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ABSTRACT Severe periodontitis is known to aggravate diabetes mellitus, though
molecular events related to that link have not been fully elucidated. Porphyromonas
gingivalis, a major pathogen of periodontitis, expresses dipeptidyl peptidase 4
(DPP4), which is involved in regulation of blood glucose levels by cleaving incretins
in humans. We examined the enzymatic characteristics of DPP4 from P. gingivalis as
well as two other periodontopathic bacteria, Tannerella forsythia and Prevotella inter-
media, and determined whether it is capable of regulating blood glucose levels. Cell-
associated DPP4 activity was found in those microorganisms, which was effectively
suppressed by inhibitors of human DPP4, and molecules sized 73 kDa in P. gingivalis,
and 71 kDa in T. forsythia and P. intermedia were immunologically detected. The
kcat/Km values of recombinant DPP4s ranged from 721 � 55 to 1,283 � 23 �M�1s�1

toward Gly-Pro-4-methylcoumaryl-7-amide (MCA), while those were much lower for
His-Ala-MCA. Matrix-assisted laser desorption ionization–time of flight mass spec-
trometry (MALDI-TOF MS) analysis showed His/Tyr-Ala dipeptide release from the N
termini of incretins, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulino-
tropic polypeptide, respectively, with the action of microbial DPP4. Moreover, intra-
venous injection of DPP4 into mice decreased plasma active GLP-1 and insulin lev-
els, accompanied by a substantial elevation in blood glucose over the control after
oral glucose administration. These results are the first to show that periodontopathic
bacterial DPP4 is capable of modulating blood glucose levels the same as mamma-
lian DPP4; thus, the incidence of periodontopathic bacteremia may exacerbate dia-
betes mellitus via molecular events of bacterial DPP4 activities.
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Periodontitis is a highly prevalent type of chronic inflammation caused by a complex
of oral bacteria, with greater than 47% of adults in the United States aged 30 years

and older reported to suffer from this disease (1). Foremost among periodontopathic
microbes are three Gram-negative anaerobic rods: Porphyromonas gingivalis, Tannerella
forsythia, and Treponema denticola, which are most frequently isolated in subgingival
dental plaque samples obtained from diseased sites (2–4). This inflammatory disease is
a major cause of permanent tooth loss in adults (5), resulting in decrement in overall
quality of life, especially for elderly individuals. In addition, it is related to increased risk
for systemic diseases. Particularly, multiple studies starting from the 1930s have shown
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a link between periodontitis and hyperglycemia and/or diabetes mellitus. It has been
reported that severe periodontal disease often coexists with severe diabetes mellitus
and that diabetes is a risk factor for severe periodontal disease; thus, their “two-way”
relationship is recognized (for reviews, see references 6 to 9). Meta-analyses have found
that periodontal disease adversely affects diabetes outcomes, while its successful
treatment leads to improvement of glycemic control in type 2 diabetic patients (10, 11).
To date, one model linking inflammation to diabetes and periodontal infections has
been proposed, in which chronic inflammation ascribed to periodontitis elevates the
blood concentrations of proinflammatory cytokines, such as tumor necrosis factor
alpha (TNF-�) and interleukin 1� (IL-1�), resulting in magnitude increases in advanced
glycation end product amplification and insulin resistance (10, 12, 13). However, despite
a large number of epidemiological studies, few have focused on the more direct
relationship between oral microbiota and diabetes.

Dipeptidyl peptidases (DPPs) are exopeptidases that liberate a dipeptide from the N
termini of oligo- and polypeptides. We recently identified novel dipeptide-producing
exopeptidases in P. gingivalis, including DPP11, which specifically releases Xaa-Asp and
Xaa-Glu (14); DPP5, with preference for the penultimate Ala and hydrophobic residues
from the N terminus (15); and acylpeptidyl oligopeptidase (AOP), with preference
mainly for the P1 position hydrophobic residue (16). Moreover, P. gingivalis expresses
two additional DPPs and gingipains: DPP4 releases mainly Xaa-Pro but also Xaa-Ala and
His-Ser (17, 18), DPP7 preferentially cleaves dipeptides with both P1 and P2 hydropho-
bic residues (19, 20), and Lys and Arg gingipains (Kgp and Rgp, respectively) exhibit Lys-
and Arg-specific dipeptidyl peptidase activities as well as endopeptidase activities (15).
These peptidases are thought to cover most combinations of P2 and P1 amino acid
residues and, therefore, efficiently produce N-terminal dipeptides from polypeptides
(21). This dipeptide-liberating potential is of crucial importance for asaccharolytic P.
gingivalis, which incorporates amino acids mainly as dipeptides, not single amino acids
(22, 23), and utilizes them exclusively as carbon and energy sources (24). In addition,
from the viewpoint of niche differentiation, dipeptide-incorporating and amino acid-
utilizing properties are likely to provide a benefit for P. gingivalis during symbiosis in the
complex of subgingival microbiota, since, for instance, Prevotella intermedia and Fuso-
bacterium nucleatum incorporate single amino acids (25) and P. intermedia, T. denticola,
and Aggregatibacter actinomycetemcomitans are saccharolytic.

Besides P. gingivalis, DPP4 (EC 3.4.14.5) is also found in mice and humans. Human
DPP4 (hDPP4) is considered one of the major factors necessary for postprandial
glycemic control (26, 27), since it inactivates incretin peptides, such as glucagon-like
peptide 1(7–37) [GLP-1(7–37)] and glucose-dependent insulinotropic polypeptide
[GIP(52–93)] via cleavage at the second Ala-third Glu bond from the N terminus (28).
GLP-1(7–37) and GIP(52–93) are active forms that interact with their membrane recep-
tors in the islet, resulting in insulin secretion (29). In circulation, the half-life of active
incretins is 1 to 1.5 min (30).

The amino acid sequence of P. gingivalis DPP4 (PgDPP4) is 31% identical to that of
hDPP4. PgDPP4 potently hydrolyzes Gly-Pro-4-methylcoumaryl-7-amide (MCA) and
Lys-Ala-MCA as well at a much lower level of activity (31), the same manner as
mammalian DPP4, and that activity is efficiently suppressed by hDPP4 inhibitors (15).
These similarities between PgDPP4 and hDPP4 led us to speculate that PgDPP4 mimics
the role of hDPP4 in glycemic control during recurrent bacteremia in periodontal
patients, which may explain the link between severe periodontitis and diabetes mel-
litus. Previous studies have shown that PgDPP4 hydrolyzes substance P, IL-1�, IL-2 (18),
RANTES, and monocyte chemoattractant protein 1 (MCP1) (32). However, whether
PgDPP4 degrades incretins and other bioactive peptides in vivo, thereafter causing a
pathological response, has yet to be elucidated. In addition, since periodontitis is an
infectious disease caused by multiple microorganisms, it is reasonably inferred that
DPP4 from other periodontopathic bacteria also contribute to degradation of incretins.

Here we report that the major periodontopathic bacteria P. gingivalis, T. forsythia,
and P. intermedia express DPP4 that degrades GLP-1(7–37) and GIP(52–93) and that
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intravenous (i.v.) administration of bacterial DPP4 induced hyperglycemia in vivo in
mice, accompanied by decreases in plasma active GLP-1 and plasma insulin levels. This
is the first study to directly demonstrate the relationship between periodontopathic
bacterial peptidases and host blood glucose levels.

RESULTS
DPP4 activity in periodontopathic bacteria. Periodontitis is a chronic inflamma-

tion caused by a complex of subgingival microorganisms. First, distribution of DPP4 in
oral bacteria was studied. Orthologs of the P. gingivalis dpp4 gene (PGN_1469) encod-
ing 723 amino acids classified as peptidase S9 were searched in the KEGG orthology
database (33), and 546 bacterial genes with higher than 30% identity were found.
Among them, 37 bacterial species were oral bacteria (Table 1), which are members out
of 688 taxa nominated in the Human Oral Microbiome Database (34). Twenty-one
bacteria are anaerobic, i.e., the genera Bacteroides, Porphyromonas, Prevotella, and
Tannerella, which are mainly present in subgingival plaque. The genes from two major
periodontopathic bacteria, T. forsythia (BFO_1659) and P. intermedia GenBank accession
number AB127116), demonstrated amino acid identities of 61.1% and 43.1%, respec-
tively. In contrast, dpp4 orthologs were absent in the other periodontopathic bacteria,
i.e., T. denticola and F. nucleatum, while A. actinomycetemcomitans had a truncated
gene, D11S_0680, encoding 320 amino acids (annotated as peptidase S15). Thus, the
present study focused on DPP4 of P. gingivalis, T. forsythia, and P. intermedia.

Alignment of their amino acid sequences shows the catalytic triad (Ser593, Asp668,
and His700 in PgDPP4 numbering) of the serine protease and an N-terminal conserved
sequence motif with two adjacent Glu residues (Glu195 and Glu196), which are essential
for dipeptidyl peptidase activity in hDPP4 (35) (Fig. 1). The deduced Mrs of the
full-length forms were 81,939 for PgDPP4, 81,875 for T. forsythia DPP4 (TfDPP4), and
82,457 for P. intermedia DPP4 (PiDPP4).

Gly-Pro-MCA-hydrolyzing activity was observed with the three periodontopathic
bacterial cells, with the highest activity per cell seen for P. gingivalis, followed by T.
forsythia and P. intermedia (Fig. 2). These activities were markedly abrogated in the
presence of the hDPP4 inhibitor P32/98, suggesting that Gly-Pro-MCA-hydrolyzing
activity is mediated solely by DPP4. In fact, the dpp4-disrupted P. gingivalis strain
NDP200 completely lost its activity, and Streptococcus mutans, a pathogen causing
dental caries and which does not possess the dpp4 gene, showed no hydrolyzing
activity either. In contrast, the activity was increased in P. gingivalis KDP136 (Δkgp-
rgpA-rgpB) as reported previously (15).

Three recombinant DPP4 were expressed and purified to homogeneity (�95%) as
judged by SDS-PAGE (Fig. 2). Recombinant PgDPP4 migrated at 72 kDa and TfDPP4 and
PiDPP4 at 76 kDa. Immunoblotting using antiserum against recombinant PgDPP4
demonstrated a gradual decrease in band intensities from PgDPP4 and TfDPP4 to
PiDPP, reflecting their sequence identities. In the bacterial cells, 73-kDa PgDPP4 was
accompanied by a partially degraded 66-kDa species. Endogenous TfDPP4 was con-
vincingly detected at 71 kDa and PiDPP4 was detected at around 71 kDa by enhanced
chemiluminescence (ECL) detection. Increased expression of PgDPP4 in KDP136 was
confirmed by immunoblotting, and no band was observed in NDP200 and S. mutans.
These results confirmed the expression of DPP4 in the three microorganisms. Further-
more, similar masses between recombinant and native DPP4 suggested that major
posttranslational modifications did not occur in bacterial entities. Indistinguishable
activities between native and recombinant PgDPP4s were reported previously (18, 32).
In addition, molecular masses of recombinant and native forms of DPP4 were estimated
as approximately 9% smaller than those of the deduced sequences. This difference was
not fully explained by the deletion of their signal sequences; however, this difference
seems to be an intrinsic property of bacterial DPPs migrating on SDS-PAGE, since
reductions of apparent masses on SDS-PAGE have been commonly observed for P.
gingivalis DPP5 (15%) (15), DPP7 (10%) (31), and DPP11 (8%) (14).
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Peptidase inhibitor efficiency is summarized in Table 2. A 1 mM concentration of
phenylmethylsulfonyl fluoride (PMSF), a serine protease inhibitor, showed slight
inhibition, whereas no inhibition toward bacterial DPP4 was observed with 1 mM
EDTA or 0.1 mM leupeptin. On the other hand, the activities were completely
inhibited by human DPP4 inhibitors, including P32/98, sitagliptin, and vildagliptin,
though the effect of the last on PiDPP4 was lower. These results suggest configu-
ration similarities for the active site of serine peptidase between bacterial and
human DPP4s.

Enzymatic parameters are shown in Table 3. The Km and kcat/Km values of TfDPP4
and PiDPP4 toward Gly-Pro-MCA were comparable to those of PgDPP4. Hydrolyzing

TABLE 1 Distribution of dpp4 orthologs in the Human Oral Microbiome Databasea

No. Class Genus Species in HOMD Gene Definition %

1 Alp Porphyrobacter Porphyrobacter neustonensis A9D12_13280 Peptidase S9 30.2
2 Alp Sphingomonas Sphingomonas melonis BJP26_07260 Peptidase S9 30.0
3 Alp Caulobacter Caulobacter crescentus CB15 CC_2154 peptidase S9 30.0

Caulobacter crescentus NA1000 CCNA_02237 DPP4 32.8
4 Alp Caulobacter Caulobacter henricii AQ619_12080 Prolyl tripeptidyl peptidase 32.6
5 Alp Caulobacter Caulobacter segnis Cseg_1267 DPP4 32.2
6 Alp Caulobacter Caulobacter sp. K31 Caul_3418 Peptidase S9 31.1
7 Alp Sphingomonas Sphingomonas sp. MM-1 G432_00900 Peptidase S9 30.9
8 Alp Sphingomonas Sphingomonas taxi MC45_04785 Peptidase S9 32.7
9 Bct Bacteroides Bacteroidales bacterium CF BRDCF_p911 Peptidase S9 30.9
10 Bct Bacteroides Bacteroides cellulosilyticus BcellWH2_02945 DPP4 50.1
11 Bct Bacteroides Bacteroides dorei HS1_L_1_B_010 EL88_17320 DPP4 47.7

Bacteroides dorei HS1_L_3_B_079 GV66_06260 Prolyl tripeptidyl peptidase 47.7
12 Bct Bacteroides Bacteroides fragilis 638R BF638R_0958 DPP4 50.7

Bacteroides fragilis BOB25 VU15_00050 Prolyl tripeptidyl peptidase 50.9
Bacteroides fragilis NCTC9343 BF9343_0861 DPP4 50.9
Bacteroides fragilis YCH46 BF0977 DPP4 50.7

13 Bct Bacteroides Bacteroides helcogenes Bache_0782 DPP4 49.4
14 Bct Bacteroides Bacteroides ovatus Bovatus_04481 170-kDa melanoma membrane-bound

gelatinase
49.5

15 Bct Bacteroides Bacteroides salanitronis Bacsa_1666 Peptidase S9 49.2
16 Bct Bacteroides Bacteroides thetaiotaomicron 7330 Btheta7330_0504 Peptidase S9B DPP4 domain 49.7

Bacteroides thetaiotaomicron VPI-5482 BT_4193 peptidase S9 50.1
17 Bct Bacteroides Bacteroides vulgatus BVU_3876 DPP4 47.6
18 Bct Bacteroides Bacteroides xylanisolvens BXY_33000 DPP4 49.7
19 Bct Capnocytophaga Capnocytophaga canimorsus Ccan_17390 Peptidase S9 42.3
20 Bct Capnocytophaga Capnocytophaga haemolytica AXF12_00665 Peptidase S9B DPP4 domain 42.5
21 Bct Capnocytophaga Capnocytophaga ochracea Coch_1057 Peptidase S9B DPP4 domain 43.6
22 Bct Capnocytophaga Capnocytophaga sp. oral taxon 323 AM608_08390 Peptidase S9 43.6
23 Bct Pedobacter Pedobacter cryoconitis AY601_0660 Peptidase S9 30.5
24 Bct Pedobacter Pedobacter sp. PACM 27299 AQ505_24800 Peptidase S9 30.5
25 Bct Pedobacter Pedobacter steynii BFS30_11275 DPP4 31.2
26 Bct Porphyromonas Porphyromonas asaccharolytica Poras_1656 DPP4 55.6
27 Bct Porphyromonas Porphyromonas gingivalis ATCC 33277 PGN_1469 DPP4 100.0

Porphyromonas gingivalis TDC60 PGTDC60_1620 DPP4 99.0
Porphyromonas gingivalis W83 PG_0503 Dipeptidyl aminopeptidase 98.6

28 Bct Prevotella Prevotella dentalis Prede_1703 Peptidase S9 42.0
29 Bct Prevotella Prevotella denticola HMPREF9137_1131 Peptidase S9 43.4
30 Bct Prevotella Prevotella enoeca AS203_03985 Peptidase S9 42.3
31 Bct Prevotella Prevotella fusca ADJ77_09950 Peptidase S9 43.3
32 Bct Prevotella Prevotella intermedia AB127116 Peptidase S9 43.1
33 Bct Prevotella Prevotella melaninogenica HMPREF0659_A557 DPP4 42.8
34 Bct Prevotella Prevotella ruminicola PRU_0634 Peptidase S9 40.7
35 Bct Tannerella Tannerella forsythia BFO_1659 Peptidase S9 61.1
36 Bct Tannerella Tannerella sp. oral taxon HOT-286 BCB71_04900 DPP4 57.1
37 Gam Stenotrophomonas Stenotrophomonas maltophilia D457 SMD_4050 Putative exported DPP4 32.8

Stenotrophomonas maltophilia JV3 BurJV3_3912 Peptidase S9B DPP4 domain 33.0
Stenotrophomonas maltophilia K279a Smlt4503 Peptidase S9 32.8
Stenotrophomonas maltophilia R551-3 Smal_3865 Peptidase S9 32.6

aNinety-four human oral bacterial species listed in the Human Oral Microbiome Database (HOMD) (34) possess orthologs of the P. gingivalis dpp4 gene (PGM_1479).
Among them, 48 orthologs in 37 species higher than 30% identity are presented. Identical species are shaded. Alp, Alphaproteobacteria; Bct, Bacteroidia; Gam,
Gammaproteobacteria.
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activity was also measured with His-Ala-MCA, since the penultimate amino acid residue
at the N terminus is Ala in GLP-1(7–37) (His7-Ala8-Glu9-. . .-Gly37) and GIP(52–93) (Tyr52-
Ala53-Glu54-. . .-Gln93). Although PgDPP4 cleaved His-Ala-MCA, the kcat/Km value was
1/70 that for Gly-Pro-MCA. This activity was also detected in TfDPP4 and PiDPP4 at a

Pg    1 MKRPVI-ILLLGIVTMCAMAQTGDKPVDLKEITSGMFYARS-AGR-GIRSMPDGEHYTEMNRERTAIVRYNYASGKAVDTLFSIERAREC  87
Tf    1 MGKETGIALLLLLLTAGVVSAQ-QR-VELRGVTDGKYRQ-STT-DGGLRTMTDGVHYTAMNRERTMIVKYDYRTGKPVDTLFYTKTAREC  86
Pi    1 ---MKKILL-MCA-ALLATSIHTFAGEPLKLEEMTKNTFAAKTISGINP-LKGTSDYAQISADRKKIVTYSFVTGKETGVLFDVNKVNGA  84 

. . *..   .  . .      . *.  . ..    . .  .. . . .. .*. ....*. ** * . .** ...**    ....

Pg   88 PFKQIQNYEVSSTGHHILLFTDMESIYRHSYRAAVYDYDVRRNLVKPLSEHVGKVMIPTFSPDGRMVAFVRDNNIFIKKFDFDTEVQVTT 177
Tf   87 TFDDFQGYEVSPTGHRILIWRETEPIYRRSFKAQTFAYDVRRNMVKPLNDSGAKVMIPTFSPDGRMCAYVVDNNIWVRKFDYDTEVQVTK 176
Pi   85 KLKEIESYEISDDGQFILIQTGTKRIYRRSFTADFYLYNVKSKSLKKLSEGGPQQI-PTFSPNGKYIAFVRSNNIFVTDGAT--EKQITT 171

.. .. **.* .*. **. . .. ***.*. *  . *.*... .*.*.. .  . ... *****.*.. *.*..***.. ... ..*.*.*.

Pg  178 DGQINSVLNGATDWVYEEEFGVTNLMSWSADNAFLAFVRSDESAVPEYRMPMYEDKLYPE-D-YT-------YKYPKAGEKNSTVSLHLY 258
Tf  177 DGAPNRIINGATDWVYEEEFTVTNLMSWSSDSQYLAYIRSDESEVPQYAMHIYGDGYYPG-E-YI-------YKYPNAGEKNSRVTLHSY 257
Pi  172 DGKFNEIINGLPDWVNEEEFGFSNALAWGADSKTLSWIRYDESKVKTYSLQMFEGAK-PAFKNYEVYPGDYSYKYPKAGEDNSKVSVHAY 260

**  * ..**..***.****...*...*..*.  *. .*.*** *. * . ....  .*    *        ****.***.** *..* *

Pg  259 NVADRNTKSVSLPIDADGYIPRIAFTDNADELAVMTLNRLQNDFKMYYVHPKSLVPKLILQDMNKRYVDSDWIQA-LKFTAGGGFAYVSE 347
Tf  258 SIETKDIKTIPVPVDADGYIPRIAFTAAPDQLAVMTLNRHQNIFSMYYANPKSGVCKQILKEESDTYIDSNWLNE-LMFTNNG-FLYVSE 345
Pi  261 SLESGKTLTYSLPLDADGYIPRIKSTKFADRIVIYTMNRHQDELNLYKANPTTGECSLLIKEKANKYVKEDAMGGILVMNDYIL--FPSD 348

. .   ... ..* *********..*  .* ....*.**.*. . .*...*...........    *.....    * ..  . . ..*.

Pg  348 KDGFAHIYLYDNKGVMHRRITSGNWDVTKLYGVDASGT-VFYQSAEESPIRRAVYAIDAKGRKTKLSLNVGTNDALFSGNYAYYINTYSS 436
Tf  346 KDGYAHIYQYAATGVEQRQVTKGNWDVTRLIGIDEATNTVYYESAEESPLRRAVYKVDAKGVKTRLTNQEGTNSASFSANFAYYVNRYSS 435
Pi  349 RDGYMHLYLYTIDGKFIRQIEKGKYDVIEVYGFDEKTGETYFQAAAKTPMQREVYVADKHGKVTCLTTKEGWNSAVFSGDYKYFLNNWSD 438

.**..*.*.*   *.  *....*..**. ..* *. .  .....*...* .*.**  *..* .* *.  .*.*.* **....*. * .*.

Pg  437 AATPTVVSVFRSKGAKELRT-LED-NVALRERLKAYRYNPKEFTIIKTQSALELNAWIVKPIDFDPSRHYPVLMVQYSGPNSQQVLDRYS 524
Tf  436 ARTPTVITVNETKTGKTLRT-LED-NASLKETLQATAYSPKEFITVQTASGYELNAWIVKPAGFDPSKKYPVMMFQYSGPNSQSVLDRYD 523
Pi  439 RNTPYSYAIYNNKG-KVVREVL-NNDK-LIKDMVKYDLPARDFFKFTTSEGVQLNGWIVKPKDFDPNKKYPVIFFQYSGPGSQQVVDRWA 525

. **..  .   *. * .*. *.. .  *   . .. . ...*    * .. .**.***** .***...*** ..*****.**.*.**.

Pg  525 FDWEH-------YLASKGYVVACVDGRGTGARGEEWRKCTYMQLGVFESDDQIAAATAIGQLPYVDAARIGIWGWSYGGYTTLMSLCRGN 607
Tf  524 FGWEQ-------YLAANGVICVCVDGRGTGARGETFRKCTYLKLGELESRDQIEAARALAKLPYVDGSRMAIWGWSFGGYNTLMALSTGN 606
Pi  526 LGSMGAGGIYEAYLTQQGFIVACVDGRGTGARGSEFEKCTYLKLGDLESKDQVEAALWIAKQPYVDADNIGIWGWSFGGFNTLMSLSEGR 615

....        **.  *....***********....**** . ** **..** .....****. ...*****.**..***.* . *.

Pg  608 GTFKAGIAVAPVADWRFYDSVYTERFMRTPKENASGYKMSSALDVASQLQGNLLIVSGSADDNVHLQNTMLFTEALVQANIPFDMAIYMD 697
Tf  607 GTFKAGIAVAPPTDWRYYDTVYTERFMRTPKENANGYNATSPILLAKDLQGKLLLIHGTADDNVHFKQTMDYAEALVQAGKQFDMHIYRD 696
Pi  616 NAFKAGVSVAPPTNWRWYDTVYTERYMRTPQENPDGYAVNPIERASK-MNAKLLICHGIADDNVHIQNAYEYSEALVQADKDFKENFYTN 704 

..*** *..***...** **.*****.****.**. **   .    .. ....**. .* ****** .... . ****** . *.. .* .

 
Pg  698 KNHSIYGGNTRYHLYTRKAK-FLFDNL- 723
Tf  697 RDHGIYGGNTRYHLYTKMTN-FVLENL- 722
Pi  705 RNHSIFGGNTRNHLFRQITDWFVQ-NLK

..*.*.*****.**..  .  *.  **
731

 ..** 

FIG 1 Alignment of deduced amino acid sequences of DPP4 from P. gingivalis (Pg; PGN_1469), T. forsythia (Tf; BFO_1659), and P.
intermedia (Pi; GenBank accession number AB127116). Hyphens represent gaps introduced for maximal matching. Common amino acid
residues are marked with asterisks, and those matched between two DPPs are indicated by dots. Potential sets of three residues (Ser593,
Asp668, and His700 in PgDPP4), forming the essential triad of serine peptidases, are indicated in red. The conserved N-terminal motif with
two adjacent essential Glu residues (Glu195and Glu196 in blue) is boxed.
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FIG 2 Expression of DPP4 in periodontopathic bacteria. (A) Aliquots (5 �l) of bacterial cell suspensions (A600 � 2.0) of P. gingivalis wild type (Pg), T. forsythia
(Tf), P. intermedia (Pi), P. gingivalis KDP136 and NDP200, and S. mutans (Sm) were incubated with 20 �M Gly-Pro-MCA in the absence (�) and presence (�) of
0.25 mM P32/98. Values are shown as the means � SD (n � 3). (B) Recombinant DPP4 (0.5 �g for Coomassie brilliant blue [CBB] and 0.1 �g for immunoblotting
[IB]) were separated by SDS-PAGE and visualized. (C) Whole-cell lysates were separated by SDS-PAGE and detected by IB (30 �g of proteins). Lysates of P.
gingivalis (10 �g), T. forsythia (15 �g), P. intermedia (45 �g), and S. mutans (45 �g) were subjected to IB ECL plus detection.
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substrate concentration of 20 �M, though the kcat/Km values were too low to be
evaluated.

N-terminal truncation and inactivation of incretins by periodontopathic bac-
terial DPP4. The potential of bacterial DPP4 to cleave human incretins was examined
by MALDI-TOF MS analysis. Following the incubation of GLP-1 (His7 to Gly37; HAEGTF
TSDVSSYLEGQAAKEFIAWLVKGRG; Mr, 3,355.7) with wild-type P. gingivalis, three major
products with Mrs of 2,098.2 (His7 to Lys26), 1,890.0 (Glu9 to Lys26), and 1,005.2 (Glu27

to Lys34), which were possibly produced by Kgp and DPP4, were demonstrated (Fig. 3).
In addition, a peak with 1,970.0 corresponding to His7 to Ala25 seemed to be produced
by a C-terminal one-amino-acid truncation within His7 to Lys26 by an unidentified
carboxypeptidase. However, in the presence of 2% heat-inactivated fetal calf serum
(FCS), nearly all degradation products disappeared, but instead, a peak of 3,147.5
(Glu9 to Gly37) was detected, indicating clipping of a dipeptide, His7-Ala8, from the
N terminus of GLP-1. These results suggested the potential of PgDPP4 for incretin
degradation in the blood, and also the presence of serum inhibitors for Kgp. In fact,
previous studies demonstrated that antithrombin III (36) and �2-microglobulin (37)
inhibit gingipain activities. Similarly, release of the N-terminal His7-Ala8 was demon-
strated with T. forsythia and P. intermedia cells, whereas hydrolyzing of GLP-1 was not
observed with S. mutans.

To study incretin degradation under the defined conditions, we searched gingipain
inhibitors and found that Rgp and Kgp activities toward t-butyloxycarbonyl-L-Phe-Ser-
Arg-MCA and benzyloxycarbonyl-L-His-Glu-Lys-MCA, respectively, were abrogated in
the presence of 0.5 mM N�-p-tosyl-L-lysine chloromethyl ketone (TLCK) and 30 �M [(2S,
3S)-3-carboxyoxirane-2-carbonyl]-L-leucine (4-guanidinobutyl) amide hemihydrate (E-
64) (data not shown). Then MS analysis was performed in the presence of TLCK and
E-64. Under these conditions, P. gingivalis wild-type cells evidently produced an
N-terminal dipeptide-shortened peak, Glu9-Gly37 (Fig. 4). Its production was also ob-
served with KDP136 cells without inhibitors in a time-dependent manner, while the
peak was scarcely detected with NDP200. Taken together, these results clearly show
that PgDPP4 degrades active GLP-1 to the inactive form. The rate of limited hydrolysis
of GLP-1(7–37) was approximately 1 � 10�12 U/cell, which was semiquantitatively
calculated with KDP136.

Hydrolysis at the Ala8-Glu9 peptide bond of GLP-1(7–37) as well as at the Ala53-Glu54

bond of GIP(52–93) (Y52AEGTFISDYSIAMDKIHQQDFVNWLLAQKGKKNDWKHNITQ93; Mr,
4,983.6) was observed with recombinant PgDPP4 (Fig. 5). The rates of degradation
of GLP-1 and GIP by PgDPP4 were 2.0 � 10�3 and 2.4 � 10�3 U/�g of protein,

TABLE 2 Inhibition profile of periodontopathic bacterial DPP4a

Inhibitor Concn (mM)

Residual activity (%)

PgDPP4 TfDPP4 PiDPP4

P32/98 0.25 0.3 0.2 0.5
Sitagliptin 0.25 1.6 1.6 7.5
Vildagliptin 0.25 0 0.3 27.3
PMSF 1 52.3 71.2 40.8
EDTA 1 102.0 103.6 117.0
Leupeptin 0.1 104.3 102.4 94.4
aThe specific activities of PgDPP4, TfDPP4, and PiDPP4 against Gly-Pro-MCA were 0.93 � 0.02, 0.67 � 0.01,
and 0.44 � 0.01 U/mg of protein, respectively.

TABLE 3 Enzymatic parameters of bacterial DPP4

Substrate DPP kcat (s�1) Km (�M) kcat/Km (s�1 �M�1)

Gly-Pro-MCA PgDPP4 121,752 � 2,974 94.9 � 2.1 1,283.3 � 22.5
TfDPP4 104,189 � 30,036 142.9 � 48.4 740.0 � 42.5
PiDPP4 950,097 � 17,404 133.8 � 33.4 720.7 � 54.6

His-Ala-MCA PgDPP4 14,322 � 12,393 �3.2 �18.6
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respectively. Similarly, N-terminal dipeptide truncations of GLP-1(7–37) and GIP(52–93)
were demonstrated with TfDPP4 and PiDPP4.

Modulation of blood glucose, plasma active GLP-1, and insulin levels in mice.
To evaluate the degradation of incretins by periodontopathic bacterial DPP4 in vivo, a
glucose tolerance test was performed with mice. Sterilized PgDPP4 or phosphate-
buffered saline (PBS) was injected via the tail vein into 10- to 13-week-old C57BL/6N
mice after fasting. Blood glucose levels were monitored for 120 min following oral
administration of glucose. As shown in Fig. 6, hyperglycemia was observed in the
control mice from 10 to 60 min, after which the blood glucose concentration gradually
returned to a normal level within 120 min. Under these conditions, PgDPP4 injection
(0.3 U/mouse) prior to glucose administration markedly enhanced the level of hyper-
glycemia observed from 10 to 60 min. Similarly, enhancement of blood glucose level
was also demonstrated with PiDPP4 and TfDPP4 in a concentration-dependent manner.
These observations strongly suggest the possible involvement of periodontopathic
bacterial DPP4 in modulation of postprandial hyperglycemia.

We found that recombinant TfDPP4 (pI � 6.1) was soluble and adequately recovered
from dialysis against PBS at pH 7.4 and 4°C, whereas large portions of PgDPP4 (pI � 7.4)
and PiDPP4 (pI � 7.9) were precipitated during dialysis. Accordingly, subsequent
animal experiments were performed with TfDPP4 due to its yield. The blood glucose
concentration at 15 min after glucose administration was substantially higher in the
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group that received TfDPP4 (1 U/mouse) than in the control group given PBS (P �

0.001) (Fig. 6). Concomitantly, significant decreases in the plasma concentrations of
both active GLP-1(7–37) and insulin were demonstrated (P � 0.05). These results clearly
showed that periodontopathic bacterial DPP4 can function in vivo as a modulator of
blood glucose level.
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DISCUSSION

The present study is the first to demonstrate expression of DPP4 in T. forsythia and
P. intermedia, which exhibited enzymatic properties similar to those of P. gingivalis.
Together with the present and previous observations of PgDPP4, including the kinetic
parameters of enzymatic reactions, optimal pH, inhibitor profiles, and substrate pref-
erence for Pro and less for Ala (15, 18, 31), our results led us to conclude that the
enzymatic properties of bacterial DPP4 substantially resemble those of the human
entity (28, 38). In fact, the present findings revealed release of the N-terminal dipeptide
from the incretin peptides GLP-1 and GIP by bacterial DPP4. In addition, decreased
concentrations of plasma active GLP-1 and plasma insulin were demonstrated following
administration of bacterial DPP4, which concomitantly occurred with increased hyper-
glycemia in the mouse model. Therefore, when these microorganisms enter the blood-
stream via daily activities (recurrent bacteremia), bacterial DPP4 may decrease the
concentrations of incretins in the host.

Periodontitis is a polymicrobial inflammatory disease caused by subgingival com-
plex microbiota, among which the three bacterial species P. gingivalis, T. forsythia, and
T. denticola are thought to be primarily responsible (3). When we designed the present
investigation, the dpp4 orthologs were found in T. forsythia and P. intermedia in a search
of the KEGG Orthology and HOMD databases. These three orthologs are classified as
peptidase subfamily S9, the same as vertebrate DPP4. On the other hand, the truncated
one in A. actinomycetemcomitans (D11S_0680) is listed as an S15 family member and
termed Xaa-Pro DPP in the MEROPS peptidase database (39). Although we found scant
Gly-Pro-MCA-hydrolyzing activity in A. actinomycetemcomitans ATCC 33384, as well as
in T. denticola ATCC 33520 and Fusobacterium nucleatum subsp. nucleatum ATCC 25586
under our experimental conditions (Y. Shimoyama, Y. Ohara-Nemoto, and T. K. Nemoto,
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unpublished observation), it would be interesting to determine whether A. actinomy-
cetemcomitans possesses incretin degradation activity.

Bacterial DPP4 activity was cell associated, while no activity was detected in the
culture supernatants of the three microorganisms. Our previous studies of DPP5 (15),
DPP11 (14), and AOP (16) indicated that these exopeptidases are localized as soluble
forms in the periplasmic space. Hence, PgDPP4 seems to be also located in the
periplasmic space. Periplasmic/cytosol localization of PgDPP4 was postulated in a
proteome analysis (40). Furthermore, periplasmic localization of DPP4 is supported by
lack of a transmembrane region for the inner membrane and the conserved C-terminal
domain, which is essential for outer membrane localization (41).

Accordingly, peptide substrates seem to pass through the outer membrane via
either nonspecific porin or specific channels (42). Since GLP-1 (Mr, 3,355.7) and GIP (Mr,
4,983.6) are likely metabolized in the periplasmic space, molecules with a molecular
mass smaller than 5,000 permeate through the outer membrane. Similarly, this and
previous examinations have demonstrated interactions among synthetic oligopeptidyl
MCA substrates (Mr, 320 	 764), including hydrophobic, anionic, and cationic amino
acid residues at the P1 and P2 positions, and P. gingivalis periplasm-localized exopep-
tidases (14–16).

The present results showed the in vivo activity of bacterial DPP4. The capability of
bacterial enzymes was also supported by their high rate of turnover against the
synthetic substrate Gly-Pro-MCA. We think that the kcat/Km value for Gly-Pro-MCA of
PgDPP4 (1,300 s�1 �M�1) is adequate for efficient function in vivo in comparison with
that of other enzymes (0.1 to 1,000 s�1 �M�1 at 25°C) (43). Although the activity for
His-Ala-MCA was quite low compared with that for Gly-Pro-MCA, hydrolyses at the
Ala8-Glu9 bond of GLP-1(7–37) and Ala53-Glu54 bond of GIP(52–93) were clearly dem-
onstrated with both P. gingivalis cells and recombinant bacterial DPP4s in MS analysis.
More effective hydrolysis of oligopeptides with Ala2 than dipeptide p-nitroanilide
substrates has been already reported in regard to hDPP4 by Bongers et al. (44), who
suggested that conformation and peptide length may greatly affect the cleavage
efficiency of DPP4.

Oral microorganisms’ bacteremia is initiated by activities of daily living, such as
chewing and tooth brushing, as well as periodontal treatments. Notably, periodontitis
lesions allow entry into the bloodstream of oral bacteria that have colonized the
gingival sulcus. When these microorganisms enter the circulation and escape from
innate immunity, they may be prophlogistic for systemic diseases. In fact, we previously
reported a case of infective endocarditis caused by Granulicatella elegans derived from
supragingival plaque in a patient with poor oral hygiene who suffered from severe
periodontitis (45). Furthermore, the incidence of bacteremia in adults has been re-
ported to increase up to 75% with elevated periodontitis severity, while P. gingivalis and
P. intermedia have been reported to be isolated from the blood of more than one-third
of periodontitis patients after toothbrushing (46, 47). Therefore, it is likely that dietary
bacteremia caused by periodontopathic bacteria with DPP4 increases the long-term risk
of glucose tolerance and aggravates diabetes. In accordance with this speculation, a
recently published 5-year cohort study conducted in Japan of 13,070 subjects reported
that dental plaque accumulation is an independent risk factor for developing diabetes
mellitus in males and dyslipidemia in females (48).

The present results are developing great interest for investigations to determine
whether oral bacteria directly modulate the regulation systems of human metabolism
via their peptidases targeting bioactive peptides, including chemokines, neuropeptides,
and peptide hormones. Furthermore, since hDPP4 is known as a multifunctional
peptidase that not only functions with hydrolase but also is involved in T-cell activation,
lymphocyte-epithelial cell adhesion, and the pericellular proteolysis of the extracellular
matrix (49–52), bacterial DPP4 might have additional roles in periodontopathic patients.
In conclusion, we propose a novel molecular mechanism of periodontitis-diabetes
interaction, in which periodontopathic bacterial DPP4 adversely impacts glycemic
control.
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MATERIALS AND METHODS
Materials. pQE60 (Qiagen Inc., Chatsworth, CA) and pTrcHis2-TOPO (Invitrogen, Carlsbad, CA) were

used as expression vectors. Restriction and DNA-modifying enzymes were purchased from New England
BioLabs (Ipswich, MA), while TALON metal affinity resin was from TaKaRa Bio (Kusatsu, Japan) and
KOD-Plus-Neo DNA polymerase from Toyobo (Tokyo, Japan). Oligonucleotide primers were synthesized
by FASMAC (Atsugi, Japan). Gly-Pro-MCA, His-Ala-MCA, and [(2S, 3S)-3-carboxyoxirane-2-carbonyl]-L-
leucine (4-guanidinobutyl) amide hemihydrate (E-64) were from the Peptide Institute (Osaka, Japan).
Human GLP-1 and GIP, N-acetylmuramic acid, N�-p-tosyl-L-lysine chloromethyl ketone (TLCK), aprotinin,
sitagliptin phosphate monohydrate, and �-cyano-4-hydroxycinnamic acid were obtained from Sigma-
Aldrich (St. Louis, MO). Isoleucine thiazolidide hemi-fumarate (P32/98) was from FOCUS Biomolecules
(Plymouth Meeting, PA) and vildagliptin from LKT Laboratories (St. Paul, MN). Low-molecular-weight and
full-range rainbow molecular weight markers and an ECL plus Western blotting detection system were
from GE Healthcare (Little Chalfont, UK).

Bacterial strains and culture. Periodontopathic bacteria were grown anaerobically at 37°C (80% N2,
10% CO2, and 10% H2). P. gingivalis ATCC 33277, KDP136 (53), and NDP200 (15) were cultured in enriched
brain heart infusion broth (Becton Dickinson, Franklin Lakes, NJ) supplemented with 0.1% cysteine, 5
�g/ml of hemin, and 0.5 �g/ml of menadione in the absence and presence of appropriate antibiotics
(ampicillin, erythromycin, tetracycline, and chloramphenicol) for KDP136 and NDP200, as previously
described (15). P. intermedia ATCC 25611 and T. forsythia ATCC 43037, provided by the RIKEN BRC
through the National Bio-Resource Project of MEXT, Japan, were cultured in anaerobic bacterial culture
media (Eiken Chemical, Tokyo, Japan) supplemented with 1% cysteine and 0.5 �g/ml of menadione.
N-Acetylmuramic acid (15 �g/ml) was added to the medium for T. forsythia. Streptococcus mutans ATCC
25175 was cultured in Todd-Hewitt broth (Becton Dickinson). Bacterial cells in the early stationary phase
were harvested by centrifugation at 6,000 � g for 10 min at 4°C, washed once with ice-cold phosphate-
buffered saline (PBS) at pH 7.4, and then resuspended in PBS. Absorbance of each bacterial cell
suspension at 600 nm was adjusted to 2.0 or 10.0.

Expression and purification of recombinant DPP4. Genomic DNA from T. forsythia and P. inter-
media was prepared as previously reported (54). A DNA fragment encoding T. forsythia DPP4 (TfDPP4)
Val18 to Leu722 was amplified by PCR using KOD-Plus-Neo DNA polymerase, genomic DNA as a template,
and a set of primers (GTTGTCAGCGCTCAGCAGCGGGTGGA and GAGATTTTCCAGTACAAAATTCGTCA)
which were designed based on the gene (KEGG entry, BFO_1659) assigned for S9A/B/C family peptidase
in T. forsythia ATCC 43037. That for P. intermedia DPP4 (PiDPP4) Cys8 to Lys731 was amplified with a set
of primers (CAAGCCGGATCCTGTGCAGCGTTATTAGCAACGTCTA and ATCTCTGGATCCCTTCAAGTTCTGAA
CAAACCAATCG; BamHI sites are underlined) designed according to the sequence (GenBank accession no.
AB127116). The PCR fragment of TfDPP4 was cloned into pTrcHis2 TOPO and that of PiDPP4 digested
with BamHI was inserted into the BamHI site of pQE60. The expression plasmid of PgDPP4 Asp23 to Leu723

was previously reported (31). All constructs were confirmed by DNA sequencing. Escherichia coli XL-1
Blue cells carrying an expression plasmid were cultured in Luria-Bertani broth supplemented with 75
�g/ml of ampicillin at 37°C. Recombinant proteins tagged with a histidine hexamer at the C terminus
were induced with 0.2 mM isopropyl-thiogalactopyranoside at 30°C for 4 h and then purified from the
bacterial cell lysate using TALON affinity chromatography as previously described (14).

Peptidase activity. Peptidase activity was determined as previously described (15). Generally, the
reaction was started by addition of a bacterial cell suspension (1 to 5 �l) or recombinant DPP4 (0.5 to 100
ng) in a reaction mixture (200 �l) composed of 50 mM sodium phosphate (pH 7.5), 5 mM EDTA, and 20
�M peptidyl MCA. After 30 min at 37°C, fluorescence intensity was measured with excitation at 380 nm
and emission at 460 nm. An enzyme unit was defined as enzyme activity that catalyzed the conversion
of 1 �mol of substrate into the product in 1 min. To determine enzymatic parameters, an aliquot of DPP4
(0.5 ng of DPP4 for Gly-Pro-MCA and 10 ng of PgDPP4 or 100 ng of TfDPP4 and PiDPP4 for His-Ala-MCA)
was incubated with various concentrations of peptidyl MCA. Values determined from four independent
measurements are presented as the averages � standard errors (SE). Data were analyzed using a
nonlinear regression curve fitted to the Michaelis-Menten equation with the GraphPad Prism software
program (San Diego, CA).

MALDI-TOF MS. P. gingivalis wild-type and NDP200 (8 �l of cell suspension; A600 � 2.0) organisms
were preincubated in 80 �l of 50 mM sodium phosphate buffer, pH 7.5, containing 5 mM EDTA, 0.5 mM
TLCK, and 30 �M E-64 for 10 min at 0°C. A reaction was started by addition of 20 �l of GLP-1(7–37) or
GIP(52–93) (20 �M) at 37°C, and then MS analysis was performed as previously reported (14). GLP-1(7–37)
hydrolysis was further examined in the presence of 2% heat-inactivated fetal calf serum (56°C for 20 min)
with P. gingivalis (8 �l of cell suspension; A600 � 2.0), T. forsythia, P. intermedia, and S. mutans (8 �l of cell
suspension; A600 � 10.0). The reaction was stopped at the appropriate time point by addition of
trifluoroacetic acid (0.1%), and then hydrolyzed products were adsorbed to a Millipore ZipTip-C18,
washed with 0.1% trifluoroacetic acid, and eluted with 50% acetonitrile containing 5 mg/ml of �-cyano-
4-hydroxycinnamic acid. Hydrolysis of 20 �M GLP-1(7–37) or GIP(52–93) was also carried out with
aliquots of DPP4 (5 to 100 ng). The molecular masses of the products were determined by mass
spectrometry using a Voyager DE-Pro (Applied Biosystems, Foster City, CA) and a Bulker Ultraflex III
(Billerica, MA).

Glucose tolerance test. All animal experiments were approved by the animal ethics committee of
Nagasaki University (no. 0911170797). C57BL/6N female mice were purchased from Charles River Lab
(Fukuoka, Japan), maintained in a specific-pathogen-free facility under a 12 h-light, 12 h-dark cycle, and
then subjected to experiments at the age of 10 to 13 weeks. Purified recombinant DPP4 was dialyzed
against PBS at 4°C and then sterilized with a membrane filter (pore size � 0.22 �m). DPP4 activity in each
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fraction was determined using Gly-Pro-MCA. DPP4 (0.2 to 1 U) in a volume of 50 or 100 �l was injected
via the tail vein into mice after 15-h fasting. An identical volume of sterilized PBS was injected as a
control. A glucose tolerance test was performed according to previous reports (55, 56). Briefly, 2 min after
injection of DPP4, a glucose solution (3 mg/g of body weight) was orally administered and blood glucose
levels were measured at 0, 10, 30, 60, and 120 min using an OneTouch Ultravue device (Johnson &
Johnson, New Brunswick, NJ). For measurement of plasma GLP-1(7–37) (active form) and plasma insulin,
blood specimens were obtained from the heart at 15 min after glucose administration, and 100 kallikrein
inhibitor units (KIU) of aprotinin, 2 �M P32/98, and 2 mM EDTA were immediately added to the
specimens. Plasma was collected by centrifugation at 1,200 � g at 4°C and stored at �80°C until use.
Concentrations of plasma GLP-1(7–37) were measured using an enzyme-linked immunosorbent assay
(ELISA) kit from Shibayagi (Shibukawa, Japan), while those of insulin were measured with an ultrasen-
sitive mouse/rat insulin ELISA kit (Morinaga Institute of Biological Science, Yokohama, Japan) according
to the manufacturers’ protocols. As these ELISA kits were differently affected by the extent of hemolysis,
several plasma samples were excluded from the analyses. Data are presented as the means � SE and
were analyzed using GraphPad Prism software. Statistical significance was determined for parametric
data by unpaired Student’s t test with Welch’s correction. A P value of �0.05 was considered to indicate
statistical significance.

SDS-PAGE and immunoblotting analysis. Rabbit anti-PgDPP4 antiserum was prepared using
purified PgDPP4 according to a previously reported method (14). For immunoblotting, proteins from
bacterial whole-cell lysates or recombinant DPP4 was separated by SDS-PAGE using 10% polyacrylamide
gels, then transferred onto polyvinylidene difluoride membranes (Life Sciences, Billerica, MA), and
incubated with anti-PgDPP4 antiserum (103- to 104-fold dilution). DPP4 was detected with alkaline
phosphatase-conjugated anti-rabbit IgG, nitro blue tetrazolium, and 5-bromo-4-chloro-3-indolyl phos-
phate. An ECL plus Western blotting detection system was also used for detection of bacterial endog-
enous DPP4. Low-molecular-weight calibration and full-range rainbow molecular weight markers (GE
Healthcare, Chicago, IL) were used as standards.
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