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Abstract

We introduce DeepNAT, a 3D Deep convolutional neural network for the automatic segmentation 

of NeuroAnaTomy in T1-weighted magnetic resonance images. DeepNAT is an end-to-end 

learning-based approach to brain segmentation that jointly learns an abstract feature representation 

and a multi-class classification. We propose a 3D patch-based approach, where we do not only 

predict the center voxel of the patch but also neighbors, which is formulated as multi-task learning. 

To address a class imbalance problem, we arrange two networks hierarchically, where the first one 

separates foreground from background, and the second one identifies 25 brain structures on the 

foreground. Since patches lack spatial context, we augment them with coordinates. To this end, we 

introduce a novel intrinsic parameterization of the brain volume, formed by eigenfunctions of the 

Laplace-Beltrami operator. As network architecture, we use three convolutional layers with 

pooling, batch normalization, and non-linearities, followed by fully connected layers with dropout. 

The final segmentation is inferred from the probabilistic output of the network with a 3D fully 

connected conditional random field, which ensures label agreement between close voxels. The 

roughly 2.7 million parameters in the network are learned with stochastic gradient descent. Our 

results show that DeepNAT compares favorably to state-of-the-art methods. Finally, the purely 

learning-based method may have a high potential for the adaptation to young, old, or diseased 

brains by fine-tuning the pre-trained network with a small training sample on the target 

application, where the availability of larger datasets with manual annotations may boost the overall 

segmentation accuracy in the future.
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1. Introduction

The accurate segmentation of neuroanatomy forms the basis for volume, thickness, and 

shape measurements from magnetic resonance imaging (MRI). Such quantitative 

measurements are widely studied in neuroscience to track structural brain changes 

associated with aging and disease. Additionally, they provide a vast phenotypic 

characterization of an individual and can serve as endophenotypes for disease. Since the 

manual segmentation of brain MRI scans is time consuming, computational tools have been 

developed to automatically reconstruct neuroanatomy, which is particularly important for the 

vastly growing number of large-scale brain studies. One of the most commonly used 

software tools for whole brain segmentation is FreeSurfer (Fischl et al., 2002), which applies 

an atlas-based segmentation strategy with deformable registration. This seminal work 

encouraged research in atlas-based segmentation, with a focus on multi-atlas techniques and 

label fusion strategies (Ashburner and Friston, 2005; Pohl et al., 2006; Heckemann et al., 

2006; Rohlfing et al., 2004, 2005; Svarer et al., 2005; Sabuncu et al., 2010; Asman and 

Landman, 2012; Wang et al., 2013b; Wachinger and Golland, 2014). A potential drawback 

of atlas-based segmentation approaches is the computation of a deformation field between 

subjects, which involves regularization constraints to solve an ill-conditioned optimization 

problem. Typically smoothness constraints are enforced, which may impede the correct 

spatial alignment of inter-subject scans. Interestingly, the deformation field is only used for 

propagating the segmentation and not of interest by itself.

Learning-based approaches without deformable registration present an alternative avenue for 

image segmentation, where the atlas with manual segmentations serves as training set for 

predicting the segmentation of a new scan. Directly predicting the segmentation of the entire 

image is challenging because of the high dimensionality, i.e., the number of voxels, and the 

limited number of training scans with manual segmentations. Instead, the problem is 

reduced to predicting the label for small image regions, known as patches. Good 

segmentation performance was reported for patch-based approaches following a nonlocal 

means strategy (Coupé et al., 2011; Rousseau et al., 2011), which is similar to a nearest 

neighbor search in patch space. Alternative patch classification schemes have been 

proposed, e.g., random forests (Zikic et al., 2013). A potentially limiting factor of patch-

based approaches is that they operate on image intensities, where previous results in pattern 

recognition suggest that it is less the classifier but rather the representation that primarily 

impacts the performance of a predictive model (Dickinson, 2009). In a recent study, a wide 

range of image features for image segmentation was compared and a significant 

improvement for augmenting intensity patches with features was measured (Wachinger et 

al., 2016).
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While image features improve the segmentation, they are handcrafted and may therefore not 

be optimal for the application. In contrast, neural networks autonomously learn 

representations that are optimal for the given task, without the need for manually defining 

features. Neural nets therefore break the common paradigm of patch-based segmentation, 

which separates feature extraction and classification, and replaces it with an end-to-end 

learning framework that starts with the image data and predicts the anatomical label. Deep 

convolutional neural networks (DCNN) have had ample success in computer vision 

(Krizhevsky et al., 2012) and increasingly in medical imaging (Brosch et al., 2014; Cireşan 

et al., 2013; Prasoon et al., 2013; Roth et al., 2014; Zheng et al., 2015; Brosch et al., 2015; 

Zhang et al., 2015; Pereira et al., 2015). Applications in computer vision are typically on 2D 

images, where 2D+t DCNNs were proposed for human action recognition (Ji et al., 2013). In 

medical applications, 2.5D techniques have been proposed (Prasoon et al., 2013; Roth et al., 

2014). The three orthogonal planes are integrated in existing DCNNs frameworks by setting 

the planes in the RGB channels. Difficulties in training 3D DCNNs have been reported 

(Prasoon et al., 2013; Roth et al., 2014), due to the increase in complexity by adding an 

additional dimension. Yet, several articles describe successful applications of 3D networks 

on medical images. Brosch et al. (2015) propose a 3D deep convolutional encoder for lesion 

segmentation. Zheng et al. (2015) use a multi-layer perceptron for landmark detection. Most 

related to our work is the application of 3D convolutional neural networks, which is 

currently limited to few layers and small input patches. Li et al. (2014) use a 3D CNN with 

one convolutional and one fully connected layer for the prediction of PET from MRI on 

patches of 153. Brebisson and Montana (2015) use a combination of 2D and 3D inputs for 

whole brain segmentation. The network uses one convolutional layer and 3D sub-volumes of 

size 133. The foreground mask, i.e., the region that contains the labels of interest, is assumed 

to be given, which is not the case for scans without manual segmentation.

We propose a 3D deep convolutional network for brain segmentation that has more layers 

and operates on larger patches than existing 3D DCNNs, giving it the potential to model 

more complex relationships necessary for identifying fine-grained brain structures. We use 

latest advances in deep learning to initialize weights, to correct for internal covariate shift, 

and to limit overfitting for training such complex models. The main contributions in 

DeepNAT are:

• Multi-task learning: our network does not only predict the center label of the 

patch but also the labels in a small neighborhood, formulated in the DCNN as the 

simultaneous training of multiple tasks

• Hierarchical segmentation: we propose a hierarchical learning approach that first 

separates foreground from background and then subdivides the foreground into 

25 brain structures to account for the class imbalance stemming from the large 

background class

• Spectral coordinates: we introduce spectral coordinates as an intrinsic brain 

parameterization by computing eigenfunctions of the Laplace-Beltrami operator 

on the brain mask, retaining context information in patches

The output of DeepNAT is a probabilistic label map that needs to be discretized to obtain the 

final segmentation. Performing the discretization independently for each voxel can result in 
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spurious segmentation artifacts. Formulating constraints among voxels, e.g., with pairwise 

potentials in a random field can improve the final segmentation. Traditionally, such 

constraints have only been imposed in a small neighborhood due to computational concerns 

(Wang et al., 2013a). We use the efficient implementation of a fully connected conditional 

random field (CRF) that establishes pairwise potentials on all voxel pairs (Krähenbühl and 

Koltun, 2011), which was shown to substantially improve the segmentation. The fully 

connected CRF is used in combination with DCNNs for natural image segmentation in 

DeepLab (Chen et al., 2015, 2016). It is also employed for the segmentation of 2D medical 

images: Fu et al. (2016) segment vessels in 2D retinal images and Gao et al. (2016) segment 

the lung in 2D CT slices. In contrast to these approaches, we perform MAP inference of the 

CRF in 3D on the entire image domain to obtain the final brain segmentation.

2. Method

Given a novel image I, we aim to infer its segmentation S based on training images ℐ = {I1,
…, In} with segmentations = {S1,…, Sn}. A probabilistic label map ℒ = {L1,…, Lη} 

specifies the likelihood for each brain label l ∈ {1, …, η}

(1)

Let I( x) denote an image patch centered at location x, the likelihood in a patch-based 

segmentation approach is

(2)

We estimate the likelihood by training a deep convolutional neural network, where the patch 

inference corresponds to multi-class classification. We skull strip the images to focus the 

prediction on the brain mask; a brain scan from which the skull and other non-brain tissue 

like dura and eyes are removed.

2.1. Hierarchical Segmentation

Figure 1 illustrates the hierarchical approach for whole brain segmentation in DeepNAT. In 

the first cascade, brain regions are classified into foreground and background. The 

foreground consists of 25 major brain structures that are illustrated in Figure 7. The 

background is the region within the brain mask that is not part of the foreground. Data that is 

classified as foreground undergoes the next cascaded step to identify separate brain 

structures. Given the inherent class imbalance, the hierarchical segmentation has the 

potential to perform better than a single-step classification, which classifies into brain 

regions as well as background. Problems with a large background class have previously been 

noted for atlas-based segmentation (Wachinger and Golland, 2014). The background is 

typically represented by a large pool of data, while small brain structures are prone to being 

underrepresented. On our data, we measured a foreground to background volume ratio of 
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about 2 to 1. The background is therefore substantially larger than any of the individual 

brain structures on the foreground. As data augmentation allows only for crude and poor 

compensation, the cascaded approach presents a viable alternative.

2.2. Network Architecture

Multi-layer convolutional neural networks pioneered by LeCun et al. (1989) have led to 

breakthrough results, constituting the state-of-the art technology for many challenges such 

as ImageNet (Krizhevsky et al., 2012). The underlying idea is to create a deep hierarchical 

feature representation that shares filter weights across the input domain. This allows for the 

robust modeling of complex relationships while requiring a reduced number of parameters, 

for which solutions can be obtained by stochastic gradient descent.

Table 1 lists the details of the DeepNAT network architecture, where both networks (for each 

cascade) are identical except for the number of neurons in the last layer (2 and 25, 

respectively). The network consists of three convolutional layers, where in each layer the 

filter masks are to be learned. A filter mask is specified by the spatial dimension, e.g., 5 × 5 

× 5 and the number of filters to be used, e.g., 64. Each filter extends to all of the input 

channels. As an example, the filters are of size 5 × 5 × 5 × 32 in the second convolution. The 

total number of free parameters to be estimated is the filter size times the number of filters, 

so 5 × 5 × 5 × 32 × 64 for the second convolution. Table 2 states the number of parameters 

together with the input and output dimensionality for each layer. Note that for 2D DCNNs 

the filters have 3 dimensions, whereas for 3D DCNNs the filters have 4 dimensions.

Each convolution is followed by a rectified linear unit (ReLU) (Hahnloser et al., 2003; 

Glorot et al., 2011), which supports the efficient training of the network with reduced risk 

for vanishing gradient compared to other nonlinearities. The aim of the convolutional part of 

the network is to reduce the dimensionality from the initial patch size of 23 × 23 × 23 before 

entering the fully connected stage. Although each convolution reduces the size, we use an 

additional max-pooling layer with stride two to arrive at a 33 block of neurons at the end of 

the convolutional stage. The 33 block is an explicit design choice. A smaller 23 block would 

cause a lack of localization, with the patch center being split into exterior blocks. A larger 43 

block would dramatically increase the number of parameters at the end of the convolutional 

stage, where most free parameters occur at the intersection between convolutional and fully 

connected layers, see Table 2.

We use batch normalization at several layers in the network to reduce the internal covariate 

shift (Ioffe and Szegedy, 2015). It accounts for the problem that the distribution of each 

layer’s inputs changes during training, as the parameters of the previous layers change, 

which is more pronounced in 3D networks. We further use two dropout layers, which 

randomly disable neurons in the network. This helps with the generalizability of the network 

by acting as a regularizer and mitigating overfitting. To resolve potential location ambiguity, 

coordinates of the patches are given to the network, see Sec. 2.4. This is achieved by 

concatenating the image content after the first fully connected layer with the location 

information in layer 13. In the training stage, we compute the multinomial logistic loss as 

last layer, where the probability distribution over classes is inferred from the last inner 

product layer with a softmax.
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For the initialization of the weights, we use the Xavier algorithm that automatically 

determines the scale of initialization based on the number of input and output neurons 

(Glorot and Bengio, 2010). This initialization supports training deep networks without 

requiring per-layer pre-training because signals can reach deep into the network without 

shrinking or growing too much.

2.3. Multi-task Learning

In Eq.(2), we use an image patch to predict the tissue label of the center voxel. Performing 

this inference on the entire image results in a single vote per voxel. Previous results in patch-

based segmentation have, however, demonstrated the advantage of propagating not only the 

center label but also neighboring labels (Rousseau et al., 2011). With such an approach, the 

voxel label is not only inferred from a single patch, but also from neighboring patches. 

Rousseau et al. (2011) refer to this as the multi-point method in the context of non-local 

means segmentation. We propose to replicate the multi-point method for DCNN 

segmentation by employing multi-task learning. Instead of learning a single task, which 

predicts the center label, we simultaneously learn multiple tasks, which predict the center 

and surrounding neighborhood. The neighborhood size determines the number of tasks. 

While there have been applications for deep multi-task learning (Yim et al., 2015; Luong et 

al., 2015), we are not aware of previous applications for image segmentation.

We implement multi-task learning in the CDNN architecture by replicating the last inner 

product layer (#18) according to the number of tasks. The increase in the number of 

parameters to be learned is limited by this setup because all tasks share the same network, 

except for last inner product layer that specializes on the task. Each task t predicts the 

likelihood pt(S(xt) = l|I( x); ℐ, ) for locations xt in the neighborhood ℳx centered around 

x. We compute the multi-task likelihood for the label by averaging likelihoods across tasks

(3)

We experiment with 7 and 27 neighborhood systems ℳ for the prediction, where the 7 

neighborhood consists of the 6 direct neighbors and the 27 neighborhood consists of the full 

33 region. From a different perspective, this approach of averaging among multiple 

predictions per voxel can also be seen as an ensemble method.

2.4. Spectral Brain Coordinates

A downside of patch-based segmentation techniques is the loss of spatial context (Wachinger 

et al., 2016). Considering the symmetry of the brain, it is easy to confuse patches across 

hemispheres. In addition, context provides valuable information for structures with low 

tissue contrast. To increase the spatial information, we augment patches with location 

information. Previous approaches have, for instance, used Cartesian coordinates (Wachinger 

et al., 2014) or distances to centroids (Brebisson and Montana, 2015). We propose spectral 

brain coordinates as an alternative parameterization of the brain volume, which we obtain by 
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computing eigenfunctions of the Laplace-Beltrami operator inside the 3D brain mask. 

Eigenfunctions of the cortex surface have previously been used for brain matching 

(Lombaert et al., 2013b,a) and eigenvalues as shape descriptors (Wachinger et al., 2015b). In 

contrast, we compute spectral coordinates on the solid (volume) and use it as an intrinsic 

coordinate system for learning. On the brain mask, we solve the Laplacian eigenvalue 

problem

(4)

with the Laplace-Beltrami operator Δ, eigenvalues λ and eigenfunctions f. We approximate 

the Laplace-Beltrami operator with the graph Laplacian (Chung, 1997). The weights in the 

adjacency matrix W between two points i and j are set to 1 if both points are neighbors and 

within the brain mask, otherwise they are set to 0. This yields a sparse matrix W. The 

Laplacian operator on a graph is

(5)

with the node degree matrix D.

We compute the first three non-constant eigenvectors of the Laplacian, where each 

eigenvector corresponds to a 3D image and the ensemble of eigenvectors forms the spectral 

brain coordinates. Fig. 2 illustrates the first three eigenvectors, which roughly represent 

vibrations along primary coordinate axes. The consistency of the coloring across the four 

subjects highlights the potential for an accordant encoding of location information. Note that 

the eigenvectors are isometry invariant to the object, meaning that they do not change with 

rotations or translations. Hence they present an intrinsic parameterization independent of the 

brain orientation or location. This independence can be seen from the graph construction 

encoded in the adjacency matrix. The adjacency structure only depends on neighborhood 

relationships, which do not change with image translation or rotation.

Depending on the object to parameterize and the number of eigenfunctions, flipping due to 

sign ambiguity or swapping of eigenfunctions may hinder a direct comparison. Lombaert et 

al. (2013a) proposed an approach for spectrum ordering. In our application, with only 

computing the first three eigenfunctions of the brain mask, no correction was required. Note 

that we could also compute more than three eigenfunctions to increase the amount of spatial 

information in the DCNN, which may require a reordering strategy. To the best of our 

knowledge, this is the first application of eigenfunctions of the 3D solid for defining an 

intrinsic brain coordinate system.

Following the idea of providing the neural net with all the data and letting it pick the relevant 

information, we input next to the three spectral coordinates also the three Cartesian 
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coordinates. We normalized the Cartesian coordinates, by subtracting the center of mass of 

the brain mask to make them more comparable across scans.

2.5. Fully Connected Conditional Random Field

The DCNN prediction results in a probabilistic brain segmentation. To obtain the final 

segmentation, we use maximum a posteriori inference on a conditional random field (CRF). 

The CRF allows for formulating potentials that ensure label agreement between close voxels 

with smoothness terms and follow the image content with appearance terms. Traditionally, 

short-range CRFs with connections between neighboring locations have been used (Wang et 

al., 2013a), which can however yield excessive smoothing of organ boundaries. In contrast, 

the fully connected CRF defines pairwise potentials on all pairs of image locations. The vast 

number of pairwise potentials to be defined makes conventional inference impractical. We 

use the highly efficient approximate inference algorithm proposed by Krähenbühl and 

Koltun (2011) to infer a fully connected CRF model on the entire 3D brain. Key for the 

efficient computation is the definition of pairwise edge potentials by a linear combination of 

Gaussian kernels.

The inference algorithm uses mean field approximation that is iteratively optimized with a 

series of message passing steps. Importantly, the message passing updates for a fully 

decomposable mean field approximation is identical to Gaussian filtering in bilateral space. 

With the help of efficient approximate high-dimensional filtering (Adams et al., 2010), the 

computational complexity of message passing is reduced from quadratic to linear in the 

number of variables.

The Gibbs energy of the CRF model is

(6)

with the label assignment y and i, j ranging from 1 to the number of voxels. The unary 

potential ψu(yi) = −log P (yi) is defined as the negative log likelihood of the label 

assignment probability from the multi-task DCNN in Eq.(3). We use the pairwise potential 

from (Krähenbühl and Koltun, 2011), which allows for efficient inference on fully connected 

graphs. Given image intensities Ii and Ij with locations pi and pj, the pairwise potential is

(7)

The first exponential term models the appearance where nearby voxels with similar intensity 

are likely to show the same structure, controlled by spatial σα and intensity σβ parameters; 

this corresponds to a bilateral kernel. The second exponential term models the smoothness 

by considering spatial proximity, controlled by σγ. The appearance and smoothness terms 
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are weighted by parameters, v1 and v2, respectively. For the label compatibility the Potts 

model is used, μij = [yi ≠ yj ].

3. Results

We evaluate the segmentation on the dataset of the MICCAI Multi-Atlas Labeling 

challenge1 (Landman and Warfield, 2012), which consists of T1-weighted MRI scans from 

30 subjects of OASIS (Marcus et al., 2007). Manual segmentations were provided by 

Neuromorphometrics, Inc.2 under academic subscription. The images are 1 mm isotropic 

with a slice size of 256 × 256 pixels and the number of slices varying above 256. To improve 

the estimation of the roughly 2.7 million parameters in the network, we increase the number 

of training scans from 15 in the challenge to 20. The remaining 10 scans are used for testing. 

We compare our results to PICSL (Wang et al., 2012), the winner of the MICCAI labeling 

challenge that uses deformable registration, label fusion, and corrective learning. In addition, 

we compare to spatial STAPLE (Asman and Landman, 2012), which is an extension of the 

popular simultaneous truth and performance level estimation (STAPLE) method (Warfield et 

al., 2004). It is among the best performing methods in the challenge and allows for a 

spatially varying performance of raters, i.e., registered atlas. Finally, we compare to the 

segmentation with FreeSurfer v5.3 (Dale and Sereno, 1993; Dale et al., 1999; Fischl et al., 

1999a,b, 2002). In contrast to the other methods, FreeSurfer comes with its own atlas and 

does not use the training data. We measure the segmentation accuracy with the Dice volume 

overlap score (Dice, 1945) between the automatic segmentation S and manual segmentations 

S̄

(8)

We select a patch size of 23 × 23 × 23 as a trade-off between a large enough image region 

for the label classification and memory consumption as well as processing speed. DeepNAT 

is based on the Caffe framework (Jia et al., 2014). Gradients are computed on minibatches, 

where each gradient update is the average of the individual gradients of the patches in the 

minibatch. The size of the minibatch is constrained by the memory of the GPU, where a size 

of 2,048 fills up most of the 12GB GPU memory on the NVIDIA Tesla K40 and TITAN X 

used in the experiments. Large batch sizes are advisable as they better approximate the true 

gradient.

We train the network with stochastic gradient descent and the “poly” scheme (also applied 

by Chen et al. (2016)) using a base learning rate of 0.01. The actual learning rate at each 

iteration is the base learning rate multiplied by (1−iteration/max_iteration)0.9, promoting 

larger steps at the beginning of the training period and smaller steps towards the end. For the 

first network, we randomly sample 30,000 patches from the foreground and background in 

1https://masi.vuse.vanderbilt.edu/workshop2012
2http://Neuromorphometrics.com/
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each training image, yielding 1.2 million training patches. For the second network, we 

randomly sample at most 3,000 patches per structure, where we double the number of 

patches for the white matter and gray matter to account for the higher variability in these 

classes, yielding a total of about 1.1 million training patches. We apply inhomogeneity 

correction and intensity normalization from the FreeSurfer pipeline to the MRI scans. In 

light of a small number of training images with manual segmentations, the standardization 

yields higher homogeneity in the dataset and should therefore facilitate the inference task. 

We set the CRF parameter to standard settings v1 = v2 = 3, σα = σγ = 3, and sβ = 10 (Chen 

et al., 2016). Figure 3 shows the accuracy and loss during training for the second network. 

For the accuracy, we have a different line for each of the seven tasks. Notably, the center task 

achieves the highest accuracy, where the remaining tasks which predict labels for 

neighboring voxels show comparable results. This is insofar surprising that all tasks have the 

same weight in the network and it suggests that it is intrinsically easier for the network to 

predict the patch center. Overall, we observe a fast convergence to a relatively high 

classification results, where prolonged training yields a small but steady improvement of the 

accuracy.

First, we evaluate the impact of the proposed contributions in DeepNAT on the segmentation 

accuracy: (i) coordinates, (ii) hierarchical architecture, and (iii) multi-task learning. We 

perform the comparison by using the Deep-NAT network, which uses seven tasks and 

combines spectral and Cartesian coordinates. We modify one of the network settings while 

keeping the remaining configuration. Figure 4 shows the segmentation results, where the 

statistics are computed across all of the 25 brain structures. Each setting is trained for 8 

epochs, which takes about 1 day. The segmentation of a new scan at test time takes about 1 

hour. With respect to coordinates, we observe a clear drop when using no coordinates. 

Spectral coordinates perform slightly better than Cartesian coordinates, where the 

combination of both in DeepNAT yields the highest accuracy. Next we compare the 

hierarchical approach to directly segmenting the 25 structures in one step, where the one 

step approach yields a lower accuracy. Finally, we evaluate the importance of multi-task 

learning. We compare with single task prediction, which only predicts the center voxel of the 

patch, and with the prediction of a larger number of tasks, 27. The results show in 

comparison to the seven tasks in DeepNAT a strong decrease in accuracy for the single task 

and a small decrease in accuracy for 27 tasks. We test the significance of DeepNAT to each 

of the variants with the pairwise non-parametric Wilcoxon signed-rank test (two-sided). The 

improvement of DeepNAT over only spectral is significant with p < 0.05 and the 

improvement over all other variants is significant with p < 0.001.

We further evaluated different parameters for the optimization of the network. The reduction 

of the base learning rate to 0.005 leads to a median Dice score of 0.888. The usage of a 

minibatch size of 512 yields a median Dice score of 0.895. The application of the 

ADAGRAD (Duchi et al., 2011) stochastic optimization results in a median Dice score of 

0.881, compared to 0.897 in DeepNAT.

For the second evaluation, we train DeepNAT for 25 epchos, which took about 3 days and 

compare it to alternative segmentation approaches: FreeSurfer, spatial STAPLE, and PICSL. 

Figures 5 shows the results over all 25 brain structures with the median and percentiles and 
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Figure 6 shows the mean and standard error. DeepNATcrf denotes the estimation of the final 

segmentation with the fully connected CRF, where for DeepNAT we infer the segmentation 

independently for each voxel with weighted majority voting. The mean and median Dice for 

DeepNAT is higher than for FreeSurfer or spatial STAPLE. The CRF yields an increase in 

Dice by about 0.01 and the overall highest segmentation accuracy. Figure 7 shows detailed 

results for all of the 25 brain structures.

Across all structures, DeepNATcrf yields significantly higher Dice scores in comparison to 

DeepNAT (p < 0.001), FreeSurfer (p < 0.001), and STAPLE (p < 0.001). The difference to 

PICSL (p = 0.27) is not significant. We further explore the difference between PICSL and 

Deep-NATcrf on a per structure basis. Here DeepNATcrf yields significantly higher values 

for left cerebral gray matter (p < 0.005), right cerebral gray matter (p < 0.005), right cerebral 

white matter (p < 0.05), right cerebellar white matter (p < 0.05), and left caudate (p < 0.05) 

while PICSL yields significantly higher values for left amygdala (p < 0.01), right caudate (p 
< 0.05), and left hippocampus (p < 0.01). The different results for the left and right caudate 

are due to variations in median Dice in PICSL (left: 0.903, right 0.910) compared to more 

consistent results across hemispheres for DeepNATcrf (left: 0.906, right: 0.908). We note a 

lower Dice score for the amygdala in comparison to other brain structures across all 

methods. While the amygdala is a challenging structure to segment, also the small size can 

entail a lower Dice score.

Figure 8 shows example segmentations for FreeSurfer, PICSL, and DeepNATcrf together 

with the manual segmentation. The results for PICSL and DeepNATcrf are very similar to 

the manual segmentation, while FreeSurer shows stronger variations, consistent with the 

quantitative results. Figures 9 and 10 illustrate zoomed in brain segmentations for structures 

with significant differences between PICSL and DeepNATcrf. In Figure 9, segmentations of 

the cerebral white and gray matter as well as the cerebellar white and gray matter are more 

accurate with DeepNATcrf, whereas segmentations of the hippocampus and amygdala are 

more accurate with PICSL. Figure 10 illustrates the segmentation of the caudate. The 

segmentation is illustrated by means of a segmentation map that highlights agreement and 

disagreement with the manual segmentation. Overall, DeepNATcrf is more consistent with 

the manual segmentation.

The convolutional layers in the DCNN can be interpreted as feature extractor from the image 

patch and the fully connected layers as classifier. To get a better understanding of the feature 

extraction, we show the learned convolutional filters of the first layer in Figure 11. The first 

layer consists of 32 filters of size 7 × 7 × 7. The learned features are similar to 3D Gabor 

filters and 3D blobs. This is consistent with previous results on 2D DCNNs that report 2D 

Gabor filters and 2D color blobs on the first layer (Krizhevsky et al., 2012; Yosinski et al., 

2014). We do not include visualizations of filters from the second and third convolutional 

layers as they are less comprehensible due to the smaller filter size and the more abstract 

representation.

Finally, we reduce the training set from 20 to 15 and increase the testing set from 10 to 15 to 

have the identical setup to the labeling challenge. We employ data augmentation with 

jittering to counter the reduction in training data and increase the training time to 50 epochs. 
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Figures 12 shows the results over all 25 brain structures with the median and percentiles and 

Figure 13 shows the mean and standard error. We note a slight overall decrease in accuracy 

across all methods, compared to Figures 5 and 6, as a result of modifying the testing data. 

For 15 training and 15 test images, DeepNATcrf yields significantly higher Dice scores in 

comparison to DeepNAT (p < 0.001), FreeSurfer (p < 0.001), and STAPLE (p < 0.001), 

whereas the difference to PICSL (p = 0.06) is not significant. The median of DeepNATcrf is 

0.007 Dice points higher than PICSL, whereas the mean Dice points are the same. The 

decreasing gap between DeepNATcrf and PICSL in testing accuracy is likely associated with 

the the reduction of the training set for learning the network.

4. Discussion

DeepNAT architecture

One of the biggest challenges when working with deep convolutional neural networks is the 

vast number of decisions to take for the specification of the architecture. Many of the 

decisions are a trade-off between additional discriminative power of the network and 

training complexity as well as memory requirements. For instance, we do not use a batch 

normalization after the first convolution to avoid the high memory consumption. An 

alternative design for the convolutional stage would have been to work with smaller kernels 

of size 3 and to build a deeper hierarchy, similar to VGG (Simonyan and Zisserman, 2014). 

We have not fully explored this direction, also due to long training times, but initial results 

did not look very promising.

In this work, we used 3D convolutional neural networks for brain segmentation. 3D DCNNs 

have been used for medical applications before (Li et al., 2014; Brebisson and Montana, 

2015), however, the majority of work is on 2D or 2.5D applications. Given that we deal with 

the segmentation of 3D MRI scans, it seems natural to work with a 3D network for the 

classification. Yet, working with a 3D network yields an increase in complexity because the 

convolutional filters and the internal representations have an additional dimension. By 

employing batch normalization, dropout, and the Xavier initialization, we are able to train 

3D networks with more layers than previous 3D DCNNs, where deeper networks can model 

more complex relationships between input and output data.

In many image segmentation tasks, we are facing the challenge of dealing with a large 

background class that surrounds the structures of interest. The background typically consists 

of multiple structures that are of no further interest to the application and merged into the 

background class. For multi-atlas segmentation, we have reported that the dominant 

background class can cause an under-segmentation of the target structure, because it 

introduces a bias in the label estimation (Wachinger and Golland, 2014). Here, we address 

the class imbalance problem with a hierarchical approach by first separating foreground 

from background and then identifying the individual brain structures on the foreground. Our 

results show the benefit of this cascaded approach in comparison to directly segmenting 

brain structures.
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Location information

A drawback of patch-based segmentation methods is the loss of the larger image context, 

given that brain scans from different subjects are overall fairly similar. Context information 

can be crucial for differentiating small image regions across the brain that can appear very 

similar due to symmetries. To retain context information, we include location information in 

the network. The results demonstrate that the addition of coordinates leads to a substantial 

increase in segmentation accuracy. In this work, we introduced spectral brain coordinates, a 

parameterization of the brain solid with Laplace eigenfunctions, which yielded an 

improvement over Cartesian coordinates. Interestingly, the combination of spectral and 

Cartesian coordinates resulted in a further increase in segmentation accuracy, indicating that 

they contain complementary information.

Multi-task learning

Multi-task learning has several applications in machine learning, but we have not yet seen its 

application for image segmentation. Instead of only predicting the label of the center voxel, 

we simultaneously learn and predict also the labels of the neighboring voxels. Our results 

show that multi-task learning yields a significant improvement over single-task segmentation 

for all brain structures. This is consistent with results from nonlocal means segmentation, 

where results from the multi-point method showed improvements over the single-point 

approach (Rousseau et al., 2011). Multi-task learning leads to several predictions per voxel, 

which can generate more robust segmentations by overruling incorrect predictions. The tasks 

are learned by sharing the same network, with only the last layer specializing on a single 

task. This causes only a small increase in the overall number of parameters. We have 

experienced a faster convergence of the multi-task network compared to the single-task 

network, which may be attributed to the enforcement of promising gradient directions from 

all simultaneous tasks. This is consistent with previous observations from multi-task 

learning for sequence to sequence modeling (Luong et al., 2015).

We observe that the center task has a slightly but consistently higher accuracy than the 

surrounding tasks. This is surprising because no priority or higher weighting was assigned to 

the center task. One possible explanation could be that the center location has a larger 

context but when considering that a patch size of 23 was used, this should not have a strong 

impact. It rather seems that the convolutional stage of the network with convolution filters 

and max-pooling better captures the information for predicting the center label.

Comparison to state-of-the-art

In our results, we compare to FreeSurfer and two methods from the MICCAI labeling 

challenge, PICSL and spatial STAPLE. FreeSurfer is one of the most commonly used tools 

for brain anatomy reconstruction in practice. It performed worse than the other methods in 

the comparison, however, all other methods used the provided training dataset, whereas 

FreeSurfer uses its own atlas. Dataset bias may therefore play a role. In addition, the 

protocol for the manual labeling of the scans may not be entirely consistent. PICSL was the 

winner of the segmentation challenge and spatial STAPLE was among the best performing 

methods. Both of these approaches are based on a multi-atlas approach, where all atlas 

images are registered to the test image. A single registration takes about 2 hours of runtime, 
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so that the registration of all 15 training images takes about 30 hours. The registration can be 

time-consuming for many image pairs, consequently scaling such methods to larger atlases 

seems challenging. In contrast, the inclusion of additional training data does not affect 

testing time for DeepNAT, which is about 1 hour. We trained the final DeepNAT model for 

about three days on the GPU, but also PICSL is based on an extensive training of the 

corrective classifier, which was reported with 330 CPU hours. The runtime of DeepNAT 

could be further improved by using cuDNN and accounting for overlapping patches.

The results of DeepNAT resulted in statistically significant improvements over FreeSurfer 

and spatial STAPLE. DeepNAT in combination with the CRF yielded the overall highest 

median Dice score, but the improvement over PICSL is not statistically significant. 

Performing tests on the per structure level resulted in advantages for Deep-NAT for cortical 

structures, which may be explained by the difficulty in registering complex folding patterns. 

For subcortical structures, the results were not as clear. The variation in significance for the 

left and right caudate is driven by varying results of PICSL, but the source of the difference 

is not clear as no preference to one of the hemispheres seems to be given in PICSL.

Conditional Random Field

Our results demonstrate the benefit of inferring the final, discrete segmentation from the 

probabilistic network outcome with the fully connected conditional random field. Previous 

applications of the fully connected CRF have been for 2D applications. The pairwise 

constraints formulated in the CRF ensure label agreement between close voxels. In the 

appearance term of the pairwise potential, we use the difference of voxel intensities as a 

measure of similarity. Such similarity terms have been extensively studied in spectral 

clustering for image segmentation (Shi and Malik, 2000), where the concept of the 

intervening contour was proposed (Fowlkes et al., 2003) and adapted for medical image 

segmentation (Wachinger et al., 2015a). Integrating the concept of intervening contours into 

the pairwise potentials of the CRF seems promising to further improve segmentation 

accuracy. Note that we do not train the CRF, so while Deep-NAT is an end-to-end learning 

system, DeepNATcrf is not.

Training Data

One of the big issues when using deep learning in the medical domain is the access to a large 

enough training dataset. The training set used in our experiments seems small for training a 

deep convolutional neural network with millions of parameters compared to the millions of 

images from ImageNet typically used in computer vision. However, DeepNAT does not 

directly predict the segmentation of the entire image but only of image patches. Working 

with patches makes the training feasible as each scan contains millions of patches that can 

be extracted for learning. In the future, it would be interesting to further explore ideas about 

directly estimating the segmentation of the entire image without the reduction to patches. 

This can lead to a drastic speed-up, due to the computational overhead when working with 

overlapping patches. Yet, such an approach would require a much larger number of images 

with manual segmentations for training, which are very time consuming to create.
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Due to the limited size of the dataset, we have not split between validation and testing set. 

We have directly compared the different contributions in DeepNAT (coordinates, hierarchy, 

multi-task) on the testing set, see Figure 4. Consequently, there is a risk of overfitting on the 

testing data. However, these comparisons involved conceptual design decisions and not a 

detailed parameter fine-tuning, so we consider the risk of overfitting to be limited. Further, 

the good performance of DeepNAT persisted after reducing the training dataset to 15 scans 

and increasing the testing dataset to 15 scans.

DeepNAT may be specifically adapted for segmenting young, old, or diseased brains by 

fine-tuning. The large potential of fine-tuning pre-trained models for deep learning has been 

shown previously. In the medical imaging domain, Gao et al. (2016) fine-tuned weights 

trained on ImageNet to detect lung disease in CT images. Yosinski et al. (2014) show that 

transferability of features, e.g., convnets trained on ImageNet and then fine-tuned to other 

tasks, depends on how general those features are; the transferability gap increases as the 

distance between tasks increases and features become less general. Notably, these studies 

operate on 2D images and we are not aware of work that fine-tunes networks with 

volumetric input, where the pre-trained models of DeepNAT can provide a first step in this 

direction.

5. Conclusion

We presented DeepNAT, a 3D deep convolutional neural network for brain segmentation of 

structural MRI scans. The main contributions were (i) multi-task learning, (ii) hierarchical 

segmentation, (iii) spectral coordinates, and (iv) a 3D fully connected conditional random 

field. Multi-task learning simultaneously learns the label prediction in a small neighborhood. 

Spectral coordinates form an intrinsic parameterization of the brain volume and provide 

context information to patches. The hierarchical approach accounts for the class imbalance 

between the background class and separate brain structures. And finally, the conditional 

random field ensures label agreement between close voxels. We train the 3D network by 

integrating latest advances in deep learning to initialize weights, to correct for internal 

covariate shift, and to limit overfitting for training such complex models. Our results 

demonstrated the high potential of convolutional neural networks for segmenting 

neuroanatomy.

All in all, image segmentation is a well-suited task for convolutional neural nets, which are 

arguably at the forefront of the the deep learning wave. The segmentation accuracy of 

convolutional neural nets is likely to further improve in the future, given the increasing 

amount of training data, methodological advances for deep networks, and progress in GPU 

hardware. We believe that the purely learning-based approach with neural networks offers 

unique opportunities for tailoring segmentations to young, old, or diseased brains. While it 

may be difficult to obtain enough training data on such specific applications, fine-tuning a 

pre-trained network seems like a promising avenue.

Our extensions to caffe, network definitions and trained networks are available for 

download: https://tjklein.github.io/DeepNAT/.
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Figure 1. 
Overview of the hierarchical segmentation with spectral coordinates. The first multi-task 

DCNN separates foreground from background on skull-stripped images; the second one 

identifies 25 brain structures on the foreground.
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Figure 2. 
Illustration of first three eigenfunctions (EF) for four subjects. Each function is shown on the 

anatomical view that best highlights the gradient.
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Figure 3. 
Accuracy and loss for DeepNAT during training for 25 epochs. The accuracy is shown for all 

seven tasks, which predict the label of the center voxel and neighbors.
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Figure 4. 
Segmentation results in Dice for different configurations of DeepNAT. In the figure, red line 

indicates the median, the boxes extend to the 25th and 75th percentiles, and the whiskers 

reach to the most extreme values not considered outliers (crosses). The table lists the median 

Dice for the different variations in the DeepNAT configuration.
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Figure 5. 
Segmentation results in Dice for DeepNAT and Deep-NATcrf together with alternative 

segmentation methods: FreeSurfer, spatial STAPLE, and PICSL. In the figure, red lines 

indicate the median, the boxes extend to the 25th and 75th percentiles, and the whiskers reach 

to the most extreme values not considered outliers (crosses). The table lists the median Dice 

for the different approaches. Note that the results for DeepNAT vary from Fig. 4 due to 

longer training.
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Figure 6. 
Segmentation results in Dice for DeepNAT and Deep-NATcrf together with alternative 

segmentation methods: FreeSurfer, spatial STAPLE, and PICSL. The bars show the mean 

Dice score and the lines show the standard error. The table lists the mean Dice for the 

different approaches.
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Figure 7. 
Segmentation results in Dice for DeepNAT, DeepNATcrf, FreeSurfer, spatial STAPLE, and 

PICSL for 25 brain structures. Centerline indicates the median, the boxes extend to the 25th 

and 75th percentiles, and the whiskers reach to the most extreme values not considered 

outliers (crosses). We are grateful to Bennett Landmann for 3D renderings of brain 

structures.
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Figure 8. 
Example segmentations for FreeSurfer, PICSL, and DeepNATcrf together with the 

corresponding manual segmentation. FreeSurfer shows the largest variations with respect to 

the manual segmentation, particularly in cortical structures and the brainstem. The results of 

PICSL and DeepNATcrf are highly similar to the manual segmentation.
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Figure 9. 
Example segmentations for PICSL and DeepNATcrf together with the corresponding manual 

segmentation. Overall, the segmentation quality of PICSL and DeepNATcrf is high, as 

already indicated by the quantitative results. First row: Segmentation of the left cerebral 

white and gray matter region. DeepNATcrf better matches the manual segmentation in the 

center of the image, where PICSL produces an isolated region, see arrows. PICSL and 

DeepNATcrf produce an error at the bottom left part of the image, however the error is 

consistent among both approaches and the fine white matter region may have been skipped 

by the manual rater. Second row: Segmentation of the right cerebellar white and gray matter. 

DeepNATcrf produces a more accurate segmentation of the gray matter region in the center 

of the image and better captures the thin white matter region at the bottom, as indicated by 

the arrows. Third row: Segmentation of the hippocampus and amygdala. PICSL produces a 

slightly more accurate segmentation of both structures.
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Figure 10. 
Example labeling of the left caudate, shown in dark blue on the segmentation mask. 

Segmentation masks on the middle and right panel show correct segmentations in white and 

segmentation errors in gray. DeepNATcrf shows a more accurate segmentation on the top 

left, center left, and bottom of the caudate.
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Figure 11. 
The figure shows 3D filters that were learned by the network in the first convolutional layer. 

The first conv layer consists of 32 filters of size 7 × 7 × 7, as described in the architecture in 

Table 1. We show all slices from the 7 × 7 × 7 filter kernel vertically, so seven times a 7 × 7 

patch. A number of these filter kernels resemble Gabor filters. The kernel patters further 

resemble 3D blob filters but also express more complex image patterns.
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Figure 12. 
Segmentation results similar to Fig. 5 for decreasing the training set in DeepNAT from 20 to 

15 images and increasing the testing data for all methods from 10 to 15. In the figure, red 

lines indicate the median, the boxes extend to the 25th and 75th percentiles, and the whiskers 

reach to the most extreme values not considered outliers (crosses). The table lists the median 

Dice for the different approaches.
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Figure 13. 
Segmentation results in Dice for DeepNAT and Deep-NATcrf together with alternative 

segmentation methods: FreeSurfer, spatial STAPLE, and PICSL. The bars show the mean 

Dice score and the lines show the standard error. The table lists the mean Dice for the 

different approaches.
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Table 1

DeepNAT network architecture with convolutional (left) and fully connected (right) parts. The size of the input 

patch is 233. The last layer is replicated for multi-task learning according to the number of tasks. The cascaded 

networks are identical except for the number of neurons in the last layer.

3D Multi-Task Network Architecture

Layers Specification Layers Specification

1. Convolution 7 × 7 × 7 × 32 10. Inner Product Neurons: 1024

2. ReLU 11. ReLU

3. Max-Pooling Size: 2, Stride: 2 12. Dropout Rate: 0.5

4. Convolution 5 × 5 × 5 × 64 13. Concatenation w/ coordinates

5. Batch normalization 14. Inner Product Neurons: 512

6. ReLU 15. Batch normalization

7. Convolution 3 × 3 × 3 × 64 16. ReLU

8. Batch normalization 17. Dropout Rate: 0.5

9. ReLU Output: 1728 18. Inner Product (× tasks) Neurons: 2 / 25
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Table 2

The number of parameters to be learned at each of the convolutional and inner product layers of the network. 

The total number of parameters is 2,687,200. We also state the input and output dimensionality of each of the 

layers, which provides insights about the internal representation. Note that max-pooling operates before 

convolution II and that spatial coordinates are concatenated before inner product II. The list does not include 

bias parameters, which are negligible in size.

Layer Parameter calculation # Parameters Input Dimensionality Output Dimensionality

Convolution I 7 × 7 × 7 × 1 × 32 10,976 23 × 23 × 23 × 1 17 × 17 × 17 × 32

Convolution II 5 × 5 × 5 × 32 × 64 256,000 9 × 9 × 9 × 32 5 × 5 × 5 × 64

Convolution III 3 × 3 × 3 × 64 × 64 110,592 5 × 5 × 5 × 64 3 × 3 × 3 × 64

Inner Product I 3 × 3 × 3 × 64 × 1024 1,769,472 3 × 3 × 3 × 64 1024

Inner Product II (1024 + 6) × 512 527,360 1030 512

Inner Product III 512 × 25 12,800 512 25
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