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Abstract

Simulations of the passage of eukaryotic cells through a constricted channel aid in studying the 

properties of cancer cells and their transport in the bloodstream. Compound capsules, which 

explicitly model the outer cell membrane and nuclear lamina, have the potential to improve 

computational model fidelity. However, general simulations of compound capsules transiting a 

constricted microchannel have not been conducted and the influence of the compound capsule 

model on computational performance is not well known. In this study, we extend a parallel 

hemodynamics application to simulate the fluid-structure interaction between compound capsules 

and fluid. With this framework, we compare the deformation of simple and compound capsules in 

constricted microchannels, and explore how deformation depends on the capillary number and on 

the volume fraction of the inner membrane. The computational framework’s parallel performance 

in this setting is evaluated and future development lessons are discussed.
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1 Introduction

The passage of eukaryotic cells flowing through a constriction has several applications, 

including the study of cancer cells. Microfluidic devices with constricted channels are used 

to study how single or clustered cancer cells pass through narrow capillaries in blood flow 

[1]. Similar microfluidic devices are used to study the properties of cancer cells themselves 

[2]. Finally, the process by which cancer cells extravisate from the blood stream includes 

passage through narrow intercellular openings in the endothelial layer [28]. Numerical 

simulations of all three applications have the potential to complement and extend in vitro 
studies, by clarifying the role of a single physical parameter in a complex process or 

exploring regions of the parameter space that are otherwise difficult to access.

Computational studies of cell deformation have generally focused on red blood cells and 

other non-eukaryotic models. A common paradigm, developed for red blood cells, has 

modeled cells as fluid-filled capsules surround by a single zero-thickness [13, 7] or finite 

thickness [6] membrane. Simulations of red blood cells passing through a constricted 
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microchannel have been validated [20] and extensively studied (e.g., [14]). However, the 

discoidal shape, lack of a nucleus, and high membrane incompressibility of red blood cells 

may preclude the direct extension of their behaviour in constricted microchannels to 

eukaryotic cells.

Single membrane models have also been used to model eukaryotic cells [18, 12]. Recent 

studies have sought to improve model fidelity for eukaryotes by explicitly including the 

nucleus with a compound capsule model. In a compound capsule, the outer cell membrane 

and nuclear lamina are modeled with two separate membranes. As opposed to the simple 

(single) capsule used for red blood cells, the two membranes are uncoupled and may be 

modeled with different physical properties. Luo et al used a front-tracking method to 

simulate the deformation of an elastic compound capsule in shear flow [16]. These results 

were extended from initially spherical to ellipsoidal compound capsules, the dynamics of 

which were investigated in depth [15]. Similar compound models have been developed for 

vesicles [26, 11] and droplets [25, 29].

Initial applications have used compound capsules to simulate the passage of a eukaryote 

through a constricted microchannel. Using dissipative particle dynamics, Xiao et al. showed 

that a stiff inner membrane can preclude the passage of a compound capsule through a 

constriction [28]. Casquero et al. performed a two-dimensional simulation and observed 

deformation of the inner membrane to be highest at the exit of the narrowed region [3]. 

However, only a single, proof-of-concept compound capsule simulation was conducted in 

these studies.

Further, it is not well understood how the addition of a second membrane representing the 

nucleus alters the computational cost or parallel performance of the fluid-structure 

interaction (FSI) simulation, as previous performance studies have focused on red blood 

cells (e.g., [5, 23, 17]). Intuitively, the addition of a second membrane may increase FSI- and 

capsule-related computation by as much as 100%. Further, compound capsules seem to 

require higher fluid grid resolutions than simple capsules, even in shear flow [16]. These 

potential increases in computational expense underscore the importance of efficient parallel 

codes for FSI.

HARVEY is a massively parallel computational fluid dynamics solver, focused on 

hemodynamics and based on the lattice Boltzmann method [21, 22]. In this paper, we 

integrate HARVEY with FSI-functionality, using the immersed boundary method to couple a 

finite element model for deformable capsules to the fluid model. We discuss how the 

parallelization strategy for the FSI framework builds on existing HARVEY parallelism. The 

code is used to simulate passage of simple and compound capsules through a constricted 

microchannel, comparing results from simulations with and without an inner membrane to 

quantify the influence of the ‘nucleus’ on capsule deformation during transit of the 

constriction. We study the dependence of compound capsule deformation on the capillary 

number and on the inner capsule’s volume fraction. Finally, we evaluate the parallel 

performance of the FSI solver in this setting.
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2 Methodology

2.1 Lattice Boltzmann

The lattice Boltzmann method (LBM) is a deterministic, mesoscopic approach to 

numerically solve the Navier-Stokes equations [4]. The fluid is represented as a particle 

distribution function fi(x, t), which denotes the number of particles at grid point x at time t 
with discrete velocity ci. The evolution of distribution f is governed by the lattice Boltzmann 

equation,

(1)

for timestep δt, Maxwell-Boltzmann equilibrium distribution function , collision operator 

Ω, and the distribution F corresponding to external force g being applied to the fluid. 

HARVEY employs a standard implementation, with the D3Q19 discretization of velocity 

space, BGK collision operator , and kinematic viscosity  with lattice speed 

of sound . The halfway bounce-back boundary condition enforces the no-slip 

condition on the geometry surface. Flow at the inlet and outlet of the geometry is governed 

by Zou-He boundary conditions, with a fixed velocity profile at the inlet and a fixed pressure 

at the outlet [9].

We extend the collision kernel in previous HARVEY implementations to include an external 

force distribution F derived from an external force g [8]. The external force is used in the 

immersed boundary method to couple fluid and capsule dynamics, as discussed below. The 

hydrodynamic moments, density ρ and momentum ρv, in this kernel are computed as

(2)

The components Fi external force distribution are computed from the v and g by the relation

(3)

The velocity v is also used to compute the Maxwell-Boltzmann equilibrium distribution.

2.2 Capsule finite element model

Following the approach described by Luo et al. [16, 15], a cell with a nucleus is represented 

as a compound capsule, with two zero-thickness membranes to represent the outer cell 

membrane and nuclear lamina. The triangulated grid for each membrane is created by taking 

successive subdivisions of an icosahedron, which produces favorable regularity and isotropy, 
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and projecting onto the capsule’s initially spherical shape [13]. The shear and dilational 

elastic responses to strain of each membrane are governed by a Skalak constitutive law,

(4)

for strain invariants I1, I2, shear elastic modulus G, and the ratio of dilational to shear elastic 

moduli C = 1 [27]. A simple C0 finite element model is used to compute the membrane 

forces G from the strain energy function [24]. In this study, we assume that modulus G is 

identical for the inner and outer membranes. For compound capsules, the size of the inner 

membrane is described by the volume fraction ϕ, equal to the volume ratio of the inner 

membrane to the outer membrane. A penalty force fp is applied to enforce a constant capsule 

volume; the resulting volume variation is less than 1% for either membrane during all 

subsequent simulations.

2.3 Immersed boundary

The immersed boundary method (IBM) handles the FSI of the capsule and fluid by coupling 

the finite element model for the capsule (defined on a Lagrangian grid) with the lattice 

Boltzmann method (defined on an Eulerian grid) [19]. Using a discrete delta function δ to 

transfer physical values between the two grids, IBM approximately enforces the no-slip 

condition on the capsule surface and allows the capsule to exert a force on the surrounding 

fluid. In our implementation, there are three components of the IBM: spreading, 

interpolation, and updating.

The force G defined on the capsule vertex X is spread onto the fluid grid by the equation

(5)

and fluid velocity v is updated with the lattice Boltzmann algorithm. In the interpolation 

step, the updated velocity V of the capsule vertex X is computed at time t + δt with the sum

(6)

Finally, the position of the capsule vertex is updated using the no-slip condition:

(7)

In this implementation, the discrete delta function  is defined by 

the one-dimensional delta function
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(8)

using the spatial step δx of the fluid grid. A general discussion of the coupling of LBM and 

finite element methods with IBM may be found in [13].

2.4 Parallelism

The lattice Boltzmann algorithm is parallelized in HARVEY with MPI, with the simulation 

domain decomposed into bounding boxes belonging to each task. Communication between 

tasks occurs on the overlapping halo around each task’s bounding box. Data is transferred on 

these halo regions between neighboring tasks using non-blocking MPI calls. Indirect 

addressing is used to limit the required memory, as vascular geometries often occupy a small 

percentage of their bounding box volume. Global communication is not required and the 

lattice Boltzmann algorithm in HARVEY scales up to 1.5 million tasks [21, 22].

We extend this parallel paradigm to the coupled LBM-IBM-FEM framework for FSI. The 

overlapping halo is set to half of the support of the delta function (2 grid points). The 

capsule workload is distributed on two levels, by capsule and by vertex, similar to the 

approach in [17]. First, each capsule is owned by the task to which its center belongs and 

this task is responsible for computing forces from the finite element model on the capsule. 

Second, each vertex X belongs to the task in which it is located and this task interpolates the 

velocity V of the vertex. The other immersed boundary functions, updating and spreading, 

are not fully parallelized, in order to minimize communication. MPI communication is used 

to collect velocities V from all tasks owning vertices X of a capsule to the task which owns 

the capsule, and to send force G at each vertex from the task owning the capsule to the tasks 

owning each vertex. We do not alter the load balancing methodology in HARVEY to 

account for FSI; it remains based on the fluid grid alone, as described in [22].

3 Results and discussion

3.1 Validation

To validate our FSI framework, the deformation of an initially spherical compound capsule 

in an abruptly started simple shear flow is compared with the method of Luo et al. [16]. 

Deformation is measured with the Taylor deformation parameter D, defined as 

using the major and minor axes L and B, respectively, of the ellipsoid with the same moment 

of inertia. Figure 1 shows the deformation in time of compound capsules with volume 

fraction ϕ = 0.05 and capillary numbers Ca = 0.5 and 1. For shear flow, the capillary number 

is defined as , for shear rate γ and outer membrane radius R. Inner and outer 

capsules are each composed of 5120 triangular elements. The Eulerian fluid grid resolution 

is set such that the radius of the undeformed outer sphere is equal to 12 grid spacings and 

simulations are compared with results from [16] at the same fluid grid resolution. Our results 

generally agree well and show the slight transient fluctuations reported by [16].
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3.2 Constriction passage

We study the transit of a compound capsule through a microchannel constriction. A range of 

constriction geometries exist in the literature, with varied cross-sectional shapes [30] and 

with lengths ranging from 2 to more than 50μms [28, 12]. For this study, the constricted 

channel is rectangular and the 6μm length is comparable to the 8μm capsule diameter. 

Depicted in profile in figure 2, the channel is 16μm high, the transverse direction (not 

shown) is 16μm deep, and the constriction height is 6μm. Further, the channel has a 4μm 

slope in the axial direction between the regular and constricted heights, and the sides of the 

microchannel are assumed to be no-slip. Initially spherical capsules with a diameter of 8μm 

must deform to transit the constriction. The fixed inflow is 2.21 × 10−6 mL/s, corresponding 

to a parabolic flow with a maximum velocity u0 = 0.025m/s at the inlet. The fluid is 

characterized by Reynolds number Re = 0.1, dynamic viscosity μ = 1cP, and LBM relaxation 

time τ = 1. The capillary number is defined as .

To determine the appropriate simulation resolution, figure 3 shows the deformation D of a 

simple capsule with Ca = 0.5. Corresponding images of the capsule are illustrated in figure 

4. Simulations with Eulerian fluid grid resolutions of 150μm and 200μm agree well over the 

course of the passage, while 5120 triangular elements for the capsule grid resolve the higher 

curvature regions in the constriction. Subsequent simulations are conducted at 150μm fluid 

grid resolution with 5120 elements to represent each capsule membrane.

Figure 4 compares simple and a compound capsules (ϕ = 0.125) with Ca = 0.5. Starting from 

a spherical shape, the simple capsule begins to develop a protrusion on the leading side 

during the entry into the narrowing. Within the constriction, the capsule shape is heavily 

deformed and becomes approximately discoidal with a bulbous leading side. The bulbous 

region continues to expand upon exit of the constriction, before recovering the familiar 

‘parachute’-like shape. These qualitative aspects for simple capsules are consistent with 

simulations in a shorter constriction [28].

At this relatively high capillary number, the shape of the outer membrane in a compound 

capsule remains similar to simple capsules, except for the indentation at the trailing side in 

the constriction. The outer and inner membranes deform similarly during the entrance and 

transit phases, but take on very different shapes in the exit phase. The outer membrane 

become nearly spherical on the leading side, while indentation on the trailing side becomes 

more pronounced. Meanwhile, the inner membrane deforms to a more discoidal shape, 

inclined perpendicular to the direction of flow. The resulting shape of the inner membrane 

leads to a second peak in D, as shown in figure 5 for Ca = 0.5. Simulations at lower Ca 
indicate that maximum deformation of the inner membrane occured near the exit of the 

narrowing, but a second peak in deformation was not discussed [3]. After passing the 

narrowed region, the deformation D of the two membranes in the compound capsule 

becomes similar again.

The deformation of a given capsule in the constriction depends on the capillary number Ca. 

In figure 6, maximum capsule deformation is plotted as a function of Ca for simple and 

compound capsules with volume fraction ϕ = 0.125. The outer membrane of the compound 

capsule deforms less than the corresponding simple capsule over the entire range of Ca 
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considered, as previously observed for compound capsules in shear flow [16] and optical 

tweezing simulations [10]. The outer membrane deforms more than the inner membrane at 

Ca = 0.3, but this relationship reverses at higher Ca. Indeed, the deformation of the inner 

membrane approaches the corresponding simple capsule as Ca → 1. This ‘crossover’ point 

between larger inner and outer membrane deformation is remarkably consistent with results 

from shear flow at a similar volume fraction [16].

The passage of the compound capsule through the constriction also depends on volume 

fraction ϕ. For Ca = 0.5, we consider inner membranes with radii of 2, 2.5, 3.0, and 3.5μm, 

corresponding to ϕ = 0.125, 0.244, 0.422, and 0.67. The maximum deformation of the inner 

and outer membranes in the constriction are shown in figure 6, while the corresponding 

capsule images at this location are depicted in figure 7. While membrane deformation is 

similar at ϕ = 0.125, the inner membrane is more heavily deformed at higher ϕ. However, as 

ϕ becomes large, the flow field between the two membranes is not sufficient to cause further 

deformation of the outer membrane, and inner membrane deformation becomes intuitively 

limited. Overall, we find that both the shape and deformation of inner and outer membranes 

depends significantly on the volume fraction.

3.3 Influence on computational profile

The simulation of compound, rather than simple, capsules requires additional computational 

expense. To assess our parallel framework, we study the strong scaling of simple and 

compound capsules in the constricted microchannel. To emphasize FSI components, we 

simulate 81 capsules with 4μm outer membrane diameters spread throughout the geometry, 

at the same numerical capsule and fluid resolutions discussed above. While the problem size 

is too small for large-scale computation, performance in this setting is nonetheless of 

interest. Results are presented in figure 8 up to 64 cores on the IBM Blue Gene/Q system 

Vulcan at Lawrence Livermore National Laboratory. Total runtime scales somewhat better 

for simple capsules, performing at 81% parallel efficiency at 8 cores and 58% at 64 cores, 

versus 77% and 51% for compound capsules at the same core counts.

The performance loss with capsules is primarily due to two factors: the load imbalance of 

the FSI-related computation and the small problem size. We define FSI-related computation 

as the contributions of the immersed boundary and finite element models, along with the 

related MPI communication. Load balance challenges have been discussed in previous FSI 

frameworks, such as [5] and [17]. Figure 8 shows that average FSI-related computation for 

compound capsules remains at 80% efficiency at 64 processors. However, this work is not 

well-distributed and the overall FSI-related efficiency is reduced to approximately 48%. 

However, as simple capsules require approximately half the FSI-related computation of 

compound capsules, they have slightly better strong scaling. Additionally, the small problem 

size limits parallel performance: at 64 cores, every capsule is shared by multiple tasks and 

the parallel overhead becomes large relative to the computation time. In contrast, [17] 

demonstrated superior strong scaling over a much larger problem size.
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4 Conclusion

In this study, we present a framework for conducting FSI simulations of cells in flow. This 

framework builds on a massively parallel hemodynamics application, HARVEY, and is 

based on the lattice Boltzmann and immersed boundary methods. Eukaryotic cells are 

represented as compound capsules with a standard finite element model. The parallelization 

scheme for the FSI-related computation builds on existing HARVEY parallelism.

We apply the resulting computational framework to simulate deformation of simple and 

compound capsules through a constricted microchannel. Results are consistent with the 

extensive study by Luo et al. [16] in shear flow: (1) at a given capillary number, the 

maximum deformation of a simple capsule is higher than that of the compound capsule’s 

outer membrane and (2) the volume fraction of the inner membrane has a strong influence 

on the shape and deformation of the outer membrane. Further, we observe that the inner 

membrane undergoes two deformations to discoidal shapes: first, aligned with the direction 

of flow in the constriction and, second, perpendicular to the flow direction at the exit of the 

channel narrowing.

In a strong scaling test of the computational framework, we observe that the additional 

membrane in compound capsules reduces parallel performance, due to the more limited 

parallelism and load balance of the FSI model. In future work, we aim to improve 

performance with static and dynamic load balancing of FSI-related computation to solve 

large-scale problems.
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Figure 1. 
Compound capsules in shear flow with ϕ = 0.05.
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Figure 2. 
Central region of constricted microchannel. Vertical lines indicate the boundary of the 

constriction (solid) and narrrowed region (dotted). Shaded by fluid velocity in m/s.
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Figure 3. 
Deformation D as a function of axial position z of the capsule center; Ca = 0.5.
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Figure 4. 
Shapes during constriction passage (from left to right): entering, transiting, exiting, and 

returning to the full channel, for simple (top) and compound (bottom) capsules. Parameters 

are Ca= 0.5 and ϕ = 0.125. Colored by membrane velocity in m/s.
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Figure 5. 
Deformation of simple and compound capsules with Ca = 0.5 and ϕ = 0.125.
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Figure 6. 
Maximum deformation D in the constriction as a function of Ca (left) and ϕ (right).
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Figure 7. 
Shapes in constriction (top) and returning to full channel (bottom) with Ca = 0.5. From left 

to right, ϕ = 0.125, 0.244, 0.422, and 0.67. Colored by membrane velocity in m/s.
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Figure 8. 
(left) Strong scaling of simulations with simple and compound capsules. (right) Maximum 

and average task efficiency for FSI-related computation with compound capsules.
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