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Abstract: There has been an increased interest in computational methods for amyloid and (or)

aggregate prediction, due to the prevalence of these aggregates in numerous diseases and their
recently discovered functional importance. To evaluate these methods, several datasets have been
compiled. Typically, aggregation-prone regions of proteins, which form aggregates or amyloids
in vivo, are more than 15 residues long and intrinsically disordered. However, the number of such
experimentally established amyloid forming and non-forming sequences are limited, not exceeding
one hundred entries in existing databases. In this work, we parsed all available NMR-resolved
protein structures from the PDB and assembled a new, sevenfold larger, dataset of unfolded
sequences, soluble at high concentrations. We proposed to use these sequences as a negative
set for evaluating methods for predicting aggregation in vivo. We also present the results of
benchmarking cutting edge tools for the prediction of aggregation versus solubility propensity.
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Introduction

The large majority of proteins are soluble under

native conditions. However, numerous studies have

demonstrated that, upon a change of conditions and

(or) depending on the amino acid sequence, otherwise

globular or unstructured proteins can assemble into

insoluble, stable aggregates of unlimited dimensions,

consisting of either amyloid fibrils or amorphous

clumps.1–6 Although, it has been shown that amyloids

can also play “beneficial” biological roles,4,7,8 such

irreversible aggregates are not generally tolerated in

cells. For example, the aggregates in the form of amy-

loid fibrils are linked to a broad range of human dis-

eases, which include, but are not limited to, type II

diabetes, rheumatoid arthritis, and perhaps most

importantly, debilitating neurodegenerative diseases

such as Alzheimer’s disease, Parkinson’s disease, and

Huntington’s disease. In addition, the accumulation of

recombinant proteins into aggregates is a major

biotechnological problem.9,10 Hence, it is extremely

important to be able to evaluate correctly the potential

of proteins to aggregate. Over the last decade, numer-

ous studies have demonstrated that if the polypeptide

chain is unfolded, its propensity to form aggregates is

inherently determined by the amino acid sequence

(reviewed in Ref. 1). Thus, a number of computational

methods to predict amyloidogenicity and in a broader
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sense protein aggregation, based on the analysis of

amino acid sequence, have been developed.1,11–18

To evaluate prediction methods, benchmark

datasets of aggregate-forming and non-forming

sequences are required. The primary problem here

is the limited number of well-established cases for

these datasets. The first datasets used short pepti-

des (�6 residues). The reasons were that short pep-

tides can be synthesized easily and tested in the

same or similar experimental conditions for the

presence or absence of amyloid fibrils. Moreover,

short peptides are unfolded, and, therefore, they do

not have the problem of structurally hidden regions

found in folded proteins. The initial dataset was

developed in 200414 and was composed of 78 amyloi-

dogenic and 172 non-amyloidogenic peptides, which

are mainly from disease-related proteins. From that

time to the present day, several new datasets that

included the previous datasets and newly estab-

lished peptides, have been published.12,13,18,19 One of

the most recently developed and largest database is

AmyLoad,20 which contains 444 aggregate-forming

and 1037 non-forming peptides collected from

WALTZ-DB,21 AmylHex,19 AmylFrag (an extension

of AmylHex), data from the Aggrescan12,13 and

TANGO14 papers, in addition to supplementary pep-

tides from the literature. The other recent database,

CPAD, contains already known data on amyloid-

forming peptides mentioned above and supplements

it by a large amount of data on change in aggrega-

tion rate upon mutations.22 The great majority of

the sequences in these datasets are short, however,

the sequences of proteins and peptides, which form

aggregates in vivo or (and) related to diseases, tend

to be longer than 15 residues.23,24 Shorter peptides

rarely reach fibril-forming concentrations in human

cells because, once produced, they are rapidly

degraded by proteases.25 Along this line, the experi-

ments with fusions of known short amyloidogenic

peptides with soluble proteins have yielded uncon-

vincing results, only triggering fibrillation at very

high concentrations.26,27

Thus, known naturally occurring aggregate-

forming proteins that represent the primary interest

of the researcher have aggregation-prone regions that

are longer than about 15 residues. In addition, in the

monomeric state of these proteins, the aggregation-

prone regions are unfolded and have disordered

conformation. Furthermore, these unfolded regions

aggregate independently of whether they are alone or

in combination with globular domains.28 However,

when considering only sequences of 15 residues or lon-

ger, the main problem is the limited number of such

proteins in the datasets. For example, the datasets of

amyloid forming and non-forming sequences that

were collected in the ArchCandy paper11 contained 51

and 64 entries correspondingly. The other recently

developed database, AmyLoad,20 has only 85 and 54

sequences.

Hence, there is a lack of experimental data on the

naturally occurring aggregate-forming and non-

forming unfolded proteins, which can be used to

benchmark computational prediction algorithms. In

this context, we turned our attention to the PDB,29,30

with about 12,000 protein structures determined by

NMR spectroscopy. One of the major conditions for

NMR experiments is that the proteins are soluble at

very high concentrations (�1 mM). Moreover, in accor-

dance with NMR data, some of these proteins have

their structures flanked by large unfolded terminal

regions (see e.g., MobiDB31). As we know the unfolded

regions of NMR-studied proteins do not form aggre-

gates, even at high concentrations, this further sug-

gests that they can be used as a set of experimentally

validated non-aggregative sequences. We present the

methodology to build the dataset, the dataset descrip-

tion, and the results of the benchmarking methods for

prediction of aggregation versus solubility propensity

on this dataset.

Results and Discussion

Methodology of dataset construction

The flowchart of the pipeline that led us to the data-

set is schematically outlined in Figure 1. Initially,

we downloaded structure and sequence files of all

12,000 entries of solution NMR elucidated proteins

from the PDB (Release available on July 25,

2016).29,30 We then obtained a non-redundant set of

these proteins, using the PDB redundancy filter (at

100% sequence identity defined as number of identi-

cal residues out of total in the sequence alignment)

amounted to 7290 protein entries. The next step was

Figure 1. A schematic representation of how we filtered the

data to create our dataset.
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to verify that each entry contained only proteins and

did not contain DNA structures and removing pro-

teins that only had one NMR model, leaving us with

5103 proteins.

We then determined which residues in the pro-

tein structures were unstructured. In general, these

unstructured regions can be located either at the

termini of the structures, or as flexible loops within

the structure. We focused on terminal regions as

topologically they have less restraints to form amy-

loids or aggregates. The terminal regions that lack

NMR assignment are most probably flexible/unstruc-

tured. There are two types of information, which

allow us to select these non-assigned terminal

regions: (1) Frequently, the chains of studied pro-

teins are longer in their sequence files than their

structure files [Fig. 2(A)] because the terminal

extensions are non-assigned; (2) NMR structures are

built by molecular modeling and dynamics based on

experimentally determined restraints. Thus, they

are presented as a collection of similar models

(usually 20), superposed on each other.29,30 Terminal

regions of PDB entries that lack NMR assignment,

are present in the structure, but have very different

conformations and cannot be satisfactorily superim-

posed [Fig. 2(C)].

We used a protocol similar to ModFOLDclust2.32,33

We divided up PDB structure files of each protein into

its constitute models (according to the number of NMR

models submitted to the PDB), with proteins only hav-

ing two or more models analyzed. We then superposed

all models of a given protein using TM-align.34 Then,

each residue i was scored using an S-score defined as:

Si 51/[1 1 (di/d0)2], where di was the distance between

Ca atom of a given residue i in each model and d0 was

the distance threshold (3.9 Å). An Si-score of 0 was

given if di 5 3.9 Å (see papers on ModFOLDclust and

ModFOLDclust232,33). The Si values were then

summed and the mean score is taken. The mean si

score is then converted into a distance score in

Ångstr€om, using the following equation: di5

d0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
si

21
� �r

.

Based on manual inspection of the superim-

posed NMR structures, we chose a cut-off of di 512

Å to denote residues that are highly structurally

variable [Fig. 2(C)], giving us 574 proteins with

the unfolded N- and C-terminal regions that we can

analyze. The cut-off di 512 Å also takes into consid-

eration the fact that globular domains can prevent

aggregation due to the steric hindrance between

these domains, if the critical aggregation-prone

region starts or ends right after the globular struc-

ture. At this cut-off, the unfolded regions and globu-

lar structures have a crosslink of about 3–5 residues

between them allowing to avoid the steric hindrance

in case of the fibril formation.35

As most of the naturally occurring and disease-

related amyloids are formed by sequences of 15 resi-

dues or longer,1 finally, 506 segments of 15 residues

or more were considered in this analysis.

During our subsequent manual analysis of the

506 segments of the set, we came across several

examples, where the protein with already known 3D

structure (such as, e.g., ubiquitin) was attached to a

studied protein domain to increase solubility and

ease structural elucidation. The “solubilization”

domains were present in the sequence files but

absent in the structure files. To exclude these cases

from our dataset, we used BLAST36 (at 95%

sequence ID, e-value 0.00001, with the terminal

fragments of 40 residues long against the CATH

Figure 2. Examples of NMR structures highlighting non-

assigned unstructured residues, showing structured residues

in blue, unstructured N-terminal residues in red, and unstruc-

tured C-terminal residues in green. A: Schematic of ubiquitin-

like Domain of hPLIC-2, 1J8C, having also non-assigned resi-

dues by NMR on the C-terminus of the sequence that are

missing in the file of the structure. B: Schematic of PABC

Domain of Human poly(A) binding protein, 1G9L, showing

unstructured regions of flexible N-terminal and C-terminal

residues in red and green, correspondingly. C: PABC Domain

of Human poly(A) binding protein, 1G9L, showing unstruc-

tured regions of flexible N-terminal and C-terminal residues in

red and green, correspondingly.
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database37). We further investigated all BLAST hits

manually to determine if the hit was to an actual

protein structure. This resulted in the removal of 14

sequences. In addition, all membrane proteins were

removed, as they are not soluble by themselves, for

NMR studies they are kept in the solution by incor-

poration into micelles mimicking the membrane

(e.g., 2MP338). We also revealed that another four

protein structures were determined at a pH within

the range of the isoelectric point of aspartic acid (pH

3.9) and glutamic acid (pH 4.07). This will result in

a change of charge and physico-chemical properties

of these residues to ones similar to asparagine and

glutamine, respectfully. For the benchmark, we

mutated these residues to asparagine and

glutamine.

Finally, we carried out clustering of the unfolded

terminal protein segments using CD-HIT39 at a

sequence identity of 100%. As a result, we obtained a

dataset of the 361 experimentally determined unfolded

protein segments of about 15–40 residues that are

soluble at high concentrations (see Fig. 3, Supporting

Information Data and http://bioinfo.montp.cnrs.fr/

index.php?r5NMR-set ). Analysis of the dataset can be

found in Supporting Information Figures S1–S3.

Tests of aggregation/solubility prediction

algorithms

Our dataset containing 361 sequences can be used to

analyze amyloid/aggregate versus solubility predic-

tion algorithms, which can be further used to improve

algorithm accuracy. The dataset was analyzed with a

number of such algorithms, including Aggrescan,12,13

TANGO14 and PASTA,16,17,40 FoldAmyloid,15 Arch-

Candy,11 and WALTZ.18 The list of described methods

is not exhaustive. Our intention was to cover most of

them, selecting those that are the most popular, most

original and diverse in terms of the basic principles,

and those that can be downloaded or used via web-

servers for a large number of sequences.

The error rate for amyloid prediction methods

ranges in order of best performance from 1.4% (5

sequences) for ArchCandy, PASTA (4.2%, 15 sequen-

ces), TANGO (5.0%, 18 sequences), WALTZ (11.4%,

41 sequences), FoldAmyloid (23.3%, 84 sequences),

to over 33.5% (121 sequences) for Aggrescan (Fig. 4).

Similar results were obtained when we used 361

sequences from our dataset together with, 54 non-

amyloid sequences, of more than 15 residues from

AmyLoad database39 (Fig. 4). Taken separately, the

AmyLoad dataset, of 54 sequences, yields the follow-

ing results: the best performance with 0% (0 sequen-

ces) for ArchCandy, followed by PASTA (3.7%, 2

Figure 3. A histogram of the length distributions of the

previously known non-amyloid sequences taken from the

AmyLoad database39 (in blue) and our dataset (in red).

Figure 4. Benchmarking widely used amyloid/aggregate

prediction methods. Blue bars show the percentage of

soluble proteins in our NMR-based dataset not-detected by

the amyloid/aggregate prediction methods. Red bars show

the percentage of soluble proteins in our dataset, together

with, sequences longer than 15 residues, from the AmyLoad

database not-detected by the amyloid/aggregate prediction

methods. The furthermost right gray bar represents the

results of a random prediction.

Table I. Number of erroneous predictions for the com-
putational tools Tools by Using Datasets of the Unfolded
Terminal Protein Segments at a Sequence Identity of
100%, 90%, 80%, 70%, 60%, 50%, and 40%

Percentage
sequence
identity 100% 90% 80% 70% 60% 50% 40%

Total number
of sequences

361 345 335 310 286 248 157

ArchCandy 5 5 5 5 5 4 4
Pasta 15 14 12 11 11 8 7
Tango 18 18 18 18 18 18 14
Waltz 41 37 35 32 28 26 21
FoldAmyloid 84 78 74 72 64 61 48
Aggrescan 121 120 117 117 113 103 85
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sequences), TANGO (5.6%, 3 sequences), WALTZ

(11.0%, 6 sequences), FoldAmyloid (25.9%, 14 sequen-

ces), and 42.6% (121 sequences) for Aggrescan.

These results indicate that there is room for

improvement of some of the algorithms, with our

dataset included in training data. There is a high

error rate for methods that use the concept of pre-

dicting aggregation propensity of short peptides of

about six residues. As already mentioned above, it is

problematic as the most common naturally occurring

aggregates in a form of amyloid fibres are formed by

longer regions.

The unfolded terminal protein sequences of our

dataset were clustered at an identity of 100% and

this has the potential to result in the over-

representation of some motifs. To alleviate concerns

that our dataset can be biased, we also clustered by

CD-HIT39 the unfolded terminal protein segments at

a sequence identity of 90%, 80%, 70%, 60%, 50%,

and 40%. The benchmark results show that regard-

less of the sub-dataset the ranking of the prediction

tools remains the same (Table I).

The significant increase of the negative amyloido-

genic dataset can drive the improvement of methods

for amyloid/aggregate versus solubility prediction

and, in particular, the development of machine learn-

ing methods. The described methodology of the data-

set construction can be the basis of an automated

pipeline for regular updates of this dataset, as the

number of PDB structures increase. Our dataset can

also be incorporated into other existing databases.20,22

It worth mentioning that although the NMR data does

not detect any specific interactions between these

unfolded terminal fragments and the corresponding

globular domains, strictly speaking, it is appropriate

in future to study experimentally some representative

sequences from this set to demonstrate that these pol-

ypeptides, taken alone, remain soluble.
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