
Neurosci Bull    April 1, 2015, 31(2): 227–234. http://www.neurosci.cn
DOI: 10.1007/s12264-014-1514-4 227

Prefrontal cortical α2A-adrenoceptors and a possible primate 
model of attention defi cit and hyperactivity disorder
 
Chao-Lin Ma, Xuan Sun, Fei Luo, Bao-Ming Li 
Center for Neuropsychiatric   Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, China

Corresponding author: Chao-Lin Ma. E-mail: chaolin.ma@gmail.com
  
© Shanghai Institutes for Biological Sciences, CAS and Springer-Verlag Berlin Heidelberg 2015

   Attention deficit and hyperactivity disorder (ADHD), a prevalent syndrome in children worldwide, is 
characterized by     impulsivity, inappropriate inattention, and/or hyperactivity. It   seriously afflicts cognitive 
development in childhood, and may lead to chronic under-achievement, academic failure, problematic peer 
relationships, and low self-esteem. There are at least three challenges for the treatment of ADHD. First, the 
neurobiological bases of its symptoms are still not clear.    Second, the commonly prescribed   medications, most 
showing short-term therapeutic efficacy but with a high risk of serious side-effects, are mainly based on a 
dopamine mechanism.   Third, more novel and effi cient animal models, especially in nonhuman primates, are 
required to accelerate the development of new medications. In this article, we review research progress in the 
related fi elds, focusing on our previous studies showing that blockade of prefrontal cortical α2A-adrenoceptors 
in monkeys produces almost all the typical behavioral symptoms of ADHD. 
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·Review·

Introduction

Attention deficit and hyperactivity disorder (ADHD) is 
one of the  most prevalent childhood neurodevelopmental 
conditions, affecting 3–5% of grade-school children 
worldwide[1]. It is characterized by i nappropriate levels 
of inattention, i  mpulsivity, and/or hyperactivity[2-4].   These 
symptoms develop in childhood, and can persist into 
adolescence and adulthood[5]. ADHD seriously affects 
cognitive development[6-8], and, without appropriate 
treatment, has consequences for the risk of anxiety, 
substance abuse, and depression in adulthood[  2, 5, 9].

T  he neurobiological bases o  f ADHD symptoms are still 
not clear[10]. Clarifying them can help better understand the 
biological vulnerabilities that may underlie ADHD in a specifi c 
patient and how to modulate the responses to treatment, 
thereby contributing to better and more effective therapy.

It has been suggested that the symptoms involve a 
dopaminergic mechanism in the prefrontal cortex (PFC) 

and striatum[11, 12]. Experimentally decreased dopamine 
(DA) release in the PFC results in ADHD-like symptoms[13, 14]. 
To date, DA dysregulation is thought to be central to the 
neurobiology of ADHD, and its pharmacological treatment, 
such as m     ethylphenidate (MPH, i.e. Ritalin)[15-17], levels 
the DA c  oncentration in the synapse and extrasynaptic 
space in the PFC as a blocker of the DA transporter. MPH 
ameliorates inappropriate inattention[18-20], decreases   
impulsivity[21], and enhances inhibitory control[22]. However, 
as MPH is a prescription psychostimulant, there are strong 
concerns over drug dependence, paranoia, schizophrenia, 
and behavioral sensitization that might be caused by long-
term therapy, similar to other stimulants[23-25].

Converging evidence indicates that the patho- 
physiology of ADHD has multiple origins[26-32]; for instance, 
norepinephrine (NE) has long been implicated[33, 34]. In this 
paper, we review research progress in the relevant fi elds, 
focusing on the potential relationship between prefrontal 
α2A-adrenoceptors and ADHD in nonhuman primates[35-39]. 
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Prefrontal Cognitive Dysfunctions in ADHD

The PFC plays a key role in cognitive functions such as 
working memory, the regulation of attention, and behavioral 
inhibition. Imaging and neuropsychological studies have 
shown that patients with ADHD have poor PFC functions, 
including poor attention regulation[40], limited working 
memory[41], and inability to inhibit inappropriate motor 
activity[42].

Working memory is a fundamental higher-order 
function, underlies a wide range of executive functional 
processes[43, 44], and is primarily controlled by the PFC[45, 46]. 
It has been shown that ADHD patients have altered 
architecture and less activation in the PFC[47-49]. Persistent 
working-memory problems are the main cognitive defi cit in 
ADHD[40, 41, 50, 51].

Attention brings sensory or mental stimuli to the 
forefront of awareness[  40, 52], and plays a pivotal role in 
mediating the executive functions of the PFC. During 
distracted states, the capacity to diminish the awareness of 
relevant stimuli is compromised. Compared to normal peers, 
ADHD patients show attention defi cits in detecting invalidly-
cued targets with slower speed and less accuracy[53, 54]. 

Inhibitory control of behavior is one of the most 
important functions of the PFC[55]; ablation or lesion 
of the frontal cortex in monkeys induces locomotor 
hyperactivity[56-58]. Perhaps the most fundamental deficit 
in ADHD is the lack of response inhibition[52]. In laboratory 
studies of tasks that measure inhibitory control, children 
with ADHD often perform more poorly than both normal 
controls and children with other psychiatric disorders[59, 60]. 
Schulz et al .  reported that response inhibi t ion in 
adolescents diagnosed with ADHD is primarily mediated by 
fronto-striatal circuitry[61, 62].

Prefrontal α2A-Adrenoceptor Blockade Produces 

ADHD Phenotypes

ADHD has been posited to be caused by hypofunctional 
catecholamine systems[63] in multiple brain regions 
including the PFC[64-66] and striatum[67]. Implicated in this 
are NE projections that originate primarily from neurons 
in the locus coeruleus and send projections to multiple 
regions, including the PFC[68]. There are many subtypes of 
adrenergic receptors in the PFC, including the α2A subtype. 

The α2A-adrenoceptors are localized at both pre- and post-
synaptic NE terminals[69]. However, studies in rodents, 
monkeys, and humans have shown that lower to moderate 
levels of NE have a beneficial influence on prefrontal 
cognitive functions through action at post-synaptic α2A-
adrenoceptors[64, 70]. 

ADHD symptoms can be mimicked by blockade of 
α  2A-adrenoceptors in the PFC. To investigate the role of 
p refrontal α2A-adrenoceptors in the inhibitory control of 
behavior, we trained two monkeys to perform a go/no-go 
task, and the α2A-adrenergic antagonist yohimbine was 
infused bilaterally and chronically into the dorsolateral 
PFC with mini-osmotic pumps. We found that blockade 
of the α2A-adrenoceptors selectively impaired the “no-go” 
performance of monkeys, leaving the “go” performance 
intact. In quite a few cases, the monkeys should have 
kept their hands still and not touch the screen (no-go), 
but they made a response to the screen[38]. Infusion of 
saline at the same cortical locations did not affect the no-
go performance, indicating that the yohimbine-induced 
impulse was not because of nonspecific factors such as 
infusion-induced cortical damage (F ig. 1A). Our previous 
work provided the first behavioral evidence that α2A-
adrenocepters in the dorsolateral PFC are involved in the 
inhibitory control of behavior.

In addition, the monkeys’ locomotor activity was 
monitored before, during and after yohimbine infusion 
into the dorsolateral PFC. Compared to that before 
administration, the daily locomotor activity increased 
dramatically during the 8-day administration of yohimbine; 
this gradually returned to normal after the infusion was 
stopped (Fig. 1B). I nfusion of saline at the same location 
did not cause locomotor hyperactivity[39]. This work 
suggests that the α2A-adrenoceptors in the d  orsolateral PFC 
are associated with locomotor activity, and the dorsolateral 
PFC dysfunction of α2A-adrenergic transmission could be 
one of the main causes of the impulsive behaviors and 
hyperactivity in children with ADHD.  

Due to the limitations of working on nonhuman primates, 
we also implemented similar experiments on rats to assess 
the dose-dependent and age effects of yohimbine at a 
homological cortical site, the medial PFC. The results showed 
that yohimbine infused into the medial PFC dose-dependently 
induced  hyperactivity in rats of different ages, and the trends 
showed that the younger the rats, the more hyperactivity 



Chao-Lin Ma, et al.    Prefrontal cortical α2A-adrenoceptors and a possible primate model of ADHD 229

presented at the same dose (unpublished data). All these 
results showed that dysfunction of the PFC α2A-adrenoceptors 
results in the behavioral problems seen in ADHD.

ADHD symptoms can also be induced in humans by 
reducing the stimulation of α2A-adrenoceptors. Kopeckova 
et al. investigated a polymorphism in the promoter region 
of the gene encoding DA beta-hydroxylase, an enzyme that 
reduces NE synthesis, and found that the affected children 
had poor sustained attention, weaker impulse control, and 
impaired executive function[71]. Genetic alterations in α2A-
adrenoceptors also impair PFC executive function, and 
lead to conditions seen in ADHD[72]. Thus, prefrontal α  2A-
adrenoceptors are required for attention and behaviors in 
humans too.

Prefrontal α2A-Adrenoceptor Stimulation Ameliorates 

Cognitive Dysfunctions in ADHD

Behavioral, pharmacological, and electrophysiological 

Fig. 1. Yohimbine infused bilaterally and chronically into the dorsolateral prefrontal cortex impairs impulse control and induces 
locomotor hyperactivity (adapted from Ma CL et al., Neuroreport, 2003[38] and Biol Psychiatry, 2005[39]). (A) Yohimbine impairs “no-go” 
performance but has no effect on “go” performance. In several cases, the monkeys should not touch the screen (no-go), but they 
make a response. (B) Daily locomotor activity increases during administration of yohimbine. Each trace is a daily recording from 
06:00 to 18:00. Inset: Reconstructed sites for chronic administration of yohimbine and saline. Filled symbols, yohimbine infusion; 
open symbols, saline infusion; as, arcuate sulcus; ps, principal sulcus.

research has shown that stimulation of α2A-adrenoceptors 
has a beneficial influence on PFC cognitive functions. 
Arnsten et al. found that systemic administration of the 
α2A-adrenergic agonist guanfacine improves working 
memory in monkeys[73].  Steere demonstrated that 
systemic administration of guanfacine improves visual 
object discrimination reversal performance in aged 
rhesus monkeys[74]. Our work showed that both systemic 
administration and local infusion of guanfacine into the PFC 
improve visuomotor associative learning[70, 75]. Using an 
iontophoretic technique, stimulation of α2A-adrenoceptors 
in the PFC was found to increase the spiking activity 
associated with working memory in behaving monkeys[37, 76].  

Neuronal activity in the PFC associated with working 
memory can be enhanced by α2A-adrenoceptor stimulation 
through cAMP-HCN signaling pathways[76, 77]. Our work 
suggested that under normal physiological conditions, 
the α2A-adrenoceptors in pyramidal cells can be activated 
through Gi-cAMP-HCN signaling[78]. On the other hand, 
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under stress, activation of α2A-adrenoceptors to protect 
PFC functions might occur via the Gi-cAMP-PKA-CaMKII-
AMPAR signaling pathway[76]. Both mechanisms together 
optimize the synaptic inputs to pyramidal neurons and 
determine the synaptic outputs for PFC cognitive functions. 
Indeed, it has been reported that guanfacine at relatively 
high doses suppresses evoked excitatory postsynaptic 
currents, and has no enhanced effect or even suppresses 
delay-related activity[76].

N  ew   Insights to Develop a Primate Model of 

ADHD

A s noted above, most of the commonly-prescribed 
medications for ADHD are psychostimulants, which are 
reported to have short-term t  herapeutic e  fficacy but with 
a high risk of serious   adverse effects with long-term 
treatment. It is urgent to find new m  edications with high 
therapeutic efficacy and low adverse effects for children 
with ADHD. The fi rst step now is to develop novel animal 
models of ADHD.   A good model should very nearly show 
the fundamental behavioral characteristics of ADHD, 
conform to a theoretical rationale for ADHD, account for the 
neurobiology, and respond to therapeutic interventions both 
behaviorally and pharmacologically[79]. 

Currently, animal models of ADHD are genetic and 
non-genetic[80]. The spontaneously-hypertensive rat (SHR), 
the most widely used model, is a genetic model[81, 82]. 
SHRs exhibit hyperactivity[83, 84], impulsivity/inattention[82, 85], 
and poor learning and memory[86].  They also have 
disturbances in glutamate, DA, and NE functions, which 
in parallel demonstrate that ADHD patients have defects 
in the neuronal circuits required for reward-guided 
associative learning and memory formation[87]. Clearly, the 
SHR is a good model for the study of memory deficits in 
ADHD, primarily in the context of particular risk factors/
symptoms, responsiveness to specific drugs or other 
treatments or biomarkers for the diagnosis of ADHD, and 
for understanding the pathological mechanisms for the 
development of therapeutic approaches. However, SHRs 
do not fulfi ll all the behavioral and pharmacological profi les 
of an ADHD model; for example, ADHD-like behaviors in 
SHRs are not restricted to males[88]. Hyperactive behavior 
in SHRs is ameliorated only by high doses of amphetamine 
or MPH[84], unlike ADHD patients, whose behavioral defi cits 

can be improved with low doses of MPH. Importantly, 
ADHD patients show reduced regional cerebral blood fl ow 
in the frontal cortex[89], while SHRs do not[90,91]. 

Our previous research with monkeys indicates that 
blockade of the prefrontal α2A receptors induces locomotor 
hyperactivity, impulsivity, and poor attention regulation/
working memory. These results verify the feasibility 
and acceptability of treating ADHD by stimulating α2A-
adrenoceptors in the PFC or up-regulating the NE 
concentration in synapses and extrasynaptic space in the 
PFC. Actually, the α2A-adrenergic agonists guanfacine and 
clonidine have been used experimentally and clinically 
to treat ADHD[92-97]. The selective inhibitor of the NE 
transporter atomoxetine (tomoxetine or LY139603) has 
also been reported to alleviate ADHD symptoms[98]. All 
these medications have achieved much better therapeutic 
efficacy with less adverse effects[99] than MPH and 
amphetamines, although there is controversy regarding the 
long-term effectiveness[100, 101]. 

Thus, i  n the future, studies should focus on developing 
a novel ADHD model in nonhuman primates, by down-
regulating or blocking t  he α2A-adrenoceptors in the 
  dorsolateral PFC. This could be realized by chronic bilateral 
infusion of yohimbine. This kind of animal model could 
approximate the fundamental behavioral characteristics 
of ADHD, conform to a theoretical rationale for ADHD 
associated with prefrontal α2A-adrenoceptors, and account 
for the neurobiology and therapeutic interventions in terms 
of both pharmacological and behavioral functions. 
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