
Age-related macular degeneration (AMD) is a progres-
sive disease of the macula and is the leading cause of central 
vision impairment in persons over the age of 50 years in 
developed countries [1]. In the early and intermediate stages 
of AMD, the disease is characterized by the deposition of 
drusen, protein, and lipid-rich extracellular deposits between 
the RPE cells and Bruch’s membrane [2,3]. As part of the 
natural course of the disease, there is development of atrophic 
areas, which enlarge continuously and correspond with an 
absolute scotoma and geographic atrophy [4]. The late stage 
of dry AMD, known as geographic atrophy (GA), may be 
associated with RPE cell death, overlying photoreceptor loss, 
and underlying choriocapillaris atrophy [5-8].

The complement system, an important component of 
innate immunity, is the most widely accepted pathogenic 
pathway of the immune system implicated in AMD. Recent 
genetic and pathophysiological studies have provided 
evidence that the progression of AMD may be due in part to 

an inflammatory state sustained by aberrant activity of the 
complement alternative pathway [9-17].

The initial step in the alternative pathway is proteolysis 
of complement C3, which plays a central role in the activa-
tion of all complement pathways [18,19]. While the scaffold 
protein, complement component 3 (C3), and serine proteases 
factor B and factor D are required and sufficient for forma-
tion of the alternative pathway convertase, several comple-
ment proteins, including complement factor H (CFH), act as 
negative regulators of this enzyme complex [20]. Common 
genetic variants in complement genes component 3 (OMIM 
120700), CFH (OMIM 134370), and factor B are associated 
with AMD risk and progression [9,12,13,21-25]. Specific 
polymorphisms of CFH, which is the negative regulator of 
alternative pathway (AP), confer increased risk for AMD 
[15,26]. In contrast, specific polymorphisms of CFB (OMIM 
138470), the positive regulator of the alternative complement 
pathway, confer protection of AMD [23,26-28]. Elevated 
plasma levels of some key proteins of the alternative pathway, 
including factor D, factor B, and activation fragments C3a, 
factor Ba, and factor Bb, have been reported in patients with 
AMD [13,29,30]. Furthermore, a study, using well-character-
ized human donor eyes, showed that AMD disease severity 
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and complement genotypes are associated with complement 
activation in the eye. Moreover, C3, factor B, and factor D 
were found in vitreous and the Bruch’s membrane choroid 
interface of the macula [20].

Factor B, a 93-kDa single-chain glycoprotein, is required 
for the initiation and propagation of alternative pathway 
activation. When factor B associates with a cleavage product 
of complement protein C3 (C3b) it is cleaved by factor D to 
release an N-terminal fragment (Ba) and the bound carboxyl-
terminal serine proteinase (Bb). Because C3 is a component 
of the C3bBb enzyme, as well as its substrate, this pathway 
serves as a positive amplification loop for both pathways of 
complement activation. Factor B is synthesized in the liver 
and at low levels in several extrahepatic sites [31-34]. The liver 
is implicated as the primary source of plasma complement 
factor B [35-37]. Ocular factor B is located predominately in 
the choroidal capillaries and Bruch’s membrane region and 
not evident in the neural retina [16,19,20]. Thus, choroidal 
factor B appears to be derived from systemic sources.

In this study, we used second-generation antisense 
oligonucleotides (ASOs) to target and reduce the expression 
of factor B mRNA and factor B protein to determine whether 
the liver is the source of ocular factor B. This antisense 
approach used an RNase H1 mechanism to degrade factor B 
mRNA species. The results show that systemic administra-
tion of factor B ASOs results in a significant reduction in 
liver mRNA and plasma factor B levels, leading to a robust 
reduction in ocular factor B protein in mice and non-human 
primates. These results provide further evidence that the liver 
is the main source of ocular factor B protein.

METHODS

ASO synthesis and chemistry: The ASOs used were 20 
nucleotides long and chemically modified with phosphoro-
thioate in the backbone, five residues at each terminus, and 
a central deoxynucleotide region of ten residues (5–10–5 
gapmer). 2′-O-methoxyethyl modified antisense phosphoro-
thioate oligonucleotides (2′-MOE ASOs) were synthesized 
at Ionis Pharmaceuticals, Inc. (Carlsbad, CA) as described 
previously [38]. Oligonucleotides were synthesized using 
an Applied Biosystems 380B automated DNA synthesizer 
(PerkinElmer Life and Analytical Sciences–Applied Biosys-
tems, Foster City, CA) and purified as previously described 
[39]. The ASO sequences were as follows: murine factor B 
ASO, ION-516323, 5′-TCC ACC CAT GTT GTG CAA GC-3′; 
control ASO ION-141923, 5′-CCT TCC CTG AAG GTT CCT 
CC-3′; monkey ASO, ION-588548, 5′-TTA ATT CAA TCC 
CAC GCC CC-3′. The ASOs were dissolved in PBS (137 mM 
NaCl, 2.7 mM KCl, 8 mM Na2HPO4, 2 mM KH2PO4, pH7.4; 

Ca-Mg-; Invitrogen, Thermo Fisher Scientific, Carlsbad, CA) 
for the in vivo experiments.

Culture of hepatocytes and treatment with ASOs: Mouse or 
monkey primary hepatocytes were prepared using the stan-
dard collagenase procedure described previously [40]. Elec-
troporation of ASOs was performed using the HT-200 BTX 
Electroporator with the ElectroSquare Porator (ECM 830) 
voltage source in 96-well electroporation plates (BTX, 2 mm; 
Harvard Apparatus, Holliston, MA). Cells were harvested 16 
h after electroporation. Cells were electroporated in the pres-
ence of factor B ASOs at the indicated concentrations and 
plated. Sixteen hours after transfection, total cellular RNA 
was isolated, and the amount of factor B mRNA was quan-
tified using a quantitative real-time PCR (qRT-PCR) assay 
(TaqMan, Applied Biosystems, Thermo Fisher Scientific).

Quantitative real-time PCR: The cultured cells were lysed, 
and total RNA was extracted with a QIAGEN (Valencia, 
CA) RNeasy column. Animal tissues were homogenized in a 
guanidine isothiocyanate solution (Invitrogen) supplemented 
with 8% 2-mercaptoethanol (Sigma-Aldrich, St Louis, MO). 
Total RNA was prepared using the RNeasy mini kit instruc-
tions (QIAGEN). The qRT-PCR analyses were performed 
using an ABI Prism 7700 sequence detector (Applied Biosys-
tems). PCR results were normalized to total RNA measure 
with Quant-iT RiboGreen RNA Reagent (Molecular Probes, 
Eugene, OR). The sequences of primers and probes used 
were as follows: for mouse factor B: forward: 5′-GGG CAA 
ACA GCA ATT TGT GA-3′, reverse: 5′-TGG CTA CCC ACC 
TTC CTT GT-3′, probe: 5′-Fam-CTG GAT ACT GTC CCA 
ATC CCG GTA TTC C-Tamra-3′; monkey factor B: forward: 
5′-CGA AGA AGC TCA GTG AAA TCA A-3′, reverse: 
5′-TGC CTG GAG GGC CCT CTT-3′, probe: 5′-Fam- AGA 
CCA CAA GTT GAA GTC-Tamra-3′; mouse cyclophilin A: 
forward: 5′-TCG CCG CTT GCT GCA-3′, reverse: 5′-ATC 
GGC CGT GAT GTC GA-3′, probe: 5′-CCA TGG TCA 
ACC CCA CCG TG TTC-Tamra-3′; monkey cyclophilin A: 
forward: 5′-CGA CGG CGA GCC TTT G-3′, reverse: 5′-TCT 
GCT GTC TTT GGA ACC TTG TC-3′, probe: 5′-CGC GTC 
TCC TTC GAG CTG TTT GC-Tamra-3′. PCR conditions, 
holding stage: 15 min at 50 °C, 5 min at 95 °C. Cycling stage: 
15 msec at 95 °C, 1 min at 60 °C for 40 cycles. PCR results 
were normalized to total RNA measure with Quant-iT Ribo-
Green RNA Reagent (Molecular Probes).

Animal studies: Mouse studies: Male wild-type C57BL/6J 
mice (Jackson Laboratories, Bar Harbor, ME) were housed 
four animals per cage at 22–25 °C with a 12 h: 12 h light-dark 
cycle and free access to food and water. The ASO drugs were 
prepared in PBS and were administered by subcutaneous 
injection. Dosages are reported as the weekly dose for all the 
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animal studies, and the mice were dosed subcutaneously once 
per week. On the day of necropsy, the mice were euthanized 
with isoflurane inhalation. Plasma was collected by cardiac 
puncture and frozen at −70 °C or less. Liver and whole eyes 
were collected when the mice were euthanized approximately 
72 h after dosing was completed.

Monkey study: Male cynomolgus monkeys received 
loading doses of 0 (vehicle control, n = 6) or 40 mg/kg of 
ION-588548 (n = 4), every 2 days during the first week of 
the study (on days 1, 3, 5, and 7) followed by once a week 
administration thereafter, commencing on day 14 (40 mg/
kg/wk). Doses were administered by subcutaneous injec-
tion for 12 consecutive weeks and calculated based on the 
most recently recorded bodyweight. Plasma for factor B 
analysis was collected at days −6, 1, 30, 58, 72, and 86. At 
the terminal necropsy, liver samples and whole eyes were 
collected for factor B mRNA and protein analysis. On the 
day of the necropsy, the monkeys were sedated, weighed, and 
anesthetized followed by exsanguination and necropsy. The 
study was conducted at Korea Institute of Toxicology (KIT).

Study approval: All the animal studies were conducted under 
protocols approved by the Institutional Animal Care and Use 
Committee (IACUC) of KIT and Ionis Pharmaceuticals. 
The monkey study was conducted at an Association for 
Assessment and Accreditation of Laboratory Animal Care 
(AAALAC) accredited facility that has an Animal Welfare 
Assurance issued by the Office of Laboratory Animal Welfare 
(OLAW), is registered with the United States Department of 
Agriculture (USDA), and has an Institutional Animal Care 
and Use Committee (IACUC) that is responsible for compli-
ance with applicable laws and regulations regarding the use 
of laboratory animals. The study protocol was approved by 
the IACUC at the testing facility before dose administration.

Factor B western blot: Blood was collected under anesthesia 
via cardiac puncture into sample tubes coated with the antico-
agulant EDTA. Intracardiac blood collection was performed 
once at the end of the study, before the necropsy. Blood 
was centrifuged at 4,000 ×g for 15 min, and platelet-poor 
plasma was collected and stored at –80 °C before western 
blotting. One microliter of plasma samples from all groups 
was analyzed with sodium dodecyl sulfate–polyacrylamide 
gel electrophoresis (PAGE) followed by immunoblotting 
with antibodies to factor B. The antifactor B antibody was 
obtained from Sigma (Cat #HPA001817), was produced in 
rabbits, and was specific to human, mouse, and rat full-length 
factor B protein.

In the perfusion experiments, 9-week-old, wild-type 
C57BL/6J mice were subjected to trans-cardial perfusion 
with Dulbecco’s PBS (137.9 mM NaCl, 2.7 mM KCl, 8 mM 

Na2HPO4, 1.5 mM KH2PO4, pH7.3; DPBS, no calcium, no 
magnesium; Invitrogen, Thermo Fisher Scientific, Cat.: 
14190144) to remove the blood from the tissues. Briefly, a 
catheter infusion set was connected to a 20 ml syringe, and 
the needle was inserted in the left ventricle. The right atria 
was cut, and 15–20 ml of DPBS+10 U/ml heparin (Sigma, 
Cat: H3393) was slowly pumped through the heart. A steady 
flow of about 10 ml/min was applied. Following perfusion 
with DPBS+heparin, an additional 5 ml of DPBS was pumped 
through the heart to wash out any residual heparin. The eye 
and liver samples were collected and snap frozen in liquid 
nitrogen.

One eye from each animal was used for protein extrac-
tion and western blot analysis. The eye was homogenized 
in buffer containing protease inhibitors and incubated for 
30 min on ice. The eye homogenate was then centrifuged 
for 10 min at 17,949 ×g. The resulting supernatant was 
used for western blot analysis. The plasma and the protein 
extracts from the eye and liver were analyzed with sodium 
dodecyl sulfate PAGE followed by immunoblotting with an 
anti-human polyclonal antibody against factor B (Sigma 
HPA001817, 1:1,000). To ensure equal loading on the gel, an 
antibody anti-apolipoprotein E (ApoE; Abcam, Cambridge, 
MA, 1:5,000) was used for the plasma samples. Anti-alpha 
tubulin antibody (Abcam, ab7291, 1:10,000) was used for the 
eye and liver samples. The quantification of the western blot 
images was performed using Image J software. Recombinant 
factor B (Abcam, ab151392) was included as a control.

Plasma factor B analysis: Plasma factor B levels were 
analyzed at the Complement Laboratory at National Jewish 
Health. Factor B levels were measured with radial immu-
nodiffusion (RID; CL.0012), using an anti-human Factor B 
antibody preparation incorporated into an agarose gel to form 
immunoprecipitation in a ring around the application well. 
The area of the precipitin ring (minus the area of the well) is 
proportional to the amount of antigen (factor B) that is present 
in the test specimen. The reference range for cynomolgus 
monkeys is 127.6–278.5 µg/ml.

Statistical analysis: Values presented represent the mean 
± standard error of the mean (SEM). Statistical differences 
between groups were determined using one-way ANOVA 
with Tukey honest significant difference (HSD) multiple 
comparisons. A p value of less than 0.05 was considered 
statistically significant.

RESULTS

Identification of mouse factor B ASO (ION-516323) and 
monkey factor B ASO (ION-588548): ASOs are short synthetic 
strings of nucleotides designed to prevent the expression of 
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a targeted protein by selectively binding to the RNA that 
encodes the targeted protein with high affinity and thus 
preventing translation [41]. The factor B ASO hybridizes to 
its complementary mRNA target through well-characterized 
Watson–Crick base pairing and triggers mRNA cleavage by 
RNase H1, leading to the inhibition of target RNA translation 
and subsequent reduction in target protein levels [39].

To identify active ASOs that specifically target mouse or 
monkey factor B mRNA for in vivo studies, we designed and 
screened in vitro more than 150 ASOs for each species. The 
efficacy of the ASOs was determined in mouse or monkey 
primary hepatocytes as previously described [42]. All the 
ASOs tested were 20 base chimeric 2’-MOE phosphorothioate 
oligonucleotides incorporating a 5–10–5 design, that is, five 
2′-O-methoxyethyl nucleotides at the 5′ end, ten deoxynucleo-
tides in the center, five 2′-O-methoxyethyl nucleotides at the 3′ 
end, and phosphorothioate backbone substitution throughout 
[39]. An example of the range of activities of several of the 
ASOs tested is presented in Appendix 1. Active ASOs were 
further evaluated in dose–response studies. The IC50 achieved 
for the ASOs selected for in vivo studies were 0.5 μM for 
ION-516323 (mouse) and 0.7 μM for ION-588548 (monkey).

Administration of factor B ASO in wild-type mice effectively 
reduces liver factor B mRNA and plasma factor B protein 
levels: To establish the relationship between liver factor B 
mRNA reduction by the factor B ASO and plasma factor 
B levels, the factor B ASO were administered to wild-type 
C57BL/6J mice, four mice for each treatment group, by subcu-
taneous injections at doses of 12, 25, 50, 75, or 100 mg/kg/wk, 
for 6 weeks (Figure 1A). Liver factor B mRNA levels were 
reduced in a dose-dependent manner, reaching a maximum 
reduction of 95±0.1% of saline (Figure 1B). The calculated 
ED50 of the murine factor B ASO (ION-516323) was 18 mg/
kg/wk (Figure 1C). Liver factor B mRNA levels in the control 
ASO-treated (50 mg/kg/week) mice were not different from 
those in the saline-treated control group. ASO drugs are 
distributed broadly to many organs with the exception of the 
central nervous system (CNS) and the eyes, as ASO drugs are 
unable to pass the blood–brain or blood–retina barrier [43]. 
Therefore, as expected, the ocular mRNA levels of factor B 
were not changed with systemic administration of the factor 
B ASO (Figure 1D). Although the factor B mRNA levels were 
measurable in the whole eye preparations, the ocular level of 
factor B mRNA was less than 1% (0.86+0.03%) of the liver 
levels.

We next analyzed the effect of the administration of the 
factor B ASO on plasma factor B levels with western blot. 
The analysis showed that administration of the factor B ASO 
resulted in a dose-dependent reduction in the plasma factor 

B levels (Figures 1E,F). The reduction in the factor B mRNA 
level correlated with the reduction in factor B plasma protein 
(Figure 1G).

Administration of factor B ASO effectively reduces ocular 
factor B protein levels in mice and in cynomolgus monkeys: 
To evaluate the effect of systemically administered factor 
B ASOs on ocular factor B levels, species-specific factor B 
ASOs were administered to mice or cynomolgus monkeys 
by subcutaneous injection for 6 or 13 weeks, respectively. 
In both species, following the subcutaneous administration 
of the ASO, the ASO binds to plasma proteins and transfer 
rapidly from blood to tissues with a distribution half-life of 
1–2 h. Once the ASO is in tissues, clearance is dramatically 
slower than that observed in plasma, with tissue half-life 
reported to range from about 1 to 4 weeks [44]. The long 
half-lives of ASOs allow for infrequent (once weekly or less) 
dosing, coupled with a robust safety profile, including chronic 
toxicology [45].

Wild-type C57BL/6J mice (n = 4 per treatment group) 
received 25, 50, 75, and 100 mg/kg/wk the factor B ASO by 
subcutaneous injections for 6 weeks. A control mismatch 
ASO at 100 mg/kg/wk was used as negative control. As 
observed in the previous experiment, the administration of 
the factor B ASO resulted in a significant and dose-dependent 
reduction in the factor B mRNA levels in the liver. The 
maximum reduction achieved was 79±10% with factor B 
ASO ION-516323 (Appendix 2). Plasma factor B protein 
levels were analyzed with a western blot using 1 µl of plasma. 
As shown in Figure 2A, the levels of factor B protein were 
reduced in a dose-dependent manner. Moreover, systemic 
administration of the factor B ASO resulted in marked 
reductions in ocular factor B protein levels in mice and in the 
50 and 100 mg/kg/week treatment groups. Total whole eye 
protein extract was purified from all mice from the various 
treatment groups. Ocular factor B protein levels were deter-
mined with western blot (Figure 2B). The robust reduction in 
ocular protein corresponded with the reductions of factor B 
in the plasma.

To demonstrate that the major source of ocular factor B 
protein is the circulating factor B, we removed all blood from 
wild-type mice by trans-cardial perfusion with PBS. Subse-
quently, we evaluated the level of ocular factor B protein level 
with western blot. The results show that the ocular factor B 
levels are significantly reduced following perfusion (Figure 
3A,B). However, the factor B levels in the perfused livers 
were comparable to the levels in the unperfused tissues 
(Figure 3C,D). In addition, we compared factor B expression 
in the murine liver and eye. Using qRT-PCR and western blot 
analysis, we determined at the mRNA and protein levels that 
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ocular factor B expression is about ten- to 100-fold less than 
the hepatic factor B expression (data not shown).

The in vivo efficacy of the monkey-specific factor B 
ASO, ION-588548 was also evaluated with subcutaneous 
administration to cynomolgus monkeys. Two- to four-
year-old male monkeys were dosed with 40 mg/kg/wk of 
ION-588548 (n = 4) or saline (n = 6) for 12 weeks. Plasma, 
eye, and liver samples were collected after the animals were 
euthanized and analyzed for factor B mRNA and protein 
levels. As expected, a significant reduction in the hepatic 
complement factor B mRNA levels was observed following 
the administration of the factor B ASO (−66±7% compared to 
saline control). Similar to the observations in mice, the ocular 
factor B mRNA levels in animals treated with the factor B 

ASO were not significantly different from those in animals 
treated with saline (−19±8% of saline control). Moreover, the 
monkeys treated with the factor B ASO demonstrated a time-
dependent reduction in plasma factor B levels, achieving an 
80±6% reduction in plasma factor B at day 72 (Figure 4). 
Furthermore, the level of factor B protein in the monkey eye, 
as determined with western blot, was dramatically reduced 
after the systemic factor B ASO treatment, reaching undetect-
able levels (Figure 5).

DISCUSSION

AMD is strongly associated with the over-activation of 
complement pathways [16]. Supporting evidence comes from 
the detection of various complement proteins in the drusen 

Figure 1. Factor B ASO effectively 
reduces hepatic factor B mRNA and 
plasma factor B of normal mice. 
C57BL/6J mice were treated for 6 
weeks with the indicated weekly 
doses of factor B antisense oligo-
nucleotide (ASO) via subcutaneous 
injection (n = 4 per group). A: Study 
design. B: Dose-dependent reduc-
tion in hepatic factor B mRNA 
after subcutaneous administration 
of factor B ASO. C: ED50 of hepatic 
factor B mRNA reduction by mouse 
factor B ASO. D: Ocular factor B 
mRNA level. E: Dose-dependent 
reduction in plasma factor B 
protein levels after the administra-
tion of the factor B ASO. F: Factor 
B protein level was measured 
with western blot with anti-factor 
B antibody. Quantification of the 
western blot using Image J. Factor 
B band intensity was normalized to 
the level of plasma immunoglobulin 
G (IgG). Results represent mean ± 
standard error of the mean (SEM). 
*p<0.05; one-way ANOVA with 
Tukey honest significant difference 
(HSD) multiple comparisons. G: 
Correlation between liver factor B 
mRNA level and plasma factor B 

protein level of mice after treatment with the factor B ASO. The Pearson correlation was calculated using Prism software, and the calculated 
R squared was 0.655.
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Figure 2. Factor B ASO effectively reduces plasma and ocular factor B protein levels. C57BL/6J mice were treated for 6 weeks with the 
indicated weekly doses of the factor B antisense oligonucleotide (ASO) via subcutaneous injection (n = 4 per group). A: Dose-dependent 
reduction in plasma factor B protein levels after administration of the factor B ASO. One microliter of plasma from all individual mice from 
the various treatment groups was analyzed with western blot. B: Dose-dependent reduction in ocular factor B protein with the administration 
of the factor B ASO. One whole eye from each mouse was used for total protein isolation. The factor B protein level was measured with 
western blot with the anti-factor B antibody.

Figure 3. Reduction in ocular factor 
B protein following trans-cardial 
perfusion of wild-type mice. 
C57BL/6J mice were subjected to 
trans-cardial perfusion with PBS. 
Unperfused mice served as control 
(n = 3 per group). A: The factor B 
protein levels were measured in 
the ocular extracts with western 
blot analysis. Total protein extracts 
were obtained from one whole eye. 
Different amounts of recombinant 
human factor B protein (rhFB) 
were loaded on the gel to estimate 
the ocular factor B levels. Immu-
noblotting for tubulin was used to 
ensure equal protein loading on the 
gel. B: Quantification of panel A. C: 
Analysis of liver factor B protein 
levels with western blot. Immu-
noblotting for tubulin was used to 
ensure equal protein loading on the 
gel. D: Quantification of panel C.
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of patients with AMD [9] and the close association between 
AMD and the alternative pathway. Furthermore, the associa-
tion of genetic variants in complement genes, including the 
human factor B gene, is a risk factor for all forms of AMD 
[5,9,22,24]. In addition, it has been shown that polymor-
phisms of genes encoding the alternative pathway proteins 
CFH, factor B, and C3, as well as the classical pathway 
protein C2, are also associated with AMD [23,46]. Studies 
in animal models of choroidal neovascularization (CNV), a 
major pathologic association with wet AMD, also supports 
a role for complements in AMD. Furthermore, a targeted 
inhibitor specific for the AP of complement significantly 
reduces CNV and the physiologic consequences of CNV on 
retinal function [11,47].

Additional evidence for a role of the AP pathway in 
AMD exists. For example, plasma concentrations of AP 
activation products were found to be significantly elevated 
in patients with AMD compared to controls [13,20,29]. In 
addition, various independent studies have shown that the 

concentrations of several complement proteins, such as C3, 
C4, factor B, and factor D, as well as the activation products 
Ba, C3a, C3d, C5a, and sC5b-9, are greater in the blood of 
patients with AMD compared to age-matched controls [48]. 
These studies suggest that the ongoing systemic activation of 
the alternative complement pathway plays an important role 
in AMD pathogenesis and adds to the increasing evidence 
that AMD is a systemic disease with local disease manifesta-
tion in the aging macula [49].

However, it is clear that local activation of the comple-
ment pathway also plays a significant role in AMD disease 
pathogenesis [16,20]. Supporting evidence of local comple-
ment activation comes from the detection of various comple-
ment proteins in the drusen of patients with AMD [9] and 
the fact that increased activation of the alternative comple-
ment pathway in vitreous is controlled by disease stage and 
genetic variation in the complement pathway [20]. Extensive 
work by multiple laboratories has demonstrated that some 
complement components are expressed in the RPE and 

Figure 4. Reduction in plasma 
factor B protein levels of cyno-
molgus monkeys treated with the 
factor B ASO for 13 weeks. Cyno-
molgus monkeys were dosed with 
saline (n = 6) or ION-588548 (n = 
4) at 40 mg/kg/wk for 13 weeks. 
Plasma samples were obtained at 
days −6, 1, 30, 58, 72, and 86 of 
the study and analyzed for the level 
of factor B protein. Data presented 
as % of baseline (day −6) for the 
individual monkeys and mean ± 
standard error of the mean (SEM) 
for each time point.

Figure 5. Reduction in ocular factor 
B protein of monkeys treated with 
the factor B ASO for 13 weeks. 
Cynomolgus monkeys were dosed 
with saline (n = 4) or ION-588548 (n 
= 4) at 40 mg/kg/wk for 13 weeks. 
One whole eye from each monkey 
was used for total protein isolation. 
The factor B protein levels were 
measured with western blot.
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choroidal layers of the eye. Interestingly, CFH is expressed 
at a high level in RPE layers [9,10]. In contrast, other comple-
ment components, such as C3, C5, factor B, and factor D, 
are expressed predominantly in the choroidal layers rather 
than the RPE or the retina [16]. A study in mice expressing 
factor B uniquely in the RPE cells demonstrated that local 
factor B expression is sufficient to drive pathology in the 
eye. However, the same group showed that in the absence of 
locally produced complement factor B (CFB-KO), systemic 
factor B derived from wild-type serum injected via tail vein 
can drive pathology [50]. In vitro studies have demonstrated 
that cultured RPE cells constitutively express higher levels 
of complement regulators, including factor B and C3, and 
under inflammatory conditions, activated macrophages could 
promote the alternative pathway of complement activation 
in the retina via induction of RPE cell complement factor 
B and C3 expression. Macrophages and RPE cells may play 
an important regulatory role in complement activation at the 
retina–choroidal interface under pathophysiologic conditions, 
such as age-related macular degeneration [51]. The impor-
tance of the dysregulation of complements in the choroid has 
been well documented [17,52,53]. Specifically, deposition 
of membrane attack complex (MAC) in the choriocapillaris 
begins at early ages, continues throughout aging, and is 
greater in patients with AMD [53]. It has been hypothesized 
that the MAC-induced disruption of choriocapillaris is a 
primary event in the etiogenesis of AMD [17].

The liver has been implicated as the primary source 
of plasma complement factor B, and a systemic comple-
ment factor B inhibitor could potentially provide benefit to 
patients with AMD by slowing disease progression [35-37]. 
In the human eye, the choroidal expression of factor B is 
substantially less than that observed in the liver [16], which 
we confirmed in the present animal studies. In this study, we 
further investigated the source of plasma and ocular factor B 
protein in mice and monkeys. Using second-generation ASOs, 
we demonstrated that reductions in liver factor B mRNA lead 
to robust reductions in plasma and ocular factor B protein 
levels. However, although marked reductions in liver factor 
B mRNA were demonstrated, no reductions in ocular factor 
B mRNA levels could be detected. These results add to the 
increasing evidence that the liver is the main source for circu-
lating and ocular factor B. These studies are also consistent 
with the premise that the ongoing systemic activation of the 
alternative complement pathway plays an important role in 
AMD pathogenesis and adds to the increasing evidence that 
AMD is a systemic disease with local disease manifestation 
at the aging macula [49].

In view of the potential pivotal role of the complement 
system in the development of AMD, several trials have been 
initiated to investigate the effect of complement inhibitors 
on this disease. Recent clinical trials have used humanized 
monoclonal antibodies (mAb) against C3, C5, and factor D 
[54]. Preliminary findings suggest that blocking the alter-
native pathway may offer a good approach to treat AMD. 
Lampalizumab (Genentech, Inc., South San Francisco, 
CA) is the antigen-binding fragment (Fab) of a humanized 
monoclonal antibody (mAb) that inhibits complement factor 
D, which is the rate-limiting enzyme in the activation and 
amplification of the alternative complement pathway [55]. 
The MAHALO study, a phase 2 clinical trial, demonstrated 
that intravitreal injected lampalizumab inhibited disease 
progression in patients with geographic atrophy [54]. Here we 
propose that inhibition of the alternative pathway by systemic 
administration of factor B ASO drugs could benefit AMD. In 
contrast to the therapeutic potential of inhibiting the comple-
ment pathways, deficiencies within the complement system 
can lead to inappropriate inflammation, impair host defense, 
and increase the risk of infection. There have been only a 
few recorded cases of factor B deficiency, and the individuals 
reported presented with meningococcemia but no history of 
any autoimmune disorder [56,57]. Antisense technology is a 
highly effective approach for reducing the target expression 
in liver. However, treatment with ASOs usually achieves a 
significant knockdown (not knockout) of the target protein, 
leaving some residual activity of the target [58]. In vitro 
studies have evaluated the ability of various concentrations 
of wild-type and polymorphs of factor B protein to maintain 
serum hemolytic activity demonstrated that more than 20% 
of normal serum hemolytic activity could be maintained with 
less than 10% of normal factor B levels [26]. Therefore, since 
factor B hemolytic activity is achieved with low concen-
trations of plasma factor B, the risk of infection should be 
minimal with systemic inhibition using factor B ASOs.

In summary, we propose an alternative strategy for 
AMD therapeutics that involves inhibition of the alternative 
pathway by systemic administration of factor B ASOs. We 
suggest that the reduction in systemic complement activa-
tion would lead to reduced complement activation in the eye, 
which will potentially slow AMD disease progression and 
provide benefit to patients with AMD.

APPENDIX 1. FB ASOS SCREEN IN PRIMARY 
HEPATOCYTES

FB ASOs were electroporated to mouse primary hepato-
cytes. Cells were harvested 16 h after electroporation total 
cellular RNA was isolated, and the amount of FB mRNA 
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was quantified using a quantitative qRT-PCR) assay. Values 
are presented as % of untreated control (UTC). The arrow 
is pointing to ION-516323 ASO that was selected for the in 
vivo studies. To access the data, click or select the words 
“Appendix 1”.

APPENDIX 2. DOSE DEPENDENT REDUCTION IN 
HEPATIC FB MRNA AFTER SC ADMINISTRATION 
OF FB ASOS.

C57BL/6J mice were treated for 6 weeks with the indicated 
weekly doses of FB ASO via subcutaneous injection (n=4 per 
group). Results represent mean ± SEM. To access the data, 
click or select the words “Appendix 2”.
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