit are more likely to be gain-of-function, for example by stabilizing the 

complex.

Notably, the functional enrichment observed in the genetic suppression network was 

substantially stronger than in a global network of negative and positive genetic interactions 

generated with SGA (6) (Fig. 2B). In fact, most positive genetic interactions identified in the 

global SGA network, especially among loss-of-function alleles of essential genes, do not 

overlap with other functional interaction data, highlighting suppression interactions as a 

special class of positive genetic interaction that captures highly specific functional 

relationships between gene pairs (Fig. S2B).

Despite their tendency to connect functionally related genes, suppression interactions also 

connect different biological processes. These interactions often occurred between genes 

involved in related processes, such as Golgi/endosome/vacuole sorting and ER-Golgi traffic 

(Fig. 2A). Interestingly, genes involved in protein degradation suppress growth defects 

associated with mutation of genes involved in many different biological processes. This 

central role for protein turnover in the suppression network likely reflects a more general 

mechanism whereby growth defects of conditional temperature sensitive (TS) alleles of 

essential query genes, which are often hypomorphic (partially functional) even at a 

permissive temperature, can be overcome by additional mutations that weaken the protein 

degradation machinery and elevate protein levels.

Overlap with other genetic networks

The suppression network shows significant overlap with a dosage suppression network (13) 

and with SGA-derived positive and negative genetic interaction networks (2, 6). The overlap 

with positive genetic interactions (5-fold enrichment; Fig. 2C) is expected, as suppression 

interactions are an extreme type of positive interaction. Indeed, this overlap increases (11-

fold enrichment) for stronger positive genetic interactions. The overlap of the suppression 

network with dosage suppression interactions associated with gene overexpression reflects 

that overexpression may lead to a gain-of-function phenotype (16) and suppression can 
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involve gain-of-function alleles (Figs. 2C, S2C). Gain-of-function suppressor mutations also 

explain the 2.5-fold enrichment for negative genetic interactions between loss-of-function 

alleles (Figs. 2C, S2C). For example, whereas the growth defect associated with loss-of-

function mutations in CDC25, which encodes the guanine nucleotide exchange factor that 

activates Ras2, can be suppressed by gain-of-function mutations in RAS2, loss-of-function 

mutations in RAS2 exacerbate the cdc25 growth defect leading to a synthetic lethal negative 

genetic interaction (Fig. 2D). Despite the overlap with other genetic networks, most 

suppression interactions (78%) are specific to the suppression network and thus provide 

novel insights into the functional wiring diagram of a cell.

Systematic identification of spontaneous suppressor mutations

Literature-curated data can come from specific hypothesis-driven experiments and may thus 

be biased (15, 17). We therefore compared the curated suppression network to an 

independent experimental set of spontaneous suppressor mutations identified through the 

large-scale application of SGA analysis. In SGA, a specific natMX-marked query mutation 

is crossed to an array of ~5000 kanMX-marked deletion mutants, to systematically construct 

a complete set of haploid natMX- and kanMX-marked double mutants (18, 19). This also 

represents a genome-wide set of two-factor crosses, enabling us to scan the query strain 

genome for the presence of an unmarked extragenic suppressor locus, which SGA analysis 

reveals as a collinear set of small colonies spanning the genomic location of the suppressor 

mutation, which we refer to as a linkage group (20, 21) (Fig. S3A). In total, we completed 

7056 full-genome SGA screens, involving mutant strains carrying deletion or hypomorphic 

alleles of 5845 different genes (2, 6). In 251 SGA screens (~4%), we identified a linkage 

group that suggested the presence of a spontaneous extragenic suppressor mutation (Tables 

S2, S3).

The 251 candidate suppressor strains were analyzed by whole-genome sequencing, and for 

216 (86%) of these, a mutation was discovered within the suppressor locus identified by 

SGA (Fig. S3A, Table S2). Almost all (98%) of these mutations were subsequently 

confirmed by Sanger sequencing (Table S2). For 24 genes, multiple independently generated 

query strains carried a potential extragenic suppressor mutation (Table S2). In 13 (54%) of 

these 24 cases, the extragenic suppressor mutations were in the same gene, while in the 

remaining 11 cases two different suppressor genes were identified. In three instances, these 

different suppressor genes encoded known members of the same complex.

We next validated candidate suppressor genes using several genetic tests, including plasmid-

based complementation assays, and tetrad analysis of meiotic progeny derived from crossing 

each suppressor strain to either a wild type strain, a strain with a marked deletion that was 

genetically linked to the candidate suppressor, or a strain carrying a deletion or hypomorphic 

allele of the suppressor gene (Fig. S3A) (21). 88% of the suppressor interactions gave a 

positive result in at least one assay (Table S2). Based on these assays and the type of 

mutation, one third (33%) of the suppressor mutations appeared to be gain-of-function, 

while two thirds (67%) appeared to be loss-of-function mutations. We also randomly 

selected four potential loss-of-function and five potential gain-of-function suppressor alleles 

and introduced those into a diploid strain that was heterozygous for the corresponding query 
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mutation. In all cases, sporulation and tetrad analysis of the resulting diploids confirmed the 

genetic interaction and identity of the suppressor mutation (Table S2, Fig. S3A). Thus, we 

identified 216 unbiased mutations that arose spontaneously to suppress severe growth 

defects associated with 146 deletion mutants of nonessential genes and 70 hypomorphic 

alleles of essential genes (Table S2).

Although we observed significant overlap with the literature-curated dataset (15 shared 

interactions, p=1×10−29, Fisher’s Exact test), most of the spontaneous suppression 

interactions identified through SGA (92%) have not been reported previously, indicating that 

the yeast genetic suppression network has remained largely unexplored. The experimentally-

derived suppression interactions showed similar significant enrichments as the literature-

curated set for different types of genetic interactions, as well as for functionally related gene 

pairs, suggesting that suppression interactions in both networks define close functional 

relationships between genes and share the same basic properties (Fig. S3B, C).

Suppression interaction magnitude correlates with functional relatedness

Given that suppression interactions tend to connect functionally related genes, we examined 

if the relative magnitude of a given suppression interaction was indicative of the extent of 

functional overlap. We estimated the relative magnitude of suppression for our systematic 

interactions (Table S4) (21), ranked the suppression pairs by suppression magnitude and 

calculated the fraction of functionally related pairs for the 33% strongest and weakest 

suppression interactions (Fig. S4). Gene pairs exhibiting more severe suppression 

interactions showed stronger enrichments for various measures of functional relatedness 

(Fig. S4), in line with what has been described for positive and negative genetic interactions 

(2). Thus, large improvements in fitness appear to be caused by mutations in genes that are 

functionally similar to the query, while weaker suppression may be achieved by more 

general or diverse mechanisms.

Systematic analysis identifies suppressor hubs

The literature-curated network is enriched for genes involved in highly studied processes, 

such as chromatin and transcription, and DNA replication and repair (Fig. 3A). In contrast, 

in the experimentally-derived network, queries and suppressors were more evenly spread 

over the various biological processes. As we found for the literature network (Fig. 2), genes 

involved in protein degradation were specifically overrepresented as suppressors in the 

systematic study (Fig. 3A), which mainly reflects suppression of point-mutation alleles of 

essential queries. Although no significant functional enrichment was found for genes 

involved in RNA processing, nonsense-mediated mRNA decay genes suppressed several 

DAmP alleles of essential genes (22), which affect mRNA stability through disruption of 

their 3′ UTR. Thus, restoring protein or mRNA levels may represent a widespread 

mechanism to overcome growth defects caused by hypomorphic alleles.

Interestingly, suppressed queries with roles in ribosome biogenesis and translation were 

underrepresented in the literature, but overrepresented in our systematic dataset (Fig. 3A). 

This enrichment was driven by a set of 34 query genes, each encoding a component of the 
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mitochondrial translation machinery. Strikingly, all 34 queries were suppressed by missense 

mutations in the α, β, or γ subunits of the F1-domain of the mitochondrial ATP synthase, 

and the majority of the substituted residues were located at the interfaces between these 

subunits (Fig. 3B). Mutations in the same mitochondrial ATP synthase subunits also 

suppressed deletion alleles of mitochondrial DNA and RNA polymerase genes, as well as 

three relatively uncharacterized genes IRC19, PET130, and YPR117W (Table S2). All of 

these query mutations led to loss of the mitochondrial genome (mtDNA), which results in 

decreased growth due to a defect in the import of proteins into the mitochondria (23) (Figs. 

3C, D, S5A). The ATP synthase suppressor mutations could restore both fitness and 

mitochondrial protein import in the absence of mtDNA (Figs. 3C, D, S5B). Interestingly, an 

activity of the ATP synthase other than ATP synthesis was required for this suppression 

phenotype (Fig S5C, D). Although the mechanism by which the suppressor mutations 

increase protein import is unclear, one possibility is that the mutations reverse ATP synthase 

activity to generate ADP3- instead of ATP4-. The charge difference between these two 

nucleotide phosphates could be exploited by adenine nucleotide translocators to rebuild the 

mitochondrial membrane potential, which is lost in the absence of mtDNA, and is thought to 

be required for protein import into the mitochondria (Fig. 3D) (24).

Suppressor identification can predict novel gene function

The functional relationship observed between a query mutant and its suppressor can be 

exploited to assign gene function to previously uncharacterized genes. For example, in our 

systematically mapped suppressor network, we found that loss-of-function mutations in an 

uncharacterized gene, YMR010W, suppressed the growth defect of mon2Δ mutants (Fig. 

4A, B). Ymr010w belongs to the family of PQ-loop proteins, some of which function as 

membrane transporters (25), and localizes to both the Golgi and late endosomes (Fig. S6A). 

Mon2 is distantly related to the Sec7 family of guanine nucleotide exchange factors and 

physically interacts with Dop1, a conserved membrane protein involved in endosome to 

Golgi transport, as well as Neo1, an essential member of the phospholipid flippase family 

(26, 27). When tested directly, we found that a ymr010wΔ deletion allele also suppressed the 

growth defects of neo1-2 and dop1-1 TS mutants (Fig. 4B). Moreover, a ymr010wΔ deletion 

allele suppressed the lethality associated with deletion alleles of the essential genes NEO1 
and DOP1 (Fig. S6B). Loss of YMR010W function can thus bypass the requirement for the 

Mon2/Dop1/Neo1 module.

The essential function of the Mon2/Dop1/Neo1 module is likely performed by Neo1, which 

is thought to flip phosphatidylserine (PS) and phosphatidylethanolamine (PE) from the 

exoplasmic to the cytoplasmic leaflet of membrane bilayers, thereby establishing an 

asymmetric distribution of these lipids (28). A neo1-2 TS mutant is defective in establishing 

membrane asymmetry. This leads to hypersensitivity to papuamide A and duramycin, 

bioactive peptides that disrupt membranes through the binding of exposed PS and PE, 

respectively (28–30), and reduced plasma membrane localization of GFP-lact-C2, a probe 

for visualizing the distribution of PS over cytoplasmic membrane leaflets (31) (Fig. 4C, D). 

Overexpression of YMR010W mimicked the phenotype of a neo1-2 mutant, leading to 

reduced levels of PS at the cytoplasmic leaflet of the plasma membrane and accumulation of 

GFP-lact-C2 in internal structures (Fig. 4D). Strikingly, we found that a ymr010wΔ deletion 
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allele suppressed both the sensitivity of a neo1-2 TS mutant to papuamide A and duramycin 

(Fig. 4C), and the neo1-2 GFP-lact-C2 localization defect (Fig. 4D), suggesting that the 

neo1-2 phospholipid distribution defects are corrected in the double mutant.

In addition to suppressing loss of Neo1 function, a ymr010wΔ deletion allele suppressed the 

cold sensitivity caused by loss of the flippase Drs2 (Fig. S6C). Moreover, neo1Δ lethality 

was no longer suppressed by ymr010wΔ in the absence of Drs2 (Fig. S6C). An intriguing 

possibility is that Ymr010w functions as a scramblase that transports PS and PE 

bidirectionally to at least partially collapse the membrane asymmetry established by Neo1 

and other flippases (Fig. 4E). Deletion of YMR010W would then allow Drs2, possibly with 

the help of other flippases, to more easily establish membrane asymmetry in the absence of 

Neo1. We named the YMR010W open reading frame ANY1 for Antagonizes Neo1 Yeast 

phospholipid flippase.

Frequent secondary mutations delay the onset of stationary phase

Whole-genome sequencing revealed that, besides the suppressor mutation, each suppressor 

strain carried on average 8 additional secondary mutations (Table S5). Unlike the suppressor 

mutations, none of these secondary mutations affected exponential cell growth enough to be 

detected by SGA mapping analysis (Table S3), suggesting the majority are random 

mutations that arose during DNA replication. We therefore refer to these additional 

secondary mutations as “passenger” mutations. We identified a similar number of passenger 

mutations in a control set of 72 strains that did not carry a suppressor mutation that affects 

growth of the query mutant (Table S5). Of the 304 strains that were sequenced at a coverage 

>10x, only one query strain, deleted for PMS1 which encodes a mismatch repair protein, 

displayed a mutator phenotype, exhibiting a relatively large number (76) of passenger 

mutations. In total, we identified 2024 unique passenger mutations, of which 996 were in 

coding regions, affecting 744 protein- or RNA-encoding genes. The fraction of missense, 

nonsense, and frameshift mutations was significantly smaller among the passenger 

mutations compared to the suppressor mutations (Fig. 5A). In fact, most of the passenger 

mutations (64%) resulted in synonymous changes or mapped to intergenic regions (Fig. 5A). 

Furthermore, passenger missense mutations occurred less frequently in essential genes, were 

predicted to be less deleterious, were less often at protein-protein interaction interfaces, and 

occurred more often in disordered protein regions than suppressor missense mutations (Fig. 

5B). Thus, the majority of the passenger mutations, which have no effect on exponential 

growth of the query strain, have a lower putative functional impact than the suppressor 

mutations that do affect query strain cell growth.

A previous study suggested that deletion of a particular query gene may select for further 

genetic changes, such as the occurrence of specific secondary non-suppressor mutations 

(32). However, we did not observe a correlation between the number of passenger mutations 

and the fitness of the query strain (Fig. S7A). Moreover, genes carrying passenger mutations 

do not tend to be co-annotated or co-expressed with the corresponding query or suppressor 

gene (Fig. S7B). In addition, we did not find any significant enrichment for particular GO 

terms among query genes that shared the same passenger mutation, or for shared passenger 

mutant genes among multiple, independent isolates of a particular query mutant strain. 
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However, we found that 10 strains that all carried a suppressor mutation in ATP2, but had 

different query mutations involved in mitochondrial transcription or translation, also 

harbored a third mutation in HEM1, TPN1, or HAP1. These three genes are important for 

heme biosynthesis and these mutations may thus be selected for to maintain heme 

homeostasis in the absence of mitochondrial transcription, translation, or ATP synthase 

activity. Still, in most cases different isolates of the same query suppressor strains did not 

contain mutations in the same passenger genes, and most passenger genes were not 

functionally related to either the query or the suppressor gene, indicating that passenger 

mutations are not generally dependent on pre-existing mutations.

Interestingly, we did find several genes that were mutated in a large fraction of the 

sequenced strains, suggesting they may be adaptive and may not represent innocuous 

passenger mutations (Fig. 5C). Of all sequenced strains, including wild type controls, 29% 

carried unique mutations in WHI2, IRA1, IRA2, RIM15, CUP9, and/or UBC13. Multiple 

experimental evolution studies have identified a similar set of frequently mutated yeast 

genes (33–35). Most of the mutations were frameshift or nonsense mutations, suggesting a 

selection for loss-of-function of these genes (Fig. 5C). Exponential growth rates of whi2Δ, 

ira2Δ, rim15Δ, and ubc13Δ deletion mutants were not enhanced relative to a his3Δ deletion 

mutant control, suggesting that these frequent secondary mutations were not selected based 

upon an increased maximum growth rate (Fig. S7C). Strikingly, Whi2, Ira1, Ira2, and Rim15 

are all negative regulators of the RAS/cAMP/PKA pathway which, in response to glucose, 

stimulates population expansion (36–39). When glucose levels become limited, the RAS/

cAMP/PKA pathway is repressed, causing cells to stop dividing and enter stationary phase. 

Disruptive mutations in WHI2, IRA1, IRA2 or RIM15 may cause a delayed response to low 

glucose levels, enabling a few additional rounds of cell division prior to entering stationary 

phase, thereby leading to increased representation of these mutants after serial passaging 

under laboratory conditions. We constructed mixed populations consisting of a strain deleted 

for one of the frequently mutated genes and a wild type strain, and followed their ratio for 

six rounds of serial passaging under conditions with a relatively prolonged stationary phase 

(21). Indeed, the relative abundance of strains deleted for WHI2, IRA2, RIM15, or UBC13 
increased with each round of serial passaging, whereas five control mutant strains 

maintained abundances similar to or lower than the wild type reference strain (Figs. 6D, 

S7D). Similar results were obtained for IRA1 and IRA2 in another strain background, W303 

(Fig. S7E, F). Thus, our data suggest that the vast majority of passenger mutations are 

random and not dependent on the query or suppressor mutation, and that a few additional 

secondary mutations arise at high frequency due to a selection for mutants that delay the 

onset of the stationary phase.

Mechanistic categories of suppression interactions

We classified the suppression interactions into distinct mechanistic categories on the basis of 

the functional relationship between query and suppressor. Most queries (54%) reported in 

the literature or identified by our systematic analysis are suppressed by mutations in 

functionally related genes (class “A”; Fig. 6A, B). These functional connections can be 

further divided into four subclasses. Subclass “A1” includes 135 interactions from the 

literature and systematic networks, in which both the query and the suppressor genes encode 
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members of the same protein complex. These particular interactions likely reflect a 

mechanism whereby the suppressor represents a gain-of-function mutation (Fig. S2A). 

Subclass “A2”, to which 201 interactions from our network were assigned, describes cases 

where the query mutant growth defect is suppressed by a mutation in a gene that is annotated 

to the same pathway. In the case of loss-of-function suppressor mutations, the suppressor 

gene often has antagonistic effects compared to the query gene (e.g. Fig. 4). Subclass “A3” 

involves suppression by a different, but related, pathway and explains 195 interactions in our 

networks. In this scenario, the growth phenotype caused by absence of a specific cellular 

function required for normal cell growth is suppressed when an alternative pathway is 

rewired to re-create the missing activity (e.g. Fig. 3). Finally, subclass “A4” consists of 

gene-pairs that are annotated to the same biological process, but for which pathway or 

complex annotation data was not available for both genes.

In addition to suppression interactions between functionally related genes, suppression 

interactions involving hypomorphic (partial loss-of-function) alleles - such as conditional TS 

alleles of essential genes - revealed a different and more general class of suppressors that 

affect expression of the query gene. This type of suppression (Figs. 2, 3) can be achieved by 

stabilizing a mutant mRNA or protein through the perturbation of pathways or complexes 

that regulate mRNA or protein turnover (Fig. 6A, class “B” and “C”). Although this type of 

suppression is rarely described in the literature, 48% of the hypomorphic queries in our 

experimental dataset are suppressed by mutations in protein degradation or mRNA decay 

genes (Fig. 6B), indicating that this type of allele-specific suppression is one of the main 

routes through which partial loss-of-function alleles can be suppressed. Strikingly, 60–70% 

of the suppression interactions fall into one of these mechanistic classes, as compared with 

only 34% of positive genetic interactions identified by SGA (6) and 11% of passenger-query 

pairs. Thus, positive genetic interactions that are true suppression interactions often show 

high functional and mechanistic specificity.

Discussion

A global, literature-curated network of genetic suppression interactions (Fig. 1) showed that 

the majority of suppression interactions linked functionally related genes. Moreover, 

suppression interactions overlapped significantly with other types of genetic interactions 

(Fig. 2). Systematic suppression analysis confirmed these general properties of suppression, 

and further showed that suppression of hypomorphic alleles often occurs via loss of protein 

or mRNA degradation, a finding that was less obvious in literature-curated data (Fig. 6). The 

underrepresentation of this class of interactions in the literature is consistent with what has 

been reported for dosage suppression interactions (13), and may reflect that mechanistic 

studies focused on the functional analysis of a particular gene or pathway are less likely to 

report non-specific suppressors. Nevertheless, an understanding of the prevalence of this 

form of suppression could be important when interpreting a genotype to phenotype 

relationship. Even though the genes encoding proteasome or mRNA decay components are 

essential in human cell lines (40–42), we anticipate that genetic variation that subtly 

modulates the activity of these modules may exhibit genetic interactions associated with a 

decreased disease risk for a variety of human disorders. As in yeast, these processes may 
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thus buffer a range of detrimental mutations in humans, and thereby modify numerous 

different disease phenotypes.

Despite the prevalence of these general suppression mechanisms, most suppression gene 

pairs showed a close functional relationship (Fig. 6), so that genetic suppression can be used 

to assign function to a previously uncharacterized gene (Fig. 4). The suppressor interactions 

identified in our systematic screen resulted from the direct selection of spontaneous 

mutations during standard laboratory growth of a query mutant whose fitness was 

compromised. In total, ~3% of strains in the yeast nonessential deletion mutant collection 

and ~4% of the strains in the hypomorphic essential gene mutant collections showed 

evidence of a suppressor locus when screened by SGA. Whole genome sequencing of 251 

potential suppressor strains did not reveal any instances of suppression via aneuploidy, a 

mutational event involving copy number variation of many genes, possibly because 

aneuploidies are not necessarily revealed by SGA genetic mapping, or because these events 

come at a fitness cost (43). Although SGA suppressor mapping can theoretically identify 

multiple suppressor mutations within one strain (20), no query strains with multiple 

suppressor linkages were identified. This suggests that the direct selection for spontaneous 

suppressors does not mimic adaptive evolution of wild type strains in nutrient-limited 

conditions, in which aneuploidies and mutations in multiple genes, each contributing small 

fitness increases, combine to collectively produce a robust suppression phenotype (35, 44). 

In contrast, we found that there is often a single direct suppression strategy because for most 

(~67%) of the queries for which we isolated several independent suppressor mutations, these 

recurrently occurred within the same single suppressor gene or within genes that encode 

subunits of the same complex. In addition, we found that large increases in fitness are 

mainly achieved by mutations in genes that have a close functional relation to the query gene 

(Fig. S4). Thus, only a few, very specific mutational events appear to be able to substantially 

increase the fitness of a particular query mutant.

Besides the suppressor mutation, each strain also carried on average 8 additional passenger 

mutations that did not have a measurable effect on exponential growth rate. In a previous but 

relatively limited study, it was suggested that the deletion of a query gene in the deletion 

mutant collection often selects for further genetic changes (32). Although this is true for 

suppressor mutations, we could not find any significant evidence connecting the query or 

suppressor mutation to the occurrence of most passenger mutations. Because we did not 

observe a significant enrichment for functionally related gene pairs among queries and 

passengers, we conclude that the occurrence of query-driven non-suppressor mutations is 

likely rare.

In a mathematical model of bacterial serial passaging, de novo mutations that delay the onset 

of stationary phase were more likely to fix in a population than mutations that decrease lag 

time or increase growth or survival rates (45). This may be true for yeast as well, as the 

growth history of laboratory-grown yeast strains follows a similar pattern of repeating cycles 

of lag phase, exponential growth, and stationary phase. Indeed, we observe selection for 

mutations that likely delay the onset of stationary phase in 26% of the sequenced strains 

(Fig. 5C). These stationary-delay mutations are thus not true ‘passenger’ mutations, but are 

adaptive. However, in contrast to suppressor mutations that cause adaptation to the query 
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mutation, the stationary-delay mutations are adaptive to laboratory passaging. These 

mutations could come at a cost, as they probably decrease viability during longer periods of 

starvation (35, 36).

As most (78%) suppression interactions did not overlap with any previously identified 

genetic interactions, additional suppression mapping will help complete the yeast genetic 

interaction landscape. Conditional alleles have been developed for nearly all essential yeast 

genes (6), and thus suppression interactions could be mapped for the full set of essential 

genes. Similarly, suppressors of nonessential genes could be identified in a conditional or 

synthetic lethal context in which the nonessential query has a fitness defect. Although we 

focused on mapping suppression interactions in yeast, similar suppression studies should be 

possible in mammalian cells and model systems, and may identify new drug targets for 

query mutations related to human disease (46). As ~6% of human pathogenic variants are 

fixed in other mammalian species (47), compensatory mutations may be present at a high 

frequency in natural populations. Understanding genetic suppression may provide insight in 

how genetic variance accumulates during evolution and more specifically how modifier 

genes determine the severity of genetic traits, including human disease.

Materials and Methods summary

Detailed materials and methods are available in the supplementary information.

Literature curation

The Saccharomyces cerevisiae “synthetic rescue” dataset was downloaded from the 

BioGRID (9) on November 9, 2012 (version 3.1.49) and on March 31, 2014 (version 

3.2.110). In total, these datasets consisted of 5985 interactions described in 1667 papers. 

Each paper was read in detail, and an interaction was considered a suppression interaction if 

the double mutant grew significantly better than at least one of the single mutants. For each 

interaction, suppressor and query allele type and specific conditions were annotated (21). 

The final dataset consisted of 1842 unique interactions, involving 1304 genes (Table S1).

Systematic suppressor identification

All suppressor strains were part of either the BY4741 nonessential deletion mutant 

collection (MATa xxxΔ::kanMX4 his3Δ1 leu2Δ0 ura3Δ0 met15Δ0; Euroscarf), the SGA 

nonessential deletion mutant collection (MATα xxxΔ::natMX4 can1Δ::Ste2pr-Sp_his5 
lyp1Δ his3Δ1 leu2Δ0 ura3Δ0 met15Δ0; (2)) or the corresponding MATa and MATα 
collections of DAmP or TS mutants of essential genes (6). The presence and genomic 

location of a spontaneous suppressor mutation was identified by the occurrence of a 

suppressor linkage group upon screening strains in these collections by SGA analysis (20)

(Table S3). Potential suppressor strains were subsequently sequenced whole-genome on the 

Illumina HiSeq 2500 platform using paired-end 100-bp reads. Read mapping and SNP and 

indel calling was performed using standard methods (21). Candidate suppressor mutations 

were confirmed by amplifying the corresponding gene and flanking sequences by PCR, 

followed by Sanger sequencing (Table S2). Suppression interactions were confirmed using 

plasmid-based complementation assays and tetrad analysis of meiotic progeny derived from 
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crossing each suppressor strain to either a wild type strain, a strain with a marked deletion 

that was genetically linked to the candidate suppressor, or a strain carrying a deletion or 

hypomorphic allele of the suppressor gene (Table S2).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. A global network of literature-curated suppression interactions for S. cerevisiae.
(A) Genetic interaction classes. When two single mutants (xxxΔ and yyyΔ) have a relative 

fitness of 0.8 and 0.7, the expected fitness of the resultant double mutant (xxxΔ yyyΔ) based 

on a multiplicative model is 0.8 × 0.7 = 0.56. A negative genetic interaction occurs when the 

observed double mutant fitness is lower than this expected fitness. A masking positive 

interaction occurs when the fitness of the double mutant is greater than expected, but lower 

or equal to that of the slowest growing single mutant. Suppression positive interactions occur 

when the double mutant fitness is greater than that of the slowest growing single mutant. (B) 

van Leeuwen et al. Page 17

Science. Author manuscript; available in PMC 2017 August 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A global network of literature-curated suppression interactions for S. cerevisiae. Genes are 

represented as nodes and interactions as edges. The nodes were distributed using a force-

directed layout, such that genes that share a suppressor tend to be close together on the 

network. Genes involved in chromatin and transcription or DNA replication and repair are 

highlighted in magenta and cyan, respectively. (C,D) Regions of the global network 

highlighting suppression interactions between complexes and pathways involved in 

chromatin and transcription (C) or DNA replication and repair (D) are shown. Arrows point 

from the suppressor to the query.
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Fig. 2. Properties of the suppression network
(A) Frequency of suppression interactions connecting genes within and across indicated 

biological processes. Node size reflects fold enrichment for interacting gene pairs observed 

for a given pair of biological processes. Significance of the enrichment was determined by 

Fisher’s Exact test, comparing the observed frequency of suppression interactions between 

two given functional categories with the global frequency. The total number of suppression 

interactions involving genes annotated to a particular process in indicated. (B,C) Fold 

enrichment for: (B) co-localization, GO co-annotation, co-expression, same pathway 

membership, and same complex membership for gene pairs involved in different types of 

genetic interaction (GI); and (C) overlap of literature-curated suppression interactions with 

dosage suppression interactions (13), or with negative and positive genetic interactions 

identified by SGA analysis using either an intermediate or a stringent interaction score 

threshold (6). A Fisher’s Exact test was performed to determine statistical significance of the 

results. (D) An example of a gene pair showing suppression, dosage suppression, and 

negative genetic interactions.
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Fig. 3. The mitochondrial F1-ATPase is a suppressor hub in the systematic suppression network
(A) The distribution of query and suppressor mutants in both the literature-curated and the 

systematic experimental network across different biological processes. Node size reflects 

fold enrichment or depletion for query and suppressor mutants observed for a given 

biological processes. Significant enrichment or depletion was determined by Fisher’s Exact 

test, comparing the observed to the expected proportion of genes in each functional category. 

Bonferroni-corrected p-values are indicated. (B) Bottom-view, facing the inner-membrane 

from the mitochondrial matrix, of the yeast mitochondrial F1-ATPase structure 2HLD. 

Residues that were found to suppress the growth defect of mitochondrial transcription or 

translation mutants are highlighted in red. Orange spheres represent the nucleotides bound to 

the catalytic sites. (C) Fraction of wild type and ATP synthase-mutant cells either with intact 

(ρ+) or (partially) deleted (ρ−) mtDNA that show mitochondrial localization of GFP fused to 

a mitochondrial-targeting signal (MTS-GFP). Averages (n=4) and SD are shown. (D) Model 

of ATP synthase-dependent suppression of mitochondrial mutants (top) and corresponding 

representative images of MTS-GFP import (bottom). Localization of outer-mitochondrial 

membrane protein mCherry-Fis1 shows the presence and position of mitochondria. 
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Abbreviations: ETC, electron transport chain; ΔΨ m, inner mitochondrial membrane 

potential; ANT, adenine nucleotide translocator. Scale bar: 5μm.
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Fig. 4. Characterization of YMR010W (ANY1)
(A) Predicted membrane topology of Ymr010w. Sites of suppressor mutations, 

ubiquitination and phosphorylation are indicated. (B) Suppression of the growth defect 

caused by a mon2Δ deletion allele, or TS alleles dop1-1 and neo1-2, by deletion of 

YMR010W. Series of ten-fold dilutions of exponentially growing cultures of the indicated 

strains were spotted on YPD plates and incubated at either 22°C or 38°C for 2 days. (C) 

Deletion of YMR010W restores membrane asymmetry in neo1-2 cells. Wild type, 

ymr010wΔ, neo1-2 and neo1-2 ymr010wΔ cells were grown at 34°C in the presence of the 

phosphatidylserine (PS) targeting peptide papuamide A or the phosphatidylethanolamine 

(PE) targeting peptide duramycin. Growth relative to vehicle-treated wild type strain is 
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plotted. SEM is indicated by shading (n=2–3). (D) Intracellular distribution of PS, visualized 

using GFP-lact-C2 (31). Shown are representative confocal fluorescent micrographs of 

exponentially growing cells using the indicated strains. The fraction of cells that showed 

diffuse cytosolic fluorescence, localization of GFP-lact-C2 to the plasma membrane, or in 

which GFP-lact-C2 was partially localized to distinct internal structures, was calculated. 

Measurements were performed in triplicate on at least 100 cells, and averages are shown. 

(E) Model of suppression of flippase mutants by loss of Ymr010w.
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Fig. 5. Characterization of potential passenger mutations
(A) Distribution of suppressor and potential passenger mutations over variant effect classes. 

Only SNPs are considered, as reliable structural variant calls (deletions, insertions, or 

inversions involving >5 basepairs) were only available for suppressor mutations. The RNA 

class refers to mutations in an RNA species such as a non-coding, ribosomal, or transfer 

RNA. (B) The fraction of all suppressor or potential passenger missense mutations that map 

to an essential gene, at a protein-protein interaction (PPI) interface, or a disordered region of 

a protein, and the predicted deleteriousness of these mutations (SIFT score 0 = extremely 

deleterious, 1 = benign). P-values were calculated using Fisher’s Exact test, except for the 

SIFT analysis, in which a Mann-Whitney’s test was used. (C) The percentage of strains in 

which a particular gene carries a passenger mutation is plotted against the chromosomal 

position of the gene. Genes that are recurrently mutated in >2% of the sequenced strains are 

highlighted, and the distribution of the mutations over variant effect classes is shown. (D) 

Differentially fluorescently labeled cells of the indicated mutants (RFP) and wild type (GFP) 

were mixed, and the ratio of RFP to GFP was followed for 6 rounds of serial passaging on 

agar plates. Shading represents the SD, n=12.
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Fig. 6. Mechanistic classes of suppression
(A) Suppressor and query genes often have a functional relationship (class “A”). In a 

situation where the query (protein A) activates a protein B, which is required for normal 

growth, suppression can take place in multiple ways. For example, the suppressor (protein 

C) can be part of the same complex as the query, and gain-of-function mutations in C can 

restore the activation of B (class “A1”). Alternatively, the suppressor and query may be 

members of the same pathway, and the suppressor (protein D) may inactivate or inhibit B. 

Loss of D may thus suppress by partially restoring the activity of B (class “A2”). The 

suppressor (protein E) can also function in an alternative, but related, pathway, whose 

activity can be slightly altered to restore the activity of B (class “A3”). Suppression 

interactions can also occur among pairs of genes that do not share a close functional 

relationship. For example, partial loss-of-function query alleles may carry mutations that 

van Leeuwen et al. Page 25

Science. Author manuscript; available in PMC 2017 August 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



destabilize the protein or mRNA, leading to a fitness defect caused by reduced levels of the 

query protein. This can be suppressed by a loss-of-function mutation in a member of the 

protein degradation (class “B”) or mRNA decay (class “C”) pathway, which may partially 

restore the levels of the query protein. (B) Distribution of suppression interactions, positive 

genetic interactions (6), and passenger-query pairs across different mechanistic suppression 

classes.
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