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Abstract

Background—Ortho-phthalates are known endocrine disruptors. Prenatal phthalate exposure has 

been inconsistently associated with fetal growth and infant birth weight; however, the effect of 

paternal and maternal preconception exposure remains understudied.

Objectives—To investigate associations of paternal and maternal preconception and maternal 

prenatal urinary phthalate metabolite concentrations with birth weight.

Methods—The study comprised 364 singletons born to 364 mothers and 195 fathers (195 

couples) from the EARTH Study, a prospective cohort of couples from Boston, MA. Births were 
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categorized by mode of conception: in-vitro fertilization based (IVF) (n=208) or non-IVF based 

(n=156, intrauterine insemination or non-medically assisted/natural conception). We measured 

urinary concentrations of eleven phthalate metabolites in maternal (n=1,425) and paternal (n=489) 

preconception and maternal prenatal (n=781) samples. Birth weight was abstracted from delivery 

records. Covariate-adjusted associations between loge-phthalate metabolite concentrations and 

birth weight were evaluated separately by mode of conception using multivariable linear 

regression.

Results—Each loge-unit increase in paternal urinary concentration of the sum of di(2-ethylhexyl) 

phthalate (ΣDEHP) metabolites was associated with a 90 gram (95% CI: −165, −15) decrease in 

birth weight among IVF singletons, but not among non-IVF singletons (18 grams; 95% CI: −76, 

113). Additional adjustment for maternal prenatal ΣDEHP concentrations modestly strengthened 

findings among IVF singletons. While few associations were found with maternal preconception 

phthalate metabolites, we observed an inverse relationship between several maternal prenatal 

urinary phthalate metabolite concentrations and birth weight among IVF singletons in covariate-

adjusted models. However, with further adjustment for specific paternal phthalate metabolite 

concentrations, these associations were attenuated and no longer significant.

Conclusions—Paternal preconception urinary concentration of ΣDEHP metabolites was 

associated with a decrease in birth weight among IVF-conceived singletons. These results, if 

replicated, highlight the importance of preconception health, especially among subfertile couples.
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1. INTRODUCTION

Birth weight is one of the most important predictors of neonatal health and survival (Basso 

et al. 2006; Wilcox 2001). In the United States, approximately eight percent of babies are 

born with low birth weight (<2500 grams) (Hamilton BE 2015). Mounting epidemiologic 

evidence suggests that exposure to endocrine disrupting chemicals, such as phthalates, is 

associated with reduced fetal growth and infant birth weight (Marie et al. 2015; Ferguson et 

al. 2016). However, most of our knowledge of the effects of such chemicals on adverse 

pregnancy and infant outcomes has been generated through studies of maternal prenatal 

exposures. Much less is known about the impact of paternal or maternal environmental 

exposures in the preconception period on offspring health (Braun et al. 2017).

Phthalates, a class of synthetic chemicals with diverse industrial and consumer applications, 

are endocrine disruptors and reproductive toxicants (Hauser and Calafat 2005; Albert and 

Jegou 2014; Singh and Li 2012 ; Lyche et al. 2009). High molecular weight phthalates are 

used as plasticizers to soften polyvinyl chloride plastics and can be found in a variety of 

products such as food packaging, medical devices, toys, and flooring and building materials. 

Low molecular weight phthalates can be found in paints, adhesives, inks, personal care 

products, and pharmaceuticals. Despite their non-persistence (Wittassek and Angerer 2008), 

frequent and repeated exposure to phthalate-containing products has led to ubiquitous 
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human exposure with the detection of urinary phthalate metabolites in more than 95% of the 

US population (Hauser and Calafat 2005; CDC 2015; Zota et al. 2014).

Studies suggest that the developing embryo and fetus are sensitive to the potential adverse 

effects of phthalates (Trasande et al. 2013; Hogberg et al. 2008). Substantial experimental 

evidence in animals shows that phthalates are developmental and reproductive toxicants 

(Lyche et al. 2009; Lovekamp-Swan and Davis 2003; Gray et al. 2000; Marsman 1995; 

Tanaka 2002; Lamb et al. 1987; Gray et al. 2006). While there has been legitimate emphasis 

on studying the effects of prenatal phthalate exposure in humans, these studies have largely 

produced inconsistent findings due in part to considerable heterogeneity in design, study 

population and methods (Marie et al. 2015; Louis et al. 2008; Smarr et al. 2015; Watkins et 

al. 2016; Casas et al. 2016; Sathyanarayana et al. 2016). Given that phthalates may exert 

effects on both gametes and embryos, studies assessing exposure before conception as well 

as during pregnancy are necessary. Moreover, new and emerging research suggests that the 

preconception period may be highly sensitive to environmental perturbations and paternal 

preconception exposure may be an important and largely unexplored determinant of 

offspring health (Braun et al. 2017; Wu et al. 2016). Thus, we aimed to investigate whether 

paternal and maternal preconception and maternal prenatal urinary phthalate metabolite 

concentrations were associated with infant birth weight using a prospective cohort of 

couples undergoing treatment in a large fertility center.

2. METHODS

2.1. Study Cohort

The Environment and Reproductive Health (EARTH) Study is a prospective preconception 

cohort of couples from the Massachusetts General Hospital (MGH) Fertility Center. The 

study was designed to evaluate the effects of environmental exposures and diet on fertility 

and pregnancy outcomes. The EARTH Study has been ongoing since a pilot study in 2004 

and has recruited approximately 800 women and 500 men to date. Women 18 – 46 years and 

men 18 – 55 years are eligible to participate and may enroll independently or as a couple 

(not all female participants join with their male partners). Participants are followed from 

study entry throughout their fertility care, pregnancy, and labor and delivery. At enrollment, 

participants completed a nurse-administered sociodemographic, lifestyle, and medical 

history questionnaire. They also completed a more comprehensive questionnaire on family, 

medical, reproductive and occupational history, stress, product use, smoking history, and 

physical activity. Urine and blood samples were collected at study enrollment and 

subsequently when couples underwent medically assisted reproductive treatment, and at 

each trimester of pregnancy.

The present study included male and female participants from the EARTH Study with a 

singleton infant born between 2005 and 2016 (N=385 singletons/562 all live- births) and for 

whom we had quantified phthalate concentrations in at least one urine sample before 

conception of the index pregnancy (n=364/385). Trained study staff described the study 

protocol to all participants in detail and answered questions, and participants provided 

signed informed consent. The study was approved by the Institutional Review Boards of 
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MGH, Harvard T.H. Chan School of Public Health, and the Centers for Disease Control and 

Prevention (CDC).

2.2. Phthalate exposure assessment

Both men and women provided a single spot urine sample at study entry. Women provided 

up to two additional urine samples per fertility treatment cycle: the first specimen was 

obtained on days 3 to 9 of the follicular phase of the cycle, and the second sample at the 

time of oocyte retrieval or intrauterine insemination (IUI) procedure. During pregnancy, 

women also provided one spot urine sample per trimester (median: 6, 21 and 35 weeks’ 

gestation). Men provided one additional spot urine sample per treatment cycle at the time 

when their female partner underwent oocyte retrieval or IUI. We used multiple urine samples 

collected by each participant to examine phthalate metabolites in three separate windows – 

paternal preconception, maternal preconception, and maternal prenatal – of exposure.

Urine was collected in a polypropylene specimen cup and analyzed for specific gravity with 

a handheld refractometer (National Instrument Company, Inc., Baltimore, MD, USA), 

divided into aliquots, and frozen for long-term storage at −80 °C. Samples were shipped on 

dry ice overnight to the CDC (Atlanta, GA, USA) for quantification of urinary phthalate 

metabolite concentrations using solid phase extraction coupled with high performance liquid 

chromatography-isotope dilution tandem mass spectrometry (Silva et al. 2007). The urinary 

concentrations of the following eleven phthalate metabolites were measured: monoethyl 

phthalate (MEP); mono-n-butyl phthalate (MBP); mono-isobutyl phthalate (MiBP); 

monobenzyl phthalate (MBzP); mono(2-ethylhexyl) phthalate (MEHP); mono(2-ethyl-5-

hydroxyhexyl) phthalate (MEHHP); mono(2-ethyl-5-oxohexyl) phthalate (MEOHP); 

mono(2-ethyl-5-carboxypentyl) phthalate (MECPP); mono(3-carboxypropyl) phthalate 

(MCPP); monocarboxyisooctyl phthalate (MCOP); monocarboxyisononyl phthalate 

(MCNP). The limits of detection (LOD) ranged from 0.1 to 1.2 ng/ml. Concentrations below 

the LOD were assigned the LOD divided by the square root of two (Hornung 1990). We 

calculated the molar sum of four di(2-ethylhexyl) phthalate (DEHP) metabolites by dividing 

each metabolite concentration by its molecular weight and then summing: ΣDEHP= 

[(MEHP*(1/278.34)) + (MEHHP*(1/294.34)) + (MEOHP*(1/292.33)) + 

(MECPP*(1/308.33))]. We then multiplied the molar sum by the molecular weight of 

MECPP (308.33) to convert ΣDEHP to ng/ml.

2.3. Birth weight outcome assessment

Birth weight in grams (g) was abstracted from hospital delivery records by trained study 

staff. We also calculated gestational age- and sex-adjusted birth weight z-scores using 

United States birth weight reference standards by Talge and colleagues (Talge et al. 2014). 

Gestational age was abstracted from delivery records and was validated using the American 

College of Obstetricians and Gynecologists (ACOG) guidelines to estimate gestational age 

for births following medically assisted reproduction (ACOG 2014). For in-vitro fertilization 

(IVF) based conceptions, we estimated gestational age as: (outcome date - date of transfer) 

+ 14 + cycle day of transfer. For IUI and non-medically assisted/naturally conceived 

pregnancies, we used birth date minus cycle start date. Gestational age was corrected if 

delivery record estimates (gold standard) differed by over 6 days from the clinically 
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estimated age (corrected for three infants). Birth weight was assessed for implausible values 

by examining gestational age with additional verification of delivery record by study nurse 

(corrected for two infants).

2.4. Mode of conception

Clinical information about infertility treatment was abstracted from electronic medical 

records by trained study staff. As couples undergoing medically assisted reproduction 

conceive with different types of treatment, including some who conceive during an untreated 

cycle, we categorized index births by mode of conception: 1) IVF based (fresh or frozen 

IVF protocols, including intracytoplasmic sperm injection); or 2) non-IVF based (IUI with 

or without ovulation induction/stimulation, ovulation induction with timed intercourse, or 

non-medically assisted/naturally conceived).

2.5. Covariates

Demographic characteristics of study participants including age, race, and education were 

obtained from the enrollment questionnaire. A study nurse measured height and weight at 

study entry. Body Mass Index (BMI) at study entry was calculated as weight (kilograms) 

divided by height (meters) squared. Smoking status was self-reported at baseline. The 

treating infertility physician diagnosed the underlying cause of infertility using the Society 

for Assisted Reproductive Technology definitions. Infant sex was abstracted by study nurses 

from maternal delivery records.

2.6. Statistical analysis

Urinary phthalate metabolite concentrations were adjusted for urine dilution by multiplying 

the metabolite concentration by [(SGp−1)/(SGi−1)], where SGi is the specific gravity of the 

participant’s sample and SGp is the mean specific gravity for all male or all female 

participants included in the study samples (Pearson et al. 2009). The specific gravity-

adjusted phthalate metabolite concentrations were loge-transformed to standardize the 

distribution and reduce the influence of outliers. We estimated mean paternal and maternal 

preconception phthalate exposure by averaging each participant’s loge- phthalate metabolite 

concentration obtained from study entry and at each treatment cycle up to and including the 

cycle of the index conception of the singleton. For instance, if a couple underwent two IVF 

cycles, we averaged the loge-phthalate metabolite concentrations at the enrollment visit and 

those from the two IVF cycles, including the cycle of conception of the index birth to 

estimate the preconception exposure window. We estimated mean maternal prenatal 

phthalate exposure by averaging all trimester-specific loge-phthalate metabolite 

concentrations obtained from women during the index pregnancy. When only one urine 

sample was available (11%, 6%, and 6% of all paternal and maternal preconception and 

maternal prenatal urine samples, respectively) the phthalate metabolite concentration for that 

single sample was used for the window of exposure. We calculated descriptive statistics for 

phthalate metabolite concentrations for the three exposure windows as well as the proportion 

below the LOD. We also calculated Pearson correlation coefficients for each loge-phthalate 

metabolite concentration among couples and exposure windows.
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We examined the demographic and clinical characteristics in men and women, and birth 

characteristics of infants by mode of conception. We estimated associations of paternal and 

maternal preconception and maternal prenatal loge-phthalate metabolite concentrations and 

birth weight using multivariable linear regression. Given prior knowledge of the established 

association between medically assisted reproduction and birth outcomes (Schieve et al. 

2002; Helmerhorst et al. 2004; Pinborg et al. 2013; Messerlian et al. 2015a; Messerlian et al. 

2013), we a priori stratified the cohort by mode of conception and examined IVF and non-

IVF singletons separately. We fit a separate model for each individual metabolite and for the 

sum of ΣDEHP metabolites. Beta coefficients and 95% confidence intervals (CI) represent 

the difference in birth weight (g) for each loge-unit increase in phthalate metabolite 

concentration.

Covariates were selected a priori as potential confounders based on substantive knowledge 

using a directed acyclic graph (DAG). Maternal preconception/prenatal window covariate 

models included: maternal age and BMI (continuous), maternal education (<college, college, 

graduate degree), smoking status (never smoked vs. ever smoked, defined as a current or 

former smoker), and infertility diagnosis (male factor, female factor, unexplained). Paternal 

preconception window covariate models included: paternal and maternal age and BMI 

(continuous), paternal and maternal smoking (ever/never), maternal education (<college, 

college, graduate degree), infertility diagnosis (male factor, female factor, unexplained), as 

well as gestational age (continuous days). As we wanted to account for potential 

confounding by co-exposure between couples, we additionally adjusted for partner’s 

phthalate metabolite concentrations by adding the specific metabolite concentration into 

each individual multivariable model. For example, for paternal MBP, our regression model 

included: birthweight = paternal MBP concentration + covariates + maternal prenatal MBP 

concentration. We performed all statistical analyses using SAS version 9.4 (SAS Institute 

Inc., Cary, USA).

2.7. Sensitivity analysis

To further examine the association of the subset of phthalates with anti-androgenic 

properties, we calculated a summary measure of anti-androgenic metabolites (i.e., MEHP, 

MEHHP, MEOHP, MECPP, MBP, MiBP, and MBzP) using the modified methods according 

to Varshavsky et al. (2016) (Varshavsky et al. 2016). The summary estimate 

(ΣAAPhthalates) was calculated by multiplying the specific gravity-adjusted concentration 

of each of these seven individual metabolites by their anti-androgenic potency and summing 

the weighted concentrations: ΣAAPhthalates = MBP + (0.24*MiBP) + (0.26*MBzP) 

+ (0.61*MEHP) + (0.61*MEHHP)+(0.61*MEOHP)+ (0.61*MECPP). Potencies were based 

on benchmark doses associated with a 5% reduction in rat fetal testis testosterone 

concentrations as described by the National Research Council, Phthalates and Cumulative 

Risk Assessment (National Research Council 2008). The loge-transformed summary values 

were used to estimate the mean of paternal and maternal concentrations in respective 

windows of exposure.

We also evaluated possible effect measure modification (EMM) by sex of child by including 

a cross-product term for the interaction of sex and the metabolites of interest (ΣDEHP, 
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individual metabolites, and ΣAAPhthalate) in separate models with an EMM p-value <0.10 

as evidence of interaction by child sex (Rothman K 2012). In order to examine the potential 

effect of phthalates on birth weight not modified or confounded by gestational age, we 

examined associations using gestational age- and sex-adjusted birth weight z-scores (Talge 

et al. 2014) for ΣDEHP and ΣAAPhthalates metabolite concentrations across all three 

exposure windows. We also conducted sensitivity analyses excluding all preterm births and 

restricting the analysis to term births only.

3. RESULTS

3.1 Cohort

The study cohort comprised 364 women and 195 men (195 couples) with an average age of 

34.7 and 35.9 years at time of enrollment, respectively. Participants were predominantly 

Caucasian (women, 86%; men, 88%), and never-smokers (women, 74%; men, 70%). Most 

women were nulliparous (83%), had college or graduate degrees (94%), and about 32% had 

a female factor as the primary cause of infertility (Table 1). In men, 68% had a BMI >25 

kg/m2 and almost a third had a male factor infertility diagnosis (Table 1). Among the 364 

singletons, 53% were male and 57% (n=208) were conceived after IVF-based treatment. 

Among the 156 non-IVF conceived births, 54% (n=88) were conceived without medical 

assistance. Birth weight ranged from 1090 to 5040 grams, 8% of infants were born preterm 

(<37 weeks, n=28/364), and 4% (14/364) were low birth weight, however these differed by 

mode of conception (Table 2).

3.2 Phthalate exposure

Each participant provided multiple urine samples per exposure window. On average, men 

provided 2.5 (25th, 75th: 1, 3) urine samples in the preconception period, and women 

provided 4 (25th, 75th: 2, 5) and 2.5 (25th, 75th: 2, 3) urine samples in the preconception and 

prenatal periods, respectively. The geometric mean of the specific gravity-adjusted urinary 

phthalate metabolite concentrations ranged from 3.3 ng/ml (MBzP) to 71.5 ng/ml (ΣDEHP) 

in the paternal preconception window; from 2.3 ng/ml (MEHP) to 51.4 ng/ml (MEP) in the 

maternal preconception window; and 2.7 ng/ml (MEHP) to 48.9 ng/ml (ΣDEHP) in the 

maternal prenatal window (Table 3). The percentage of urine samples with detectable 

concentrations of phthalate metabolites ranged from 38% (maternal preconception MEHP) 

to 100% (paternal preconception and maternal prenatal MEP) (see Table 3 for all detection 

limits). Phthalate concentrations were moderately correlated among couples and exposure 

windows: maternal preconception and maternal prenatal MEP had the highest correlation 

(Pearson r=0.61) and the lowest was found for paternal preconception and maternal prenatal 

MEP (Pearson r=0.09) (Supplementary Appendix Table 1A).

3.3 Paternal preconception window

We found a significant negative association between paternal preconception ΣDEHP 

concentration and birth weight among IVF-conceived (Figure 1, Panel A), but not among 

non-IVF-conceived singletons (Figure 2, Panel A) in both unadjusted and adjusted models. 

After adjustment for covariates, including gestational age (our most conservative model), 

each loge- unit increase in paternal ΣDEHP concentration was associated with a 90 g (95% 
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CI: −165, −15) decrease in birth weight among IVF-conceived infants (Figure 1, Panel A, 

Model 2). Additional adjustment for maternal prenatal ΣDEHP modestly strengthened 

findings (β: −107 g, 95% CI: −199, −14) (Figure 1, Panel A, Model 3). Similar results were 

observed for three individual DEHP metabolites (MEHHP, MEOHP, MECPP) and for MBP, 

MiBP and MBzP. In the non-IVF group, there was a suggestive negative association for 

paternal MBP and MiBP concentrations after adjustment for maternal prenatal phthalate 

metabolite concentrations (Figure 2, Panel A, Model 3). The remaining paternal urinary 

phthalate metabolite concentrations were not associated with birth weight.

3.4 Maternal preconception window

We found few associations between maternal preconception phthalate metabolite 

concentrations and birth weight in unadjusted and covariate-adjusted models (Figure 1 (IVF) 

and Figure 2 (non-IVF), Panels B, Models 1 and 2). Among IVF births, additional 

adjustment for paternal preconception metabolite concentrations generally resulted in 

associations changing direction from negative birth weight to positive for several of the 

maternal preconception metabolites examined (Figure 1, Panel B, Models 3). Maternal 

preconception MCPP concentration was associated with a 159 g (95%CI: 49, 269) increase 

in birth weight with further paternal MCPP adjustment among IVF-conceived singletons 

(Figure 1, Panel B, Model 3). Among non-IVF births, MEP concentration had a negative 

association with birth weight, which remained consistent across all models (Figure 2, Panel 

B, Models 1, 2, 3) and MCNP was associated with decreased birth weight only in paternally-

adjusted models (Figure 2, Panel B, Model 3).

3.5 Maternal prenatal window

Maternal prenatal ΣDEHP, individual DEHP metabolites, and MBP, MBzP, MCPP, and 

MCNP concentrations were associated with birth weight decrements among IVF-conceived 

singletons (Figure 1, Panel C, Models 1 and 2). However, when we additionally adjusted for 

specific paternal phthalate metabolite concentrations in the multivariable models, 

associations were attenuated and no longer significant (Figure 1, Panel C, Models 3). 

Furthermore, results remained unchanged when we restricted the analysis across the three 

models to include the exact same study participants (i.e. those participants with paternal 

preconception and maternal prenatal data, n=195), suggesting that this attenuation was not 

due to differences in sample size, given that adjusting for paternal concentrations limited the 

sample to only those with couple data (n=195) (results not shown). Among non-IVF 

singletons, prenatal MBP, MiBP, and MBzP concentrations were associated with an increase 

in birth weight only after adjustment for paternal preconception concentrations (Figure 2, 

Panel C, Model 3). Maternal prenatal MEP showed similar patterns of a negative association 

across all models as that observed in the maternal preconception window (Figure 2, Panel C, 

Models 1, 2, 3).

3.6 Sensitivity analysis

Among IVF-conceived singletons, the paternal preconception ΣAAPhthalates summary 

measure was associated with a slightly greater decrease in birth weight (−113 g, 95%CI: 

−188, −37) than ΣDEHP (−90 g, 95% CI: −165, −15) in covariate-adjusted models (Table 

2A). Paternal anti-androgenic phthalate concentrations were not associated with birth weight 
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among non-IVF babies, nor were maternal preconception or prenatal anti-androgenic 

phthalates in either IVF or non-IVF singletons (data not shown).

Among IVF-conceived singletons, associations between paternal preconception ΣDEHP and 

ΣAAPhthalates metabolite concentrations and birth weight did not differ by infant sex (Table 

2A). There were also no apparent sex-specific differences in birth weight with the other 

paternal metabolites examined among IVF-births (data not shown). However, within the 

non-IVF conceived births, several paternal preconception phthalate metabolite 

concentrations were associated with sex-specific differences, with boys showing overall 

decreases in birth weight compared with girls, although strata-specific estimates were not 

significant. For example, paternal ΣDEHP concentration in non-IVF singletons was 

associated a 69 g (95% CI: −173, 36) decrease in birth weight among boys but a 96 g (95% 

CI: −46, 238) increase in birth weight among girls. In contrast, in the maternal 

preconception window of exposure, we observed several notable differences by child sex, 

with boys exhibiting increased birth weight and girls decreased birth weight in relation to 

ΣDEHP (boys: 80 g, 95% CI: −13, 172; girls: −50, 95%CI: −138, 38; EMM p-value=0.04), 

anti-androgenic phthalate metabolites (boys 70 g, 95% CI: −33, 173; girls: −84 g, 95% CI: 

−175, 7; EMM p-value=0.03) and MCPP (boys: 122 g, 95% CI: 38, 207; girls: −22 g, 95% 

CI: −103, 59; EMM p-value=0.02) concentrations among IVF-conceived infants but not 

among non-IVF infants (data not shown). We did not observe any significant interaction by 

child sex in relation to maternal prenatal phthalate concentrations (data not shown).

Finally, we observed consistent results when using gestational age-adjusted birth weight z-

scores as our outcome as that found with birth weight in grams. Findings were similar in 

direction and relative magnitude for paternal preconception ΣDEHP and anti-androgenic 

phthalates (Supplementary Appendix, Table 3A). Furthermore, in paternal models, when we 

subsequently excluded all preterm births (<37 weeks gestation, n=10), each loge-unit 

increase in paternal ΣDEHP was associated with an 84 g (95% CI: -167, −1) decrease in 

birth weight in covariate-adjusted models among term IVF singletons (Table 2A).

4. DISCUSSION

In this prospective cohort of subfertile couples, we found that paternal preconception urinary 

ΣDEHP metabolite concentration was associated with decreased birth weight among IVF 

singletons, but not among non-IVF singletons. We found only limited evidence that maternal 

preconception phthalate metabolites were associated with birth weight: among IVF 

singletons, we observed a possible positive association with MCPP, a non-specific 

metabolite of several high molecular weight phthalates, and in non-IVF singletons a 

suggestive negative association with MEP concentrations. We did, however, observe 

differences by child sex, with IVF-conceived boys showing higher and girls showing lower 

birth weight in relation to maternal preconception ΣDEHP, sum of anti-androgenic 

metabolites, as well as MCPP metabolite concentrations; however strata-specific estimates 

were not significant and small numbers within strata warrant cautious interpretation.

While several maternal prenatal phthalate metabolite concentrations were associated with 

birth weight decrement among IVF-conceived singletons, when we accounted for fathers’ 
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co-exposure, associations were substantially attenuated, and no longer significant. Such 

attenuation suggests that associations between maternal prenatal phthalate concentrations 

and birth weight were likely confounded by paternal preconception concentrations, and 

therefore not directly related to maternal prenatal metabolites. It is possible that conceptions 

by IVF may be more sensitive to environmental exposures, such as DEHP, as compared to 

non-IVF conceptions, and perhaps this is related to the IVF treatment itself or due to 

underlying infertility (Messerlian et al. 2015b). However, our results should be interpreted 

cautiously since this study is among the first to report such findings in a modest sized 

cohort, multiple comparisons were also undertaken, and results should be replicated in a 

larger dataset.

Our paternal preconception results among IVF births remained consistent when examining 

phthalate metabolite concentrations in relation to birth-weight z-scores, suggesting that our 

results for our primary birth weight outcome may not be driven by differences in gestational 

age. This was further supported by additional sensitivity analyses where we excluded all 

preterm births. These results are potential evidence of an association between paternal 

ΣDEHP metabolite concentrations and birth weight not mediated through preterm birth. Our 

summary measure of anti-androgenic phthalates was associated with even greater decreases 

in birth weight compared to a simple summation of DEHP metabolites. Additional studies 

are needed to determine if the observed associations with paternal phthalate metabolite 

concentrations may be mediated through anti-androgenic pathways.

Multiple animal studies have demonstrated that exposure to benzylbutyl phthalate, di-butyl 

phthalate (DBP), and DEHP during gestation causes reduced pup weight (Gray et al. 2000; 

Marsman 1995; Tanaka 2002). Others have found that DEHP and DBP exposure resulted in 

fewer litters, fewer live pups, and a decrease in the proportion of pups born alive, in a dose-

dependent manner (Lamb et al. 1987; Gray et al. 2006). Over a dozen studies have examined 

the association between prenatal phthalate exposure and fetal weight or birth weight in 

humans, however results and conclusions varied by study design, frequency of exposure 

assessment (most relied on a single measurement in pregnancy), and biological matrix (not 

all measured phthalate metabolites in urine) (Marie et al. 2015; Casas et al. 2016; Lenters et 

al. 2016; Shoaff et al. 2016; de Cock et al. 2016; Huang et al. 2014). A well-designed study 

by Ferguson et al. (2016) assessing prenatal urinary phthalates reported robust inverse 

associations of ΣDEHP metabolites and ultrasound based fetal weight (Ferguson et al. 

2016). While their study did not adjust for paternal exposure, their strongest finding was 

reported for MECPP (a DEHP metabolite). Similarly, our strongest finding in the prenatal 

window (before adjusting for paternal exposure) was for MECPP, although our findings 

pertained to singletons conceived via IVF. The Life Study by Smarr et al. is the only one to 

our knowledge to examine paternal and maternal preconception phthalates in relation to 

birth size. While relying on a single spot urine sample at study entry, they reported a 192 

gram decrease in birth weight (95%CI: −382, −2) associated with 2nd quartile paternal 

MEHP concentrations but not the 3rd or 4th quartile (Smarr et al. 2015). While they adjusted 

for maternal phthalate co-exposure, they did not adjust for gestational age, which may 

explain differences in magnitude. Our most conservative paternal model included gestational 

age as a covariate. Several recent studies have also found suggestive sex-specific patterns in 

birth weight in relation to some prenatal phthalate metabolites and similarly report increased 
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birth weight among boys but not girls (Watkins et al. 2016; Casas et al. 2016; 

Sathyanarayana et al. 2016).

While our study was not designed to elucidate mechanisms of phthalate metabolite 

concentrations on embryonic development, fetal growth or birth weight, new insights have 

highlighted the importance of several different potential pathways. For example, there is new 

evidence to suggest that paternal environmental and lifestyle exposures may impact sperm 

epigenetics and consequently the health of offspring (Kumar et al. 2013; Robinson et al. 

2012; Rando 2012; Chen et al. 2016). Sperm contribute more than paternal genetic material 

to the oocyte, they also transmit oocyte activation factors, centrosomes, messenger RNA, 

and microRNA (Krawetz 2005; Kumar et al. 2012). The sperm epigenome is integral to 

embryogenesis, and sperm epigenetic modifications play a critical role in fertilization 

potential and embryo development (Jenkins and Carrell 2011). Perturbation of such 

epigenetic processes can result in reduced fertilization, poor quality embryos, and pregnancy 

loss, and can also influence offspring phenotype (Rando 2012; Soubry et al. 2014; Soubry 

2015). Nuclear and mitochondrial DNA (mtDNA) are highly susceptible to oxidative stress 

and consequently mtDNA and nuclear DNA damage (Chen et al. 2016). Male factor 

infertility, including oligospermia and abnormal morphology has been associated with DNA 

methylation errors and sperm DNA fragmentation (Robinson et al. 2012; Zini et al. 2011; 

Stuppia et al. 2015). Moreover, in-vitro fertilization and intracytoplasmic sperm injection 

procedures have been associated with sperm oxidative stress and DNA damage (Agarwal 

and Allamaneni 2004; Wright et al. 2014; Tremellen 2008). It is possible that among men 

already at risk through subfertility and/or IVF treatment, additional environmental insult 

through exposure to DEHP may adversely impact germline cell epigenetics and 

consequently embryo development and fetal growth (Prados et al. 2015). Indeed, when we 

restricted the analysis to only men with male factor infertility conceiving IVF infants, 

associations with birth weight were strengthened, despite a small sample size (n=44): 

adjusted association for ΣDEHP and birth weight was −170 g (95%CI: −270, −70).

While our sex-stratified analyses are limited by very small subgroups and these results 

should be interpreted cautiously, the possible dimorphic effects between male and female 

infant birth weight in relation to maternal preconception ΣDEHP, MCPP, and anti-

androgenic phthalate metabolite concentrations suggest that different hormonally-dependent 

pathways may be at play. However, specific research in this area is needed to elucidate such 

mechanisms. Nevertheless, there is recent interest in understanding the relationship between 

endocrine disrupting chemicals, thyroid hormones, and fetal growth and development. 

During pregnancy, higher urinary phthalate metabolite concentrations are associated with 

higher gestational thyroid hormone concentrations (Johns, Ferguson, et al.), which is 

associated with suboptimal placenta function (Barjaktarovic et al. 2017) lower birth weight 

and fetal growth restriction (Haddow et al. 2014; Medici, 2013 #7549). Placental 

development is also regulated by human chorionic gonadotropin (hCG) and first trimester 

hCG concentrations have been shown to be associated with fetal growth in a sex-specific 

manner (Barjaktarovic et al. 2017). Future studies are required to investigate if maternal 

preconception phthalate concentrations influence early placentation and fetal growth via a 

hCG-thyroid mediated pathway resulting in sex-dependent effects.
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Through sensitivity analyses we provided additional evidence of a potential direct effect of 

certain paternal phthalate metabolite concentrations not mediated through gestational age. 

The prospective nature of the study design that relied on a subfertile study population from a 

large academic fertility setting permitted a careful examination of three windows of 

exposure, including the paternal preconception period – a largely unexplored and potentially 

important period of vulnerability. The urinary concentrations of phthalate metabolites 

measured were within the ranges reported for the US general population (CDC 2015). While 

it is uncertain whether our findings may be generalizable to men and women from the 

overall population without fertility concern, this vulnerable population represents an 

important public health target given the growing number of babies born after IVF-based 

treatment, estimated at >2% of all births or >62,000 births annually in the US (Centers for 

Disease Control and Prevention et al. 2012). Our study was also conditioned on having a 

live-birth and potentially prone to competing-risks bias, although this would likely result in 

the exposure appearing protective given the association of phthalates with reduced 

fecundability and pregnancy loss (Braun et al. 2017; Messerlian et al. 2016). However, 

consideration of including at-risk fetuses remains controversial (Basso 2016) and further 

empirical testing of potential biases may be warranted (Schisterman and Sjaarda 2016). 

Also, co-exposure to other chemicals of concern was not accounted for and exposure to 

phthalates may be reflective of other unknown lifestyle or fertility factors that might be 

associated with birth weight. However, we attempted to control for these factors by adjusting 

for both maternal and paternal age, infertility diagnosis, BMI, and smoking, and maternal 

education, as well as gestational age in paternal models. We furthermore adjusted for 

partner’s phthalate metabolites to account for confounding by couples’ co-exposure.

While long-term phthalate exposure assessment is difficult given the short elimination half-

lives of these non-persistent chemicals and the episodic nature of their exposure, a major 

strength of our study was that we had multiple urine samples for each of the three exposure 

periods for the vast majority of participants. We were therefore able to partially account for 

the within-person variability by using the average concentration from multiple urine samples 

provided in the preconception and prenatal exposure periods. Nevertheless, we also need to 

consider the possibility of misclassification of exposure and that such misclassification may 

be differential by mode of conception. Since women and men conceiving with IVF may take 

longer to achieve a pregnancy, they would overall have more urine samples in our analyses 

and consequently less potential for misclassification of exposure as a result. While our study 

design allowed us to comprehensively assess multiple paternal and maternal preconception 

and prenatal urine samples, permitting us to adjust for and carefully examine each exposure 

period in relation to birth weight, we acknowledge that in order to do so, numerous 

comparisons were undertaken, which could have resulted in false positive associations 

occurring by chance.

5. CONCLUSION

Our study provides preliminary evidence that paternal exposure to DEHP and possibly other 

anti-androgenic phthalates may decrease birth weight of IVF singletons. Research to 

understand the role of fathers’ environmental exposures in embryo development and fetal 

growth is needed in light of new and emerging studies suggesting that the paternal 
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preconception period may be highly sensitive to epigenetic perturbation. While our findings 

should be interpreted cautiously and warrant further confirmation, they raise the significance 

of counseling prospective fathers (and mothers) on the importance of preconception health, 

especially among subfertile couples.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Prenatal phthalate exposure has been inconsistently associated with fetal 

growth and infant birth weight.

• The effect of paternal and maternal preconception exposure remains 

understudied.

• Certain paternal preconception phthalate metabolite concentrations were 

associated with decreased birth weight among IVF-conceived singletons.
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Figure 1. 
Association between loge-unit increase in paternal preconception (A), maternal 

preconception (B), and maternal prenatal phthalate (C) concentrations and birth weight (g) 

among IVF-conceived singletons.
Abbreviations: DEHP: di(2-ethylhexyl) phthalate; MEHP: mono(2-ethylhexyl) phthalate; 

MEHHP: mono(2-ethyl-5-hydroxyhexyl) phthalate; MEOHP: mono(2-ethyl-5-oxohexyl) 

phthalate; MECPP: mono(2-ethyl-5-carboxypentyl) phthalate; MEP: monoethyl phthalate; 

MBP: mono-n-butyl phthalate; MiBP: mono-isobutyl phthalate; MBzP: monobenzyl 
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phthalate;MCPP: mono(3-carboxypropyl) phthalate; MCOP: monocarboxyisooctyl 

phthalate; MCNP: monocarboxyisononyl phthalate.

Models 1: Unadjusted analysis. Paternal Model: N=119; Maternal Preconception Model: 

N=204; Maternal Prenatal Model: N=174.

Paternal Model 2: Adjusted for maternal and paternal age (continuous), maternal and 

paternal Body Mass Index (continuous), maternal education (<college, college, graduate 

degree), maternal and paternal smoking (ever/never), gestational age (days), infertility 

diagnosis (male, female, unexplained), N=116.

Paternal Model 3: Adjusted for covariates from Model 2 + maternal prenatal phthalate 

metabolite concentrations, N=105.

Maternal Models 2: Adjusted for maternal age (continuous), Body Mass Index 

(continuous), education (<college, college, graduate degree), smoking (ever/never), and 

infertility diagnosis (male, female, unexplained); Maternal Preconception Model: N=195; 

Maternal Prenatal Model: N=169.

Maternal Models 3: Adjusted for covariates from Model 2 + paternal preconception 

phthalate metabolite concentrations; Maternal Preconception Model: N=115; Maternal 

Prenatal Model: N=105.
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Figure 2. 
Association between loge-unit increase in paternal preconception (A), maternal 

preconception (B), and maternal prenatal phthalate (C) concentrations and birth weight (g) 

among non-IVF conceived singletons.
Abbreviations: DEHP: di(2-ethylhexyl) phthalate; MEHP: mono(2-ethylhexyl) phthalate; 

MEHHP: mono(2-ethyl-5-hydroxyhexyl) phthalate; MEOHP: mono(2-ethyl-5-oxohexyl) 

phthalate; MECPP: mono(2-ethyl-5-carboxypentyl) phthalate; MEP: monoethyl phthalate; 

MBP: mono-n-butyl phthalate; MiBP: mono-isobutyl phthalate; MBzP: monobenzyl 
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phthalate;MCPP: mono(3-carboxypropyl) phthalate; MCOP: monocarboxyisooctyl 

phthalate; MCNP: monocarboxyisononyl phthalate.

Models 1: Unadjusted analysis. Paternal Model: N=76; Maternal Preconception Model: 

N=155; Maternal Prenatal Model: N=147.

Paternal Model 2: Adjusted for maternal and paternal age (continuous), maternal and 

paternal Body Mass Index (continuous), maternal education (<college, college, graduate 

degree), maternal and paternal smoking (ever/never), gestational age (days), and infertility 

diagnosis (male, female, unexplained), N=72.

Paternal Model 3: Adjusted for covariates from Model 2 + maternal prenatal phthalate 

metabolite concentrations, N=69.

Maternal Models 2: Adjusted for maternal age (continuous), Body Mass Index 

(continuous), education (<college, college, graduate degree), smoking (ever/never), and 

infertility diagnosis (male, female, unexplained); Maternal Preconception Model: N=143; 

Maternal Prenatal Model: N=135.

Maternal Models 3: Adjusted for covariates from Model 2 + paternal preconception 

phthalate metabolite concentrations; Maternal Preconception Model: N=72; Maternal 

Prenatal Model: N=69.
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Table 1

Parental characteristics from 364 women and 195 men participating in the Environment and Reproductive 

Health (EARTH) Study.

Parental Characteristic Women
N=364

Men
N=195

IVF
N=208

Non-IVF
N=156

IVF
N=119

Non-IVF
N=76

Age (years)

 Mean (SD) 35.0 (4.0) 34.3 (3.8) 36.0 (4.5) 35.6 (4.5)

 Age>35, n (%) 92 (44) 59 (38) 68 (57) 40 (53)

Race, n (%)

 White 174 (84) 138 (88) 106 (89) 65 (86)

 Black 5 (2) 2 (1) 3 (2.5) 7 (9)

 Asian 23 (11) 8 (5) 7 (6) 4 (5)

 Other 6 (3) 8 (5) 3 (2.5) 0

Body Mass Index (BMI, Kg/m2)

 Mean (SD) 23.7 (3.7) 24.6 (4.7) 26.8 (3.8) 27.4 (4.9)

 BMI >25, n (%) 58 (28) 56 (36) 75 (63) 57 (75)

Education, n (%)

 < College 14 (7) 7 (4) 20 (17) 7 (9)

 College Graduate 67 (32) 57 (37) 32 (27) 20 (26)

 Graduate Degree 118 (57) 80 (51) 43 (36) 34 (45)

 Missing 9 (4) 12 (8) 24 (20) 15 (20)

Smoking Status, n (%)

 Never 159 (76) 109 (70) 87 (73) 50 (66)

 Ever (former or current) 49 (24) 47 (30) 32 (27) 26 (34)

Infertility Diagnosis, n (%)

 Male Factor 66 (32) 25 (16) 46 (39) 13 (17)

 Female Factor 66 (32) 52 (33) 33 (28) 22 (29)

 Unexplained 76 (36) 79 (51) 40 (33) 40 (53)

Primiparous, n (%)

 Yes 176 (85) 126 (81) - -
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Table 2

Birth characteristics of 364 singletons from the Environment and Reproductive Health (EARTH) Study 

between 2005 and 2016.

Child Characteristics All Children
N=364

IVF
n=208

Non-IVF
n=156

Male, n (%) 192 (53) 111 (53) 81 (52)

Birth weight (grams)

 Median (25th – 75th) 3369 (534) 3409 (3125 – 3752) 3285 (2947 – 3653)

 min-max 1090–5040 1310–4790 1090–5040

 Mean Z-Score (SD) 0.04 (1.00) 0.11 (0.97) -0.06 (1.04)

Low birth weight

 <2500grams, n (%) 14 (4) 7 (3.4) 7 (4.5)

Gestational age at birth

 Mean weeks (min-max) 39.3 (29–42) 39.4 (32–42) 39.3 (29–42)

 Mean days (min-max) 276 (205–294) 276 (224–294) 275 (205–294)

Preterm birth

 <37 weeks, n (%) 28 (8) 18 (9) 10 (6)
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