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Abstract

During CASP10 in summer 2012, we tested BCL::Fold for prediction of free modeling (FM) and 

template-based modeling (TBM) targets. BCL::Fold assembles the tertiary structure of a protein 

from predicted secondary structure elements (SSEs) omitting more flexible loop regions early on. 

This approach enables the sampling of conformational space for larger proteins with more 

complex topologies. In preparation of CASP11, we analyzed the quality of CASP10 models 

throughout the prediction pipeline to understand BCL::Fold’s ability to sample the native 

topology, identify native-like models by scoring and/or clustering approaches, and our ability to 

add loop regions and side chains to initial SSE-only models. The standout observation is that 

BCL::Fold sampled topologies with a GDT_TS score > 33% for 12 of 18 and with a topology 

score > 0.8 for 11 of 18 test cases de novo. Despite the sampling success of BCL::Fold, significant 

challenges still exist in clustering and loop generation stages of the pipeline. The clustering 

approach employed for model selection often failed to identify the most native-like assembly of 

SSEs for further refinement and submission. It was also observed that for some β-strand proteins 

model refinement failed as β-strands were not properly aligned to form hydrogen bonds removing 

otherwise accurate models from the pool. Further, BCL::Fold samples frequently non-natural 

topologies that require loop regions to pass through the center of the protein.
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INTRODUCTION

Experimental structures in the protein data bank (PDB) are biased toward small soluble 
proteins

The tertiary structure of a protein provides essential insights to its biological function in 

living organisms. Accordingly, experimental methods are applied to ascertain protein 

structure including X-ray crystallography and nuclear magnetic resonance (NMR) 

spectroscopy. Currently, the PDB contains more than 89,258 proteins (December 2013) of 

which 79,585 (89%) were elucidated by X-ray crystallography, 8971 (10%) by NMR, and 

the remainder by other technologies.1 Despite these efforts, the structures represented in the 

PDB are biased; 87,004 of the proteins in the PDB are soluble while only 2254 (2.5%) of the 

proteins represent membrane proteins.1 Further, the size distribution of proteins in the PDB 

is biased toward small proteins omitting many large macromolecular assemblies greater than 

500,000 Da (2.0%).1–3 This bias is due to the limitations of experimental methods for 

structure determination. Membrane proteins are underrepresented in the PDB because they 

are too large for NMR and their embedding in the two-dimensional membrane complicates 

formation of three-dimensional crystals required in X-ray crystallography.4 For membrane 

proteins up to ~1000 folds remain to be determined.5,6 Large macromolecular assemblies are 

also underrepresented in the PDB because its protomers do not fold in isolation, they are 

difficult to crystallize, and they are too large for NMR spectroscopic methods.7 Thus, for 

many biologically relevant proteins only limited experimental data can be collected with a 

combination of experimental techniques such as solid state NMR, cryo-electron microscopy, 

electron paramagnetic resonance, mass spectrometry, and small angle X-ray scattering. On 

their own, these datasets are insufficient for atomic-detail structure determination. One 

major justification to develop de novo protein structure prediction algorithms is to 

complement such limited experimental datasets.

De novo protein structure prediction needs a reduced search space

The cornerstone of de novo protein structure prediction methods is based on the assumption 

that (most) folded proteins exist in their lowest energy conformation.8 Protein folding 

becomes an energy minimization process that depends on interaction of amino acids with the 

environment and other amino acids in the sequence. Finding the global minimum of the 

energy function on the energy landscape is challenging for several reasons including that the 

energy landscape contains many local minima. Currently, no universal method of identifying 

the global minimum of the energy function exists.9 In practice, the conformational space of a 

protein is also far too large to be comprehensively searched with a highly accurate and 

therefore slow to compute energy function. Therefore, the conformational space is reduced 

by working with simplified protein representations, at least in the initial folding simulation. 

In effect, this reduces the resolution of the energy function which allows a more rapid 

calculation but decreases its accuracy to the point where the global energy minimum cannot 

be unambiguously detected and several local energy minima need to be considered.

Competing de novo structure prediction software reduces the search space similarly. Rosetta 

addresses the sampling challenge by assembling protein models from three and nine residue 

peptide fragments.10–12 These fragments are determined from peptides of similar sequence 
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and secondary structure extracted from other proteins in the PDB. For proteins smaller than 

80 residues Rosetta was able to predict atomic detail models in the absence of any 

experimental restraints for about 30% of the test cases.13 For larger proteins up to around 

150–180 residues Rosetta samples the correct topology about 50% of the time.13–15 

Generally, Rosetta tends to perform better for α-helical proteins which is related to their 

reduced fold complexity. The complexity of a fold can be measured by contact order (CO) 

which is defined as the average sequence separation of residues in contact, that is, residues 

whose Cβ atoms are <8 Å apart.16,17 As the complexity of protein topology increases (high 

CO) the accuracy of the Rosetta prediction decreases.16,18

I-Tasser threads the target sequences through a library of PDB structures with a pair-wise 

sequence identity cut-off of 70% to search for plausible protein folds. Rather than using a 

fixed set of three and nine residue peptide fragments, I-Tasser uses fragments of variable 

size that are identified by threading.19–21 The fragments are used to reassemble full-length 

models while the loop regions between fragments being constructed de novo. Critical to the 

success of I-Tasser is the identification of a suitable templates to create the peptide 

fragments—a Pearson correlation coefficient of 0.89 for RMSD and 0.95 for TM-score.21 

Generally, I-Tasser samples the correct topology about a third of the time for proteins up to 

155 residues long with RMSD < 6.5 Å.21 I-Tasser shares the most critical limitation with 

Rosetta, the ready formation of long-range interactions between residues.

BCL::Fold was designed to overcome size and complexity limitations in de novo protein 
structure prediction methods

BCL::Fold is a de novo protein structure prediction algorithm based on the placement of 

disconnected secondary structure elements (SSEs) in three-dimensional space as previously 

published.6,22,23 This algorithm was developed to test the hypothesis that for many proteins 

the core responsible for thermodynamic stability is largely formed by SSEs. In this case, 

likely protein topologies could be detected from SSE-only models. Thereby, the size and CO 

restrictions in protein structure prediction can be overcome by assembling disconnected, 

rather rigid SSEs, reducing the search space substantially and allowing the ready formation 

of nonlocal contacts.22 A coarse grained knowledge based energy function identifies native-

like SSE arrangements using a Monte Carlo simulated annealing sampling algorithm with 

Metropolis criterion.6,22,23 In contrast to I-Tasser or Rosetta, this algorithm is truly de novo 
as no fragments from the PDB are used. Loop regions between SSEs and side chains atoms 

are added to the model in subsequent steps using for example Rosetta.24–26

BCL::Fold uses a consensus of secondary structure prediction technologies to identify 
SSEs

Critical to the success of the BCL::Fold algorithm is the correct prediction of SSEs: α-

helices, β-strands, coil regions, and trans-membrane spans from sequence. These predictions 

are obtained from a consensus prediction from PHD,27,28 PsiPred,29,30 and Jufo9D31–33 for 

soluble proteins. In addition to these methods we used Octopus34,35 and Jufo9D31 for the 

trans-membrane span region of membrane proteins. The consensus prediction is used to 

build a pool of SSEs, which is input for protein folding.
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A Monte Carlo Metropolis sampling algorithm positions SSEs in space

Protein models are assembled using a Monte Carlo sampling algorithm. Each iteration of the 

algorithm consists of a randomly selected modification to the current model. Modifications 

include the addition of an SSE from the SSE pool to the model; the removal of an SSE from 

the model; translational and rotational transformations of SSEs in the model; swapping of 

two SSEs; modifications of groups of SSEs (domains) consist of translating the domain; 

flipping; and shuffling the different SSEs.

After each modification, the model is evaluated by a knowledge based scoring function.23 

This coarse grained scoring function is designed to evaluate the arrangement of SSEs in 

Euclidean space. It is a weighted sum of scoring terms that represent different aspects of 

SSEs of protein structures as observed in experimental structures like the preferred 

environment of amino acid types (buried or solvent exposed); the radius of gyration; an SSE 

packing and a strand pairing potential; a loop length potential; clash terms for amino acids 

and SSEs; and a loop closure penalty. The loop closure penalty limits the Euclidean distance 

between two consecutive SSEs to the maximum length a stretched out amino acid chain can 

bridge and applies a steep penalty for longer loop distances.

The evaluation with the Metropolis criterion results in one of four possible outcomes: (1) 

improved and accepted, if the calculated energy score is lower than the energy of the 

previous model; (2) accepted by the Metropolis criterion with a function taking the energy 

difference and the simulated temperature into account; (3) rejected if the score is higher than 

the previous model and rejected by the Metropolis criterion; (4) skipped, if the modification 

is not applicable to the model, for example swapping SSEs if the model contains only a 

single SSE. The probability of a step being accepted with higher energy is based on the 

temperature used by the Metropolis criterion. BCL::Fold adjusts the temperature to achieve a 

ratio of accepted steps that reduces from 50 to 20% in the course of the simulation.

All scoring terms (except for the clash terms and the loop closure penalty) are statistically 

derived using Bayes’ theorem from a divergent high resolution subset of the PDB generated 

by the PISCES server with a maximum sequence identity of 25%36,37 and then energies 

were approximated using the inverse Boltzmann relation.

The algorithm will continue generating modified models and evaluating them until a 

maximum number of 2000 steps was completed or no improvement in the score was found 

for 400 consecutive steps; this constitutes one folding stage. The folding process of one 

model has five assembly stages and one refinement stage, which employ a decreasing 

number of modifications for large scale perturbations (for example, swapping SSEs) and an 

increasing amount of small scale perturbations (for example, bending an SSE). The lowest 

energy model within the trajectory will be saved as resulting model for this run.

The CASP10 experiment: a critical tool for development of techniques for protein structure 
prediction

To evaluate the accuracy of BCL::Fold in de novo protein structure prediction, we 

participated in the Critical Assessment of protein Structure Prediction (CASP10) 

experiment, which is held every two years.38,39 The double-blind experiment tests protein 
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structure prediction methods objectively because the experimentally determined structure is 

withheld from predictors, organizers and the assessors until the experiment is finished. After 

protein predictions have been made, the experimentally determined structures are revealed 

and the results are assessed. CASP10 contained the following categories: (1) Tertiary 

structure prediction, which can be classified as: (a) Template Based Modeling (TBM): 

starting from a homologous protein template in the PDB. (b) Free Modeling (FM): no 

homologous template exists in the PDB; (2) Tertiary structure prediction with limited 

experimental information, for example, amino acids in contact40; (3) Residue-residue 

contact prediction41; (4) Model refinement42; (5) Identification of disordered regions; (6) 

Function prediction; (7) Quality assessment.43

To maximally leverage CASP10 for testing BCL::Fold we assume all CASP10 targets to be 
FM targets

For some targets, templates can be found, that is, proteins with similar sequence and known 

structure that can guide the prediction. Based on if templates can be found and how similar 

the template structure is to the target structure, measured by the Global Distance Test/Total 

Score (GDT_TS),44 prediction for CASP10 targets is categorized as easy or hard TBM (easy 

if the maximal GDT_TS ≥ 50, hard if the maximal GDT_TS < 50), FM or a combination of 

both (TBM/FM). The GDT_TS could obviously only be employed after the target structures 

were available; in the prediction process other measures like sequence similarity to proteins 

in the PDB were used to classify targets. To maximize the assessment of the BCL::Fold de 
novo protein structure prediction algorithm in CASP10 we treated all targets as FM targets, 

that is, no homologous template from the PDB was used at any point as input into the 

BCL::Fold prediction algorithm.

MATERIAL AND METHODS

Secondary structure and transmembrane span prediction

In the first step, the secondary structure is predicted for soluble proteins using Jufo9D,31–33 

PsiPred,29,30 and ProfPHD.27,28 For membrane proteins Jufo9D31 and Octopus34,35 are used 

to detect secondary structure and transmembrane spans. From the predicted secondary 

structures, a pool is created for use by BCL::Fold as described before.22 The pool is 

manually examined to ensure a complete as possible set of SSEs.

Fold recognition and domain identification

Fold recognition methods combined in bioinfo.pl were used to see if the target sequence 

contains multiple domains,45 and if proteins of those folds have been experimentally 

determined. If the fold recognition result indicated that the target has multiple domains, the 

SSE pool is split up into sub pools according to the domain boundaries.

BCL::Fold folding simulation

BCL::Fold is run next to produce 12,000 models for each domain of one target. Depending 

on the target, the soluble or membrane protocol is employed. For each model, a 

completeness estimate is calculated as fraction of the sum of the sequence lengths of all 
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SSEs in the models to the total sequence length of the target. Models that are 2% less 

complete than the average model produced are removed.

Clustering to identify topologies that reside in wide energy funnels

After filtering the 12,000 models per target by completeness score, models were selected by 

three criteria for further refinement. The first method for selection was clustering by average 

RMSD linkage between models where the clusters ideally only contain models with the 

same fold. Cluster sizes varied with the largest clusters having a few hundred models and the 

smallest clusters containing a few or even a single model. Cluster radii leafs were between 0 

and 18 Å with most at 10 Å. The RMSD cutoff was manually adjusted based on protein size 

and model similarity. Up to five models from each cluster were selected for further 

refinement. The second method for selection was ranking by the BCL scoring function. All 

filtered models were sorted by BCL sum score and the lowest scoring models were selected. 

The third method was only used if we successfully identified a template model of the target 

protein and models were pooled into a separate set. In this case, the RMSD between the 

template and BCL generated models were computed. The models with the highest similarity 

(lowest RMSD) were selected for further refinement. Furthermore, in some cases the 

selected models were visually inspected in PyMOL to evaluate sequence length and 

Euclidean distances for later loop reconstruction. In this step, some models were removed 

from further processing if loops went through the center of the protein core (Table I).

Combining domains into complete models

If the target consisted of multiple domains, models of all possible combinations of domains 

are created either by arranging the domains in space close to each other or, if possible, by 

aligning the domain models to a template. The domains do not have to be connected by 

creating a loop at this point, because all models consist of only SSEs and loops will be built 

in the next step.

Loop construction using cyclic coordinate decent

Adding loops is a two-step process of inserting the missing amino acids in a model and 

creating coordinates for them by CCD. Once SSEs have been placed, loop regions between 

SSEs must be built. Creating loops is a two-step process of inserting the missing amino acids 

in a model and creating coordinates for them. This is accomplished by adding loop residues 

using (1) knowledge based potentials, (2) likely phi and psi backbone angles, and (3) cyclic 

coordinate descent (CCD). The first step is to dynamically add missing residues in the loop 

region. Residues are added with initial phi and psi angles derived from a probability 

distribution of experimentally observed angles. They are then perturbed and scored using a 

knowledge based potential for native like angles. This potential has scoring terms that 

penalize clashes between atoms using van der Waals radii, compare the sequence length with 

the Euclidean distance, measure the gap between adjacent SSEs, incorporate angles derived 

from Ramachandran plots, and score the likelihood that the distance between the SSEs can 

be closed by a loop. Once the initial residue coordinates of the loop region have been placed, 

CCD46 is used to minimize the distance between a freely moving and fixed set of 

coordinates to close a loop. In this second step, an additional penalty term is added to the 

scoring function that scores how close the residue at the loop end is to the pseudo residue at 
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the N terminus of the target SSE. Between 200 and 8400 loop models were build depending 

on model size and complexity to achieve a sufficiently low BCL sum score that is, in a 

similar score range than the nonloop start model. Models with loops difficult to close were 

either modified to allow an easier loop closure by shortening the SSEs adjacent to the loop 

or they were removed from further modeling. The best scoring loop models according to the 

BCL sum score were further processed.

Addition of side chains and model relaxation

One of two methods was used: either side chains were added with a relax step in which the 

relative position of the amino acids were restrained, or, if the first method fails because of 

misaligned β-strands, by adding and repacking side chains. Between 10 and 200 side-chain 

models were built to obtain an optimal overall Rosetta score.

Model selection for submission

From the lowest scoring side chain models for each loop model, the ones deemed most 

native-like by visual inspection were selected for CASP10 submission. If a template model 

and a similar BCL model were found before, it was selected as the fifth submitted model.

Topology score to evaluate protein models

To evaluate if BCL::Fold can sample the folding space required for our target proteins, we 

introduce a new measure that focuses on SSE contacts instead of comparing atom positions 

like RMSD10047 or GDT.44 This new measure computes the similarity of a model to a 

native protein by calculating the fraction of SSE contacts of the native that are present in a 

given model and the total number of SSE contacts of the native (true positive rate, 

sensitivity). An SSE contact is assumed if the distance of the central axis of two SSEs is less 

than a certain threshold. An SSE can be represented by its central axis for the purpose of the 

distance calculation, because all SSEs in a BCL model are idealized. The threshold below 

which two SSEs are assumed in contact depends on the type of SSE contact (helix-helix: 16 

Å; helix-sheet: 16 Å; strandstrand: 5.5 Å; sheet-sheet: 14 Å) and was derived from native 

protein structures from the PDB. These thresholds were chosen to be large to be as inclusive 

as possible. The strength of the interaction is represented by line thickness of the connecting 

lines (Fig. 4).

RESULTS

Eighteen targets included in this analysis

During CASP10 a total of 53 targets were released for human predictors. Eighteen of these 

had at least one domain in the FM category. To focus our efforts we excluded proteins that 

were very small (<50 residues) or very large (>400 residues). Further, for some targets 

calculations did not finish in time for submission. For 21 targets models were submitted, five 

of them in the FM category. For two targets files were corrupted on our server, for one target 

no experimental structure has been released. This leaves 18 targets, three in the FM category, 

for analysis (Table II). Accordingly, treatment of the TBM targets as FM targets 

substantially increased the number of proteins that could be included in the study beyond the 

small number of FM targets. One consequence of this procedure is that BCL::Fold will not 
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rank among top methods for the TBM section, as we do not expect BCL::Fold to predict 

protein structure more accurately than comparative modeling.

An automated pipeline with minimal human intervention was setup

Here we give an overview of the overall protocol (Fig. 1). A detailed description of the 

individual steps is given in the methods section. The folding pipeline starts with the 

downloaded target sequence from CASP10 Prediction center. In the first step, secondary 

structure and transmembrane spanning regions are predicted and stored in a “pool” using the 

consensus SSE prediction results. The SSE pool is manually examined to ensure that weakly 

predicted SSEs are available. Domain boundaries were identified with bioinfo.pl - a 

consensus fold recognition Meta server.45 At this stage of folding, templates were identified 

for TBM targets and comparative models were constructed using the Modeler24–26 link of 

the bioinfo.pl server. The homology model was saved for later analysis or prioritization of 

the de novo folded models. It was not used to bias the folding simulation. If the fold 

recognition result from bioinfo.pl indicated that the target consisted of multiple domains, the 

SSE pool was split into subpools according to the domain boundaries. Next, each domain 

was folded 12,000 times with BCL::Fold. Resulting models were filtered for completeness 

before entering the clustering protocol. The completeness estimate is the total number of 

residues in SSEs divided by the total number of residues in the protein model. The filtering 

cutoff is the average of all the completeness estimates reduced by 0.01. After filtering, 

cluster centers of the 10 to 20 largest clusters were selected for further processing. In 

addition, we included the five best scoring models measured by the BCL sum score. If 

templates were identified, best-scoring models that were similar to the template by 

Mammoth z-score48 were retained in a separate pool of models. If the target was split into 

multiple domains, these were recombined at this stage. The backbone of the resulting 

models was completed using a Cyclic Coordinate Decent (CCD)46 loop closure algorithm 

within the BCL. Afterwards, side chain coordinates were constructed and the model was 

relaxed using Rosetta. From the resulting set of up to 200 models, five were chosen for 

submission by Rosetta energy. If a template has been identified, the fifth model submitted 

was chosen from the second pool as the one most similar to the template, to assess 

BCL::Fold’s sampling capability independent from scoring.

Accuracy of secondary structure and transmembrane span prediction

Table III depicts Q3 accuracies (a measure of the accuracy for predicting per residue 

secondary structure), the percentage of native secondary structures correctly predicted and 

the average shifts for the SSE pools of the 18 CASP10 protein targets. The shift values are 

the sum of the deviations in the first and last residues of the predicted SSEs when compared 

with native SSEs. The overall average percentage of native secondary structures correctly 

predicted (% found) using PHD,27,28 PSIPRED,29,30 and JUFO9D31–33 was 91.8%. In the 

original benchmark of BCL, the overall average % found was 96.6%.22 We achieve the 

highest overall accuracy by combining multiple secondary structure prediction methods to 

create the SSE pool, rather than relying on a single secondary structure prediction method. 

For example, the % found values for PHD, PSIPRED, and JUFO9D are 78.9, 91.0, and 

91.4%, respectively. In the original BCL benchmark, these values for PSIPRED and JUFO 

are 96.1 and 90.3%, respectively. This indicates that the secondary structure prediction is 

Heinze et al. Page 8

Proteins. Author manuscript; available in PMC 2017 August 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



more challenging for the CASP10 targets than the original BCL benchmark. In addition, 

during a folding run, BCL::Fold can merge, grow, or shrink SSEs based on the predicted 

probabilities.

Quality of CASP10 FM models submitted by other research groups

There were 20 FM targets in CASP10. For all participating methods the average GDT_TS 

score ranged from 7.0 to 36.0% with a mean GDT_TS score of 21.7% and a standard 

deviation of 7.2%. The maximum GDT_TS score ranged from 16.5 to 44.0% with a mean 

GDT_TS score for 32.8% and a standard deviation of 8.1% (Supporting Information Table 

S1). For the three targets attempted with BCL::Fold (T0663, T0666, and T0684) the average 

GDT_TS score submitted by CASP10 participants was 24.5% with a standard deviation of 

10.2%. The mean of the maximum GDT_TS scores for these targets was 34% with a 

standard deviation of 9.5% (Fig. 2).

Quality of BCL::Fold models and sampling of the topology space

We assess the quality of BCL::Fold models in two ways. The GDT_TS score allows for 

comparison with other results; the topology score focuses its evaluation criteria specifically 

on SSE contacts which tests BCL::Fold’s method of assembly.

GDT_TS scores for the best model generated by BCL::Fold ranged in from 23.3 to 64.5% 

with a mean GDT_TS score of 36.8% and a standard deviation of 10.4%. Using the mean 

GDT_TS score of 33% as a comparative measure between other methods, BCL::Fold was 

able to sample models above this threshold in 12 out of 18 cases. Comparisons of the BCL 

models with the experimentally determined structure by measuring RMSD10049 and 

GDT_TS show efficient sampling of the correct topology (Table IV, Fig. 3).

BCL::Fold’s sampling performance was evaluated previously with soluble and membrane 

proteins. BCL::Fold was able to sample the correct topology in 61 of 66 soluble benchmark 

proteins22 and in 32 of 38 membrane benchmark proteins.6 The correct topology was 

defined as the ability to fold models with an RMSD100 of <8 Å to the native.

While RMSD100 is suitable to assess Rosetta models, it is not as helpful for BCL::Fold 

models that are focusing on sampling long-range contacts between SSEs. Figure 4 shows 

how well BCL::Fold samples the different protein topologies, measured the topology score. 

Its applicability is limited foremost by the number of SSE contacts. For targets with very 

few contacts (T0722 has a single contact) many models achieve a high score, and the 

discriminative value of the topology score is reduced. While the topology score does 

currently not consider specific types of interactions between SSEs, it does include the 

secondary structure type; thus, an incorrectly predicted secondary structure type leads to all 

contacts of this incorrect SSE to be evaluated as false. The thresholds to assume a contact 

between two SSEs are derived from idealized, native protein models and therefore fairly 

large; this can lead to detection of SSE contacts even for SSEs that are only indirectly in 

contact but still a very short Euclidean distance apart, like the first and third strand of a 

sheet. Additionally, the value of the topology visualization is narrowed by the projection of 

three-dimensional protein structures into two dimensions, which reaches its limits for 
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complex topologies. While the topology score has some caveats, overall it captures the 

protein topology quite well.

For the topology score, which measures the true positive contact ratio, we set the threshold 

to 0.8. At this level, two topologies share an overwhelming number of SSE contacts. 

Furthermore, we observe similarities when visually inspecting the topology plots of protein 

models (Fig. 4).

BCL::Fold samples models above the threshold of 0.8 for 11 out of 18 targets (Fig. 5). All 

targets with a native SSE contact count up to 20 have a topology score above the threshold. 

With increasing native SSE contact count and complexity, the topology score decreases 

expectedly.

Selection of models for loop and side chain construction

Difficult, however, proved the selection of models for the subsequent refinement steps. 

During CASP10 we attempted selecting the best models by BCL sum score, the centers of 

the largest clusters, and the best scoring models in each cluster. However, no method 

enriched for high GDT_TS and consequently the models most similar to the native were 

consistently lost. For model T0700, we sampled a topology with an overall GDT_TS score 

of 64.5. We selected a model with a GDT_TS score of 57.6 for further refinement. After 

loop and side chain reconstruction, our model drifted further from the true native structure 

with a GDT_TS score of 38.6. Our final submitted model for this target had a GDT_TS 

score of 31.3. Most of the targets folded with BCL::Fold had this attrition pattern. 

Interestingly, model T0682 improved substantially after loop reconstruction from a GDT_TS 

score of 28.8 to 37.1. Our final submitted to CASP10 for this target had an RMSD100 score 

of 5.4 and GDT_TS Score of 33.0 (Figs. 2 and 6).

Addition of loop and side chain coordinates

While adding loops to the cluster centers decreased the average GDT_TS scores from 31.2 

to 23.5, the GDT_TS average dropped again from 23.5 to 22.4 when the side chains were 

added with Rosetta version 3.3. To rebuild side chains, the models were relaxed. To limit 

movement of the backbone constraints for every Cα-Cα bond distance below a cutoff of 8 Å 

were applied using a harmonic function with a standard deviation of 0.5. During side-chain 

reconstruction with Rosetta, 12 of the 18 CASP10 targets had a radius of gyration score 

>1100 for approximately 30% of all models indicating unfolding despite the constraint used 

(T0644, T0649, T0655, T0663, T0666, T0684, T0691, T0704, T0720, T0722, T0743, and 

T0745). This unfolding-like event was triggered because the BCL models scored poorly in 

the Rosetta energy function (Fig. 7). Models that were unfolded were not considered further. 

As a method of last resort, Rosetta was used to add side chains without relaxing the 

backbone but only repacking the side chains.
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DISCUSSION

BCL::Fold fails to sample to correct topology in seven cases

In 7 out of 18 cases, the best scoring BCL::Fold model had a topology score of <0.8, which 

means the correct topology was not found. Investigating the reasons for these failures, we 

found that the target with the lowest topology scores had SSEs missing in the secondary 

structure prediction and subsequently in the SSE pool. T0655 had a topology score of 0.44 

and had two helices missing; T0649 had a score of 0.68 and had one helix missing.

Models for T0724 have an incorrect strand topology because BCL::Fold models were 

created as protomers while the native exists as dimer in which strands from both monomers 

form a sheet.

The remainder of four incorrect targets failed to sample the correct topology because of a 

combination of reasons, most notably for two reasons. Long SSEs were split into two 

smaller ones, either by DSSP when assigning secondary structure to the natives, or by the 

secondary structure prediction methods that we employed. The correct topology was simply 

not sampled and recognized as a best scoring model, often with the order of strand SSEs in 

sheets being incorrect.

BCL::Fold models have loops that are impossible to close

BCL::Fold assembles tertiary structure from disconnected SSEs. Because of this, we must 

ensure that the distance between the end of one SSE and the beginning of the next SSE can 

be bridged by a loop. Two components of the BCL::Fold scoring function control this 

requirement: First, there is a penalty if the Euclidean distance between two SSEs is longer 

than the maximal Euclidean distance that can be bridged by the number of amino acids in 

the loop. Models that violate this rule are heavily penalized during Monte Carlo sampling 

and likely rejected. The second component is designed to place SSEs so that loops between 

them match a loop score potential that reflects native loop conformations from the PDB 

(PISCES dataset, see Methods). This loop score potential evaluates the Euclidean distance 

probability in dependence of number of residues.23 As this score is a function of only 

Euclidean distance and sequence distance, it neglects the spatial arrangement of SSEs. 

Analysis of CASP10 models revealed that BCL::Fold constructs models where loops cannot 

be closed without passing through SSEs. Figure 8 depicts a model produced by BCL::Fold 

for target T0663. The Euclidean distance between residues ASN55 of helix 1 and TYR65 of 

helix 2 is 25.5 Å. To bridge this distance with 9 amino acids, each amino acid has to be 2.8 

Å on average, which is less than the average Cα-Cα distance of 3.3 Å. However, with the 

placement of strand SSEs between the loop ends, all paths to close the loop between helices 

1 and 2 pass through the strand SSEs. Overall, 76% of BCL::Fold models produced during 

CASP10 folding simulations contains nonclosable loops because of this behavior.

The BCL::Fold loop potential is often violated for consecutive SSEs

Loops found in native proteins bridge preferable Euclidean distances de depending on the 

loop’s sequence length ds. The current loop potential of BCL::Fold mirrors this preference. 

It is a sequence independent score, which contributes to the overall energy function. The 
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PISCES data set used to create this potential includes all possible loops, that is, loops 

between consecutive and nonconsecutive SSEs. Because BCL::Fold does not assemble SSEs 

in sequence order, the potential must evaluate incomplete protein models with unplaced 

SSEs. Therefore, nonconsecutive SSEs were included in the loop scoring potential.

To test the loop potential accuracy, we compare the CASP10 models produced by BCL::Fold 

to structures from the PISCES pdb set. Because the Euclidean distance that a loop spans 

depends on the sequence length of the loop, we normalize the Euclidean distance by the 

logarithm of the sequence length, de/logds; this results in homogeneous distributions 

independent of loop length. The all-loop distributions (that is, consecutive and non-

consecutive loops) for de/logds for CASP10 models, CASP10 natives, and PISCES are alike 

[Fig. 9(A)]. The means of the distributions are 6.2, 6.6, and 6.5 Å, respectively, and confirm 

their similarity. Thus, we conclude that this weighted potential distinguishes native-like 

sequence and distance length of loops from non-native configurations in terms of sequence 

length and corresponding Euclidean distance.

However, when evaluating the CASP10 models with the consecutive-only loop distribution 

(that is, only loops between consecutive SSEs are included), we find a substantial bias 

between CASP10 models and both CASP10 natives and PISCES structures [Fig. 9(B)]. 

Their means are 8.1, 5.8, and 5.7 Å, respectively. The sequence length ds of a loop is not 

changing as it is defined by the secondary structure (prediction) of the particular protein and 

only used for normalization. Therefore, the difference between the distributions can only be 

caused by differences in the Euclidean distances de. Creating models with loops of longer 

Euclidean distances de than found in native structures for a given sequence length causes 

BCL::Fold to produce non-native like loop arrangements. Thus, the loop potential is not a 

sufficient metric to generate native-like models from disconnected SSEs. Furthermore, the 

current loop potential does not consider the spatial positioning of other SSEs and does not 

account for potential clashes between these SSEs and a loop (Fig. 8).

A small loop angle favors more native-like loops

To address the shortcoming we devised a loop measure that reflects this difference between 

consecutive and non-consecutive SSEs more drastically. For native proteins, we observe that 

loops between consecutive SSEs are positioned locally on a protein structure, that is, 

consecutive loops tend to begin and end on the same side of the structure and do not connect 

through the center. Geometrically this can be measured at as the angle between the end of 

one helix, the center of the protein, and the start of the next helix [Fig. 10(A)]. In native 

protein structures, consecutive loops overwhelmingly favor small angles, as shown for the 

CASP10 native and PISCES pdb sets, of which 75% are smaller than 40° [Fig. 10(B) green 

and blue, respectively]. Models with loops that would clash with other parts of the protein 

frequently have large angles of close to 180° [Fig. 10(B), red]. We can use this information 

to discriminate native like arrangements from models with large angles.

When including nonconsecutive loops, the distribution of loop angles is exhibiting two 

frequently occurring angles, small ones for loops connecting consecutive SSEs, and large 

ones for connecting nonconsecutive SSEs [Fig. 10(C)]. To evaluate the loop angles of a 
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protein model, we must differentiate between loops that connect consecutive and 

nonconsecutive SSEs.

To test whether filtering by the new loop angle measure would select for lower RMSD 

models compared to the existing loop score, we folded models for eight CASP10 targets 

(1000 models for T0655, T0663, T0676, T0678, T0684, T0700, T0745; 700 models for 

T0722). The RMSD cutoff was set to 10th percentile. Both, the existing loop score and the 

loop angle score were then used to select the best 50% according to each score. The existing 

loop score filtered on average 50% of the models below the RMSD cutoff and in three cases 

decreased the number of models below the RMSD cutoff by more than the expected 50% 

(T0684, T0700, and T0722). The loop angle score filtered on average 61% of the models 

below the RMSD cutoff and only in one case, T0722, it selected less than 50% of the models 

below the RMSD cutoff. Thus, the loop angle score is selecting more native-like models and 

can improve the BCL scoring function moving forward (Table V).

BCL::Fold misaligns β-strand registers

Carbonyl and amide groups in parallel and antiparallel strands of native proteins are aligned 

to allow the formation of stabilizing hydrogen bonds. A hydrogen bond is formed between 

the carbonyl-oxygen (hydrogen-bond acceptor) of one amino acid with the amide hydrogen 

of another amino acid (donor). In a sheet with the antiparallel strands i and j, the following 

pairs of atoms form hydrogen-bonds, here denoted as (acceptor, donor): (Ci, Cj), (Cj, Ci), 

(Ci+2, Cj−2), (Cj−2, Ci+2), (Ci+4, Cj−4), (Cj−4, Ci+4),… [Fig. 11(A)]; the pattern for parallel 

strands i and j is:(Ci, Cj+1), (Cj+1, Ci+2), (Ci+2, Cj+3),… [Fig. 11(C)].

BCL::Fold does not control for this alignment in order to simplify the folding energy 

landscape. It only controls for distance and relative orientation of β-strands within β-sheets. 

We hypothesized that misalignment of hydrogen bonds within β-sheets might cause clashes 

that are responsible for the large fraction of models that unfolds during Rosetta refinement.

To evaluate the strand register alignment of BCL models and compare them to natives, we 

measured the angle between carbonyl-carbon, the carbonyl-oxygen and the amide-hydrogen, 

and the distance from the carbonyl-oxygen to the amide-hydrogen. While in native proteins 

a hydrogen bond rarely has a Euclidean distance longer than 2.1 Å, we measured putative 

hydrogen bond atom pairs that were in paired β-strand SSEs and within a relaxed cutoff of 

4.5 Å. The hydrogen-bonds in aligned strands of elucidated proteins have characteristic 

angles close to 180° and distances of 1.9 to 2 Å. Analysis of CASP10 BCL::Fold models, 

CASP10 experimental structures, and the PISCES is summarized in Figure 11. In BCL 

models, we find substantial deviations to smaller angles and larger distances up to 4 Å for 

more than half of the models for both antiparallel and parallel sheets. The deviation in 

hydrogen bond angle and distance is correlated in BCL models. Additionally, BCL models 

exhibit a slightly shorter hydrogen bond distance of 1.8 to 1.9 Å even for hydrogen bonds 

with a native-like angle (Supporting Information Fig. S1). This points to an incorrect 

placement of SSEs.
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Misaligned β-strands cause clashes in Rosetta

The misaligned β-strands result in a high positive contribution from the repulsive score term 

(fa_rep) and no attractive contribution from the hydrogen bond score term (hbond_lr_bb), 

which leads to an unfavorable Rosetta score overall. The fa_rep term is the repulsive 

component of the van der Waals force, for example originating from carbonyl-oxygen of two 

strands being positioned too close to each other. The hbond_lr_bb term evaluates backbone-

backbone hydrogen bonds distant in the primary sequence as they appear in sheets. Due to 

the misalignment of strands, the hbond_lr_bb term is zero and does not contribute to the 

overall Rosetta score (Fig. 12).

This causes Rosetta to unfold BCL models, despite constraints (Fig. 7), in the last step of our 

CASP10 pipeline, which adds side chains and structurally refines the protein by cycling 

through repack and minimization steps.

β-Strand placement in BCL::Fold models needs to be refined to align hydrogen bond 
donors and acceptors

The assembly of disconnected SSEs allows BCL::Fold to sample different sheet topologies 

and register positions without being restricted by the residues connecting the two strand 

SSEs. For this reason β-strand placement is controlled only by a mutate-function that places 

one strand next to another in the preferred angle and distance.23 However, the placement of 

β-strands only by the distance and torsion angle within the β-sheet is insufficient to produce 

BCL::Fold models that can be refined with other programs. We plan to add a refinement 

stage into BCL::Fold that translates β-strands along their z-axis and evaluates a scoring term 

that controls the angle α introduced above. This will result in an improved scoring function 

that selects for more native-like models. We expect that improved alignment of β-strands 

will reduce the unfolding events observed during Rosetta refinement.

CONCLUSION

Despite inaccuracies in secondary structure prediction, BCL::Fold was able to sample the 

correct fold for most of 18 cases studied herein. The best methods in CASP10 submitted 

models with an average GDT_TS of around 33% in the FM category. BCL::Fold achieves 

this threshold in initial models after folding for 12 of 18 targets. Similarly, BCL::Fold is able 

to produce models with a topology score of at least 0.8 for 11 of 18 targets. However, the 

post folding filtering and refinement strategies removed correctly folded models from 

consideration in almost all cases, mostly for structural artefacts present in the BCL::Fold 

models. This result shows that BCL::Fold has the potential to compete with the best de novo 

structure prediction algorithms if a) unrealistic geometries in loops and β-strands can be 

removed and thereby the attrition of accurate topologies during model refinement can be 

stopped and b) an approach can be found that recognizes the most accurate models within 

the BCL::Fold ensemble. However, with this analysis and planned work to address the 

recognized weaknesses, future versions of BCL::Fold produce more native-like models 

without incorporating templates or experimental data.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
CASP10 Pipeline. Obtain target sequence from CASP10 prediction center (A); Perform SSE 

prediction (B); Split multimeric proteins into individual domains (C); Assemble SSEs in 

Folding algorithm, analyze fold models, compare generated models with native secondary 

structure, evaluate loop closure potential and beta sheet register shift (D); Filter erroneous 

models from further analysis (E); Cluster predicted folds and analyze cluster centers (F); 

Combine domains if previously split (G); Reconstruct loop regions and analyze models (H); 

Build side chains with Rosetta or other high resolution refinement software (I); Select final 

models and analyze final model selection (J). [Color figure can be viewed in the online 

issue, which is available at wileyonlinelibrary.com.]
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Figure 2. 
GDT_TS score analysis. Twenty FM targets from CASP10 (left two bars, pattern). Three 

targets folded also by BCL::Fold from FM category in CASP10 (left two bars, gray). All 18 

targets folded by BCL::Fold (black). Three FM targets folded by BCL::Fold (right five bars, 

gray). The y axis represents GDT_TS score.
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Figure 3. 
Highest GDT_TS model sampled with BCL::Fold (rainbow) overlaid with experimental 

protein structure (gray).
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Figure 4. 
Visualization of the topologies for the native and the best scoring model according to the 

topology score for selected target showing both successful (T0663, T0666, and T0682 in 

order from the top down with topology scores of 0.81, 0.82, and 1.00 for the respective best 

scoring model) and unsuccessful cases (T0655 at the bottom with a topology score of 0.44). 

[Color figure can be viewed in the online issue, which is available at 

wileyonlinelibrary.com.]
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Figure 5. 
True positive rate (precision, y axis) compared with the complexity of a protein (number of 

SSE contacts in the native, x axis). The true positive rate of BCL::Fold models decreases 

with increasing complexity.
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Figure 6. 
Comparison of example BCL models with the native target structure for T0663 (top) and 

T0722 (bottom). The experimental structures without loops are shown in gray (based on 

PDBIDs 4EXR and 4FLA, respectively). The predicted models (rainbow) show the highest 

scoring model produced by BCL (A, D, with a GDT_TS of 43.0 and 53.5, respectively); The 

best scoring model by BCL energy function (B, E, with a GDT_TS of 28.9 and 26.9); The 

best scoring model in largest cluster (C, F, with a GDT_TS of 22.1 and 32.6). [Color figure 

can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 7. 
BCL model for target T0655 before (A) and after side chain addition and relaxation with 

Rosetta (B). [Color figure can be viewed in the online issue, which is available at 

wileyonlinelibrary.com.]
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Figure 8. 
A model for CASP10 target T0663 folded by BCL. The Euclidean distance between residues 

ASN55 in helix 1 (rainbow colored on the right) and TYR65 in helix 2 (rainbow colored on 

the left) is 25.5 Å. Without the central sheet (pink) the loop could be closed; it is impossible 

to close the loop if the connecting amino acids have to be positioned around the sheet. 

[Color figure can be viewed in the online issue, which is available at 

wileyonlinelibrary.com.]
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Figure 9. 
The density distribution of the BCL loop score displaying Euclidean distance over the 

logarithm of the sequence separation for loop regions between all SSEs (A) and consecutive 

SSEs only (B). While the distributions of BCL models (red), CASP10 natives (green) and 

PISCES dataset (blue) match each other for loops between all SSEs (A), the distribution of 

BCL models shows a shift when only loops between consecutive SSEs are considered (B). 

[Color figure can be viewed in the online issue, which is available at 

wileyonlinelibrary.com.]
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Figure 10. 
Visualization of loop angle metric, which measures the angle α between the end of one SSE 

(dark blue), the center of gravity, and the beginning of the next SSE (light blue; A). The 

density distribution of the cos(α) metric for loop regions between consecutive SSEs only is 

concentrated to acute angles for PISCES and CASP10 natives (B, blue and red, 

respectively). BCL models exhibit a higher number of large angles for consecutive loops (B, 

red). The density distribution of the cos(α) metric for loop regions between all possible 

SSEs shows two frequently found angles, small ones and large ones, for all sets, BCL 

models (red), CASP10 natives (green) and PISCES (blue; C). [Color figure can be viewed in 

the online issue, which is available at wileyonlinelibrary.com.]
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Figure 11. 
Hydrogen-bond pattern and angles between the carbonyl-carbon, carbonyl-oxygen, and 

amide-hydrogen in antiparallel (A) and parallel strands (C). Comparison of the hydrogen-

bond angle for BCL models (red), CASP10 natives (green), and PISCES (blue) for 

antiparallel (B) and parallel strands (D). While the angles for CASP10 native and PISCES 

sets match, BCL models deviate. The x axis shows the cosine of the hydrogen-bond angle, 

the y axis the normalized density. [Color figure can be viewed in the online issue, which is 

available at wileyonlinelibrary.com.]
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Figure 12. 
The analysis of Rosetta energy scoring terms for the native and a BCL model of target 

T0655 (shown is only the sheet part of native and model). The native shows no penalty from 

the repulsive score (A, fa_rep Rosetta score term) and a beneficial contribution from the 

hydrogen bonding score term (B, hbond_lr_bb Rosetta score term). Contrary, the BCL 

model exhibits a very high repulsive score (C, fa_rep) and little benefit from the hydrogen 

bonding term (D, hbond_lr_bb). The color scale stretches from blue representing −1.5 

Rosetta energy units (REU) through gray (0 REU) to red (6 REU); the scale was chosen to 

red depict a value further from zero than blue to account for the bigger range of the repulsive 

score.
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Table V

The Percentage of Models Below the RMSD Cutoff Kept When Filtering Models for Each Target with the 

Existing Loop Score and the Loop Angle Score, Showing that the Loop Angle Score Keeps in All Cases More 

Low RMSD Models

Target % Models kept by existing loop score % Models kept by loop angle score

T0655 70 70

T0663 67 76

T0676 52 57

T0678 52 63

T0684 44 57

T0700 37 57

T0722 16 43

T0745 59 62

Average 50 61
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