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ABSTRACT The existence of catalytic antibodies has been known for decades. Nat-
ural antibodies capable of cleaving nucleic acid, protein, and polysaccharide sub-
strates have been described. Although the discovery of catalytic antibodies initially
aroused great interest because of their promise for the development of new cata-
lysts, their enzymatic performance has been disappointing due to low reaction rates.
However, in the areas of infection and immunity, where processes often occur over
much longer times and involve high antibody concentrations, even low catalytic rates
have the potential to influence biological outcomes. In this regard, the presence of
catalytic antibodies recognizing host antigens has been associated with several auto-
immune diseases. Furthermore, naturally occurring catalytic antibodies to microbial
determinants have been correlated with resistance to infection. Recently, there has
been substantial interest in harnessing the power of antibody-mediated catalysis
against microbial antigens for host defense. Additional work is needed, however, to
better understand the prevalence, function, and structural basis of catalytic activity
in antibodies. Here we review the available information and suggest that antibody-
mediated catalysis is a fertile area for study with broad applications in infection and
immunity.

In 1969, as Kabat, Tonegawa, and many others were elucidating the mechanistic basis
for the antibody (Ab) molecule’s remarkable paratope diversity, the enzymologist

William Jencks theorized that it should be possible to prepare antibodies capable of
catalyzing chemical reactions (1). Jencks’ rationale was based on the theory developed
by Linus Pauling that enzymes functioned by stabilizing transition-state intermediates,
thus lowering the activation energy and increasing the rate of chemical reactions (2).
On the basis of the ability of antibodies to specifically recognize nearly any antigen,
Jencks proposed that antibodies developed against a transition-state analogue (TSA)
for a chemical reaction would theoretically function as enzymes by stabilizing the
intermediate species, lowering the activation energy, and increasing the reaction rate.
An experimental demonstration of this idea first appeared in 1975 with the production
of antibodies to a haptenic TSA that catalyzed the transamination of L-tyrosine (3). Over
the next 2 decades, the TSA-immunization approach was used to generate many
antibodies capable of catalyzing a wide range of chemical reactions, including group
transfers, additions, eliminations, oxidations, reductions, aldol condensations, pericyclic
processes, and cofactor-dependent reactions (4). A related strategy was also developed
by generating anti-idiotypic antibodies to enzymes as internal images of enzyme active
sites (5, 6).

The early stages of the catalytic antibody field were permeated with excitement, as
researchers envisioned the ability to generate selective, programmable catalysts for any
chemical reaction compatible with a biological environment, as long as a suitable TSA
could be designed. While this strategy allowed the generation of selective catalysts for
reactions where traditional chemical methods have proved ineffective, its practicality
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was frequently limited by low reaction rates. Catalytic antibodies are frequently de-
scribed in terms of their Michaelis constant (Km), turnover number (kcat), and catalytic
efficiency (kcat/Km). Much of the early catalytic antibody work focused on improving
reaction velocity through TSA design, structural modification of the paratope, and
improved screening of antibody candidates (4). However, these efforts were met with
only modest success as even the best candidates have kcat/Km values near 102 to 104

s�1 M�1 (4). By comparison, the fastest enzyme reactions have kcat/Km values near the
diffusion-controlled limit of 108 s�1 M�1, although a recent review of the literature
found that the average enzyme efficiency is much lower (105 s�1 M�1) (7). Comparing
enzymes to antibodies by the use of the kcat/Km value can also be somewhat mislead-
ing, as this value is related to the speed of catalysis under conditions of limiting
substrate concentrations. Although antibodies typically have higher substrate affinities
than enzymes, leading to Km values that are 101-fold to 103-fold lower, their kcat values
are usually much (103-fold to 105-fold) lower than those of enzymes. kcat represents the
inherent reaction rate of an enzyme in the presence of excess substrate; thus, antibod-
ies may have measures of catalytic efficiency similar to or slightly lower than those of
enzymes but may still exhibit markedly lower rates of substrate conversion. The
difficulty of generating sufficient amounts of antibody in a cost-effective manner has
proven to be yet another barrier. Given the low catalysis rates of most catalytic
antibodies, relatively high concentrations on the order of 10 �M (about 1.6 mg/ml for
IgG) are needed for effective catalysis (4, 8). These challenges tempered the excitement
surrounding the use of antibodies as a general-purpose tool for efficiently catalyzing
chemical reactions.

NATURALLY OCCURRING CATALYTIC ANTIBODIES

In 1989, a study by Paul et al. described autoantibodies isolated from human sera
that hydrolyzed vasoactive intestinal peptide (VIP) (9). That study provided the first
indication that antibodies possessing catalytic activity can be produced in vivo
without immunization with an artificial hapten. Earlier reports had already found
that immunization with ground-state haptens could lead to the formation of
rate-accelerating antibodies, suggesting that the use of artificial TSAs was not
required in all cases (3, 10–12). That work was soon followed by the isolation of
numerous catalytic antibodies from patients with various autoimmune pathologies
(13–21). In contrast to the diversity of chemical reactions catalyzed by artificially
generated antibodies, naturally occurring catalytic antibodies have predominately
been found to carry out hydrolysis of peptide and phosphodiester bonds in protein
or nucleic acid substrates. A recent report by our group also identified a natural
antibody capable of hydrolyzing polysaccharide (22). Mechanistic studies have
shown that at least some naturally occurring catalytic antibodies make use of
hydrolytic mechanisms similar to those generated artificially with the TSA immu-
nization approach (23, 24). Although natural catalytic antibodies appear to carry out
a more limited repertoire of reactions, kinetic studies indicate that they often have
measures of Km, kcat, and catalytic efficiency similar to those shown by their
synthetic counterparts (Table 1). Early reports often linked the presence of catalytic
antibodies to pathogenic roles, but recent studies have also suggested that some
naturally occurring catalytic antibodies play positive roles in homeostasis, autoim-
munity, and microbial defense (29, 30, 36–42).

Despite the number of studies identifying catalytic antibodies in patients, whether
this catalytic activity is selected for during somatic diversification or resides within the
germ line immunoglobulin genes remains an unresolved issue. Catalytic activity has
been characterized in both constitutively produced antibodies and those that have
undergone affinity maturation (43). The necessity for extended B cell receptor (BCR)
occupancy in triggering an antibody response suggests that B cell selection is
unlikely to be a successful mechanism for increasing catalytic rates to levels
approaching those of enzymes, since rapid antigen catalysis would limit BCR
occupancy. However, it is possible that selection for slow nucleophiles occurs
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during somatic diversification based on the observation that immunization with
artificial electrophiles can induce proteolytic antibodies (43–45). This is presumed to
occur through covalent attachment to BCR nucleophilic residues. Along these lines,
the standard proteolytic mechanism proceeds through a covalent intermediate that
may exist long enough in the presence of a slow catalyst to influence B cell
selection. Another possibility proposed in the literature involves BCR signal trans-
duction operating through an unknown mechanism making use of the free energy
released from antigen hydrolysis (43).

STRUCTURAL BASIS FOR CATALYTIC ACTIVITY IN ANTIBODIES

While many naturally occurring catalytic antibodies have been identified, the
mechanism of their activity remains poorly understood. Only a small number of
studies have successfully identified antibody residues that specifically confer cata-
lytic activity. Two examples of antibodies with peptidase activity were shown to use
a serine protease-like triad in the light-chain variable region (VL) with D1, S27a, and
H93, using Kabat numbering (24, 46, 47). Another was described using a distinct
mechanism involving the generation of H2O2 from the oxidation of water (48, 49).
Other antibodies have been characterized with thiol-, acid-like, and metal-
dependent proteolytic activity, but the exact mechanism has not been elucidated
(50, 51). Naturally occurring catalytic antibodies with the D1-S27a-H93 serine
protease-like triad represent perhaps the best-understood group, with several
studies illustrating a VL germ line origin for these catalytic residues in several kappa
V region gene families based on sequence alignments of proteolytic antibodies (25,
52, 53). In the catalytic split-site model, catalysis occurs via a two-step process
involving noncovalent binding followed by catalytic cleavage at two coordinated
but distinct sites of activity within the catalyst (43). The hypothesis that some
antibodies use this model is supported by the observation that certain mutations in
the V region of a VIP-hydrolyzing antibody reduced affinity for the substrate but did
not affect catalytic efficiency as measured by kcat/Km (24, 54). The reduced substrate
affinity was offset by an increase in kcat, which was attributed to a reduction in
ground-state stabilization. This result suggests that the mutated residues important
in binding the ground-state substrate are distinct from those involved in stabilizing
the transition-state intermediate and catalyzing hydrolysis.

CATALYTIC AUTOANTIBODIES AND DISEASE

Naturally occurring catalytic antibodies have been implicated in both pathogenic
and beneficial roles in a variety of autoimmune diseases. The extent and importance of
catalytic activity in the antibody repertoire, however, remain matters of debate. While
the reaction rates of catalytic antibodies are typically several orders of magnitude lower
than those of typical enzymes, catalytic antibodies are found in the serum at much
higher concentrations (1 to 10 mg/ml) and can persist with very long half-lives (1 to 3
weeks) (55–57). This raises the possibility that the combination of increased antibody
concentration and longer duration of action compensates for low catalysis rates,
especially in the case of chronic illness or latent infection, and that the catalytic activity
of naturally occurring antibodies may play an important role in illness and immunity.
Antibody-mediated DNA and RNA hydrolysis was associated with patients suffering
from autoimmune diseases. The DNA-cleaving activity of antibodies is correlated with
both disease severity in systemic lupus erythematosus (SLE) and cytotoxicity to tumor
cell lines (13, 58, 59). Proteolytic antibodies that hydrolyze thyroglobulin with a
nanomolar Michaelis constant (Km) have been implicated in autoimmune thyroiditis
(14). The first identified natural catalytic antibody hydrolyzed host VIP, a peptide
neurotransmitter involved in smooth muscle relaxation. It was hypothesized that
catalytic degradation of VIP could contribute to airway hyperresponsiveness in asthma
(9). Several other studies have found catalytic activity in human Bence Jones proteins
(BJPs), which are aggregates of monoclonal light chains produced by neoplastic plasma
cells and commonly found in the urine of patients with multiple myeloma or Walden-
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ström’s macroglobulinemia (15, 16). Renal damage is a common complication of these
cancers and is thought to be due to the cytotoxicity of BJP aggregates. Studies have
correlated the catalytic activity of BJPs with renal damage in multiple myeloma patients
and have also shown that inhibition of catalysis results in decreased in vitro cytotoxicity
(17). These results suggest that BJP catalytic activity has a direct role in renal damage.
The catalytic activity of antibodies with respect to myelin basic protein was previously
correlated with disease severity in multiple sclerosis (60). Hemophilia A patients have
also been found to have high levels of proteolytic autoantibodies to procoagulant
factor VIII, potentially worsening their coagulopathy (20, 61). On the other hand, some
patients with acquired hemophilia were shown to possess catalytic antibodies capable
of activating procoagulant factor IX, which could lead to improved hemostasis (37).
Amyloid �-hydrolyzing antibodies have also been characterized in human sera, with
results suggesting that some catalytic antibodies may play a homeostatic role and offer
protection from Alzheimer’s disease (AD) (38).

CATALYTIC ANTIBODIES TO MICROBES

Numerous studies have suggested that catalytic antibodies function in microbial
defense. The presence of serine protease-like IgG activity is correlated with positive
outcomes in sepsis, possibly by limiting inflammation (62). Catalytic antibodies to DNA,
RNA, and protease-activated receptor-2 (PAR-2) are found in the breast milk of healthy
human mothers, possibly affording protection against infection (36, 39, 40). Polyclonal
IgG preparations cause cleavage of the Staphylococcus aureus-secreted virulence factor
extracellular fibrinogen-binding protein (Efb) (26). Secretion of urease by Helicobacter
pylori is essential for colonization of the gut and results in neutralization of stomach
acidity. Catalytic monoclonal antibody (MAb) UA15 was shown to cleave H. pylori
urease and to decrease CFU levels per gram of stomach tissue in infected mice (33). One
of the virulence factors of the pathogenic fungus Cryptococcus neoformans, the poly-
saccharide capsule, is targeted by several antibodies that have been found to possess
catalytic activity. Results from our laboratory have shown that MAb 3E5 and several
isotype-switch variants hydrolyze a peptide antigen mimetic of capsular polysaccharide
(63, 64). The similar 18B7 MAb, which was considered a therapeutic candidate for C.
neoformans infection, also possesses peptidase activity (22, 65). Of greater biological
relevance, 18B7 was found to possess glycosidic activity against an oligosaccharide
antigen mimetic and was found to alter the structure of the polysaccharide capsule
consistent with capsule hydrolysis after prolonged incubation (22). A number of studies
have also characterized naturally occurring catalytic antibodies to specific viral proteins,
including HIV gp120 and integrase (29, 30, 39, 41, 42, 44, 50, 66). The results from those
studies, performed with antibodies to S. aureus, H. pylori, C. neoformans, and HIV
antigens, suggest that antibody-mediated catalysis may play a role in the natural
humoral response to infection.

THERAPEUTIC DEVELOPMENT OF CATALYTIC ANTIBODIES

Several catalytic antibodies have been characterized and studied with the intention
of producing therapeutic applications. The 18B7 MAb was studied in a phase I clinical
trial for the treatment of C. neoformans infection, although its catalytic activity was not
known at the time (65). Catalytic antibodies targeting influenza virus (34, 67), rabies
virus (53), and HIV (68) are currently in early development but show potential for future
applications. Another catalytic antibody generated using a synthetic randomized pep-
tide library was found to hydrolyze Her2 mRNA in breast cancer cells, indicating a
potential therapeutic role in gene silencing (32).

Outside the realm of infectious disease, efforts are under way to develop catalytic
antibody therapies for cocaine addiction and Alzheimer’s disease (AD). The psychoac-
tive and addictive properties of cocaine have led researchers to develop inhibitory
therapies, including the use of cocaine-hydrolyzing antibodies (69–72). A recent ther-
apeutic strategy that has met moderate success in mice is based on eliciting a catalytic
antibody response to cocaine with a haptenic vaccine (27). Aggregation-associated
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neurodegenerative diseases such as AD are characterized by protein or peptide aggre-
gates that are thought to contribute to neuron death. Recent work by numerous
groups has led to the identification of monoclonal (31, 38, 73) and polyclonal (74)
antibodies with peptidase activity against the amyloid �-40 (A�-40) and A�-42 pep-
tides, which are prevalent in AD protein aggregates. Some of those studies showed that
hydrolysis of A�-40 and A�-42 by antibodies occurs within alpha-helix regions (amino
acids 15 to 24 and 28 to 36) (38) and reduces A� plaque burden in brain tissue (31). A�

aggregates are cleaved by a serine protease-like mechanism, with at least one antibody
construct possessing metal dependence with the requirement of Zn2� or Co2� cofac-
tors (73, 75). A� hydrolytic activity can be found in the innate antibody repertoire and
is being investigated for therapeutic applications (31).

HIV infection of CD4 cells requires the binding of HIV surface glycoprotein gp120 to
the CD4 receptor. Both IgG and IgM MAbs have been shown to possess peptidase
activity against gp120 (30, 44, 68). Prolonged HIV infection in patients who do not
progress to AIDS is associated with a modest increase in catalytic secretory IgA (sIgA)
to gp120 (68). This activity has also been found in sIgA from individuals without prior
HIV infection, suggesting a role in resistance to infection (30). HIV envelope glycopro-
tein gp41, which mediates viral membrane fusion to host cells, is another target for
catalytic antibody development (25). Purified light chains from the IgG2b MAb 41S-2-L
are able to cleave the TP41-1 peptide, which mimics a highly conserved region of gp41
(76). When the reaction was monitored over 120 h, a slow-step or induction phase was
observed between 0 and 50 h (77). Interestingly, when additional TP41-1 substrate was
added at 135 h, this slow step did not occur (25). The presence of an induction phase
is thought to be due to a necessary structural conformation change such as induced
fitting.

The reaction rates of several characterized catalytic antibodies seem quite low in
comparison to those seen with classic enzymes (Table 1). However, considering the
high concentrations of antibody in serum, antibody-mediated catalysis can be
viewed as therapeutically applicable. For example, Planque and colleagues esti-
mated that a catalytic sIgA to HIV gp120 used at a physiologic concentration of 0.3
mg/ml could cleave 90% of the viral protein in 5 min in the presence of 106 HIV/ml
with an estimated 100 gp120 molecules per virion (30). Viewing catalytic antibodies
in this light, their potential therapeutic applications are much more favorable.
Irrespective of their ultimate applicability in passive immunotherapy, the capacity
of natural antibodies to hydrolyze antigens is an important consideration in eval-
uating their potential role in infection and immunity. While it has been documented
that circulating antibodies occur at concentrations between 1 and 10 mg/ml, the
typical levels of circulating catalytic antibodies are not known. It has also been
found that rare catalytic antibodies present in polyclonal preparations may be
responsible for most of the sample’s catalytic activity. Thus, purifying and concen-
trating these rare antibodies should lead to the availability of antibody preparations
with increased catalytic rates.

One of the most important implications from the findings in antibody-mediated
catalysis is the possibility that many therapeutic or nontherapeutic antibodies might
have the capacity to cleave antigen. A structural template-matching algorithm devel-
oped by our group was used to identify antibody structures in the Protein Data Bank
(PDB) that contained a putative hydrolytic motif present in the catalytic 3E5 MAb to C.
neoformans (22). Antibody structures were compared to a mean template motif gen-
erated from a serine protease-like triad identified in the 3E5 VL at positions D1-S26-H93
(using Kabat numbering) (63). We found that this motif was enriched in known catalytic
antibody structures (14 of 63, 22.2%) and present in a substantial proportion of
antibodies with no prior annotation of catalytic activity (119 of 1,602, 7.4%), 30 of which
bind microbial antigens or are involved in microbial neutralization (Table 2). Although
such predictions must be confirmed experimentally, distinct catalytic motifs are likely
present in many other antibody lineages. If even a subset of antibodies with putative
hydrolytic motifs possess catalytic activity, their existence would introduce new dimen-
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sions with respect to how antibodies mediate immunity and how these molecules can
be exploited for therapeutic development.
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