Table 2.
Type of model | Nb of free param. (genu/fornix) | Models effect of δ and Δ | Noise assumption | Optimization algorithm | Outliers strategy | Special signal prediction strategy | |
---|---|---|---|---|---|---|---|
R–Manzanares | Tissue | N/A | Yes | Gaussian | weighted‐LS | Yes | CV |
bootstrapping | |||||||
Nilsson | Tissue | < 12/12 | Yes | Gaussian | LM | Yes | CV |
Scherrer | Tissue | 10/16 | No | Gaussian | Bobyqa | Yes | No |
Ferizi_1 | Tissue | < 12/12 | Yes | approx.‐Rician | LM | No | No |
Ferizi_2 | Tissue | < 10/10 | Yes | approx.‐Rician | LM | No | No |
Alipoor | Signal | 17/17 | No | Gaussian | weighted‐LS | Yes | No |
Sakaie | Signal | N/A | No | Gaussian | nonlinear‐LS | Yes | No |
Rokem | Tissue | ∼20 | No | Gaussian | Elastic net | No | CV |
+ Noise floor | |||||||
Eufracio | Tissue | 7/7 | No | Gaussian | bounded‐LS | No | No |
Lasso, Ridge | |||||||
Loya‐Olivas_1 | Tissue | 11 | No | Gaussian | bounded‐LS | No | No |
& Lasso | |||||||
Loya‐Olivas_2 | Tissue | 11 | No | Gaussian | bounded‐LS | No | No |
Poot | Signal | 103 | No | Rician | LM‐like | No | No |
Fick | Signal | 475 | Yes | Gaussian | Laplacian‐ reg‐LS | No | partial‐CV |
Rivera | Signal | 23 | Yes | Gaussian | Weighted Lasso | Yes | CV |
Abbreviations: LS=least‐squares, LM=Levenberg–Marquardt, CV=cross‐validation, reg=regularized