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Chaperone-mediated autophagy (CMA), one of the main pathways of lysosomal proteolysis, is characterized 
by the selective targeting and direct translocation into the lysosomal lumen of substrate proteins containing 
a targeting motif biochemically related to the pentapeptide KFERQ. Along with the other two lysosomal 
pathways, macro- and micro-autophagy, CMA is essential for maintaining cellular homeostasis and survival 
by selectively degrading misfolded, oxidized, or damaged cytosolic proteins. CMA plays an important role in 
pathologies such as cancer, kidney disorders, and neurodegenerative diseases. Neurons are post-mitotic and 
highly susceptible to dysfunction of cellular quality-control systems. Maintaining a balance between protein 
synthesis and degradation is critical for neuronal functions and homeostasis. Recent studies have revealed 
several new mechanisms by which CMA protects neurons through regulating factors critical for their viability 
and homeostasis. In the current review, we summarize recent advances in the understanding of the regulation 
and physiology of CMA with a specifi c focus on its possible roles in neuroprotection.
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Introduction

Maintaining the balance between protein synthesis and 
degradation contributes to cellular homeostasis[1-3]. The 
ubiquitin-proteasome system (UPS) and the autophagy-
lysosome pathway (ALP) are major systems present 
in almost all cell types to mediate the degradation of 
intracellular proteins into their constitutive amino-acids[4, 5]. 
The UPS is a multi-subunit protease complex that degrades 
proteins tagged with one or more covalently-bound ubiquitin 
molecules, and most proteasome substrates are proteins 
with a short half-life[6, 7].

In contrast to the UPS, the ALP is mainly responsible 
for the degradation of long-lived proteins and organelles. 
On the basis of the mechanism used for delivery of 
intracellular cargoes to lysosomes, autophagy can 
be divided into three types: macroautophagy (MA), 
microautophagy, and chaperone-mediated autophagy 

(CMA)[8, 9]. Both CMA and MA have been identified in 
mammals as processes important for damage and diseases 
of the central nervous system[10]. MA is a bulk degradation 
system that involves the formation of a double-membrane 
structure (autophagosome) that sequesters damaged 
organelles and proteins. The autophagosome acquires 
the hydrolytic enzymes necessary to degrade its cargo by 
fusing with lysosomes[11]. Microautophagy traps nonspecifi c 
cytoplasm inside vesicles via direct invagination of the 
lysosomal membrane. These vesicles “pinch off” into the 
lumen and are degraded by lysosomal hydrolases[12]. 

CMA is the third type of autophagy, and has so far 
been found only in mammalian cells[13, 14]. One of its intrinsic 
features is the selective targeting and direct translocation 
into the lysosomal lumen of substrate proteins containing 
a targeting motif related to the pentapeptide KFERQ[15, 16]. This 
selectivity allows for the removal of misfolded, oxidized, 
or damaged cytosolic proteins under physiological or 
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pathological conditions without perturbing normally-
functioning forms of the same proteins[17-19]. CMA potentially 
regulates multiple cellular processes by the selective 
removal of inhibitors of transcription, enzymes, and cell-
maintenance proteins[17, 20].

In this review, we first briefly summarize the main 
mechanisms of CMA under physiological conditions and 
then discuss its roles in neuroprotection and the therapeutic 
potential of targeting this pathway for the treatment of brain 
diseases.

Molecular Mechanisms of CMA

CMA is a complex process that can be divided into four 
distinct steps: (1) binding of substrates to the chaperone 
protein Hsc70 and targeting to lysosomes; (2) binding of 
substrates to the lysosomal receptor LAMP2A (lysosome-
associated membrane protein type 2A) and unfolding; (3) 
substrate translocation into lysosomes; and (4) substrate 
degradation by hydrolytic enzymes in the lysosomal 
lumen[21]. 

During the first step, CMA substrates containing 
the pentapeptide motif KFERQ bind to the constitutive 
chaperone Hsc 70 in the cytosol [22-24].  Many other 
chaperones are also involved in this process, such as 
Hsp40, Hsp90, and Hip[25-27]. Although amino-acid sequence 
analysis shows that almost 30% of cytosolic proteins 
contain a KFERQ-like sequence, only a few have been 
experimentally confirmed to be degraded through this 
process[28]. Some characteristics associated with this motif 
are notable: (1) the CMA motif is based on the charge of the 
amino-acids; (2) post-translational modifications such as 
phosphorylation and acetylation can change the amino-acid 
charge and enable them to acquire a more effective motif 
recognizable by the CMA process[24, 29]; and (3) alternatively, 
a string of imperfect and overlapping motifs can also 
serve to mediate the CMA process[30]. Thus, containing a 
functioning KFERQ-like motif is the fi rst requirement for a 
protein to be considered as a possible CMA substrate. The 
‘gold standard’ to validate a protein as a CMA substrate is 
the lysosomal binding and uptake assay.

During the second step, the Hsc70-co-chaperone/
substrate complex translates to the lysosomal membrane 
and binds to the cytosolic tail of LAMP2A[31]. The levels and 

conformational status of LAMP2A are critical for the CMA 
process, and this is a rate-limiting step for the process. 
LAMP2A exists as a monomer at the lysosomal membrane 
and forms a multimeric complex in association with other 
proteins[26]. CMA substrates first bind to monomeric 
LAMP2A present at the lysosomal membrane and this 
interaction drives LAMP2A multimerization to produce a 
700-kDa complex required for the translocation of substrate 
into the lysosome. Once substrate proteins translate 
into the lysosomal lumen, lysosomal Hsc70 (lys-Hsc70) 
promotes disassembly of the LAMP2A multimerization 
complex to enable monomeric LAMP2A to bind to other 
substrates[26]. A portion of the LAMP2A may be transported 
into the lysosomal lumen and degraded by cathepsin 
A[32]. Many factors participate in regulating the assembly/
disassembly of the LAMP2A multimerization complex, such 
as changes in the fluidity of the lysosomal membrane or 
protein and lipid composition[33]. GFAP and EF1-alpha have 
been shown to regulate the assembly/disassembly of the 
LAMP2A multimerization complex[34].

Translocation of substrate proteins into the lysosomal 
lumen requires lys-Hsc70[25]. The mechanisms by which lys-
Hsc70 contributes to translocation remain to be elucidated. 
It may function by pulling  substrate proteins or may 
immobilize them to prevent their return to the cytosol. The 
stability of lysosomal Hsc70 is regulated by lysosomal pH 
and small increases in pH are suffi cient to exacerbate its 
degradation[35]. However, the mechanisms by which Hsc70 
translates to lysosome remain largely unknown.

Although the molecular mechanisms by which CMA is 
modulated are poorly understood, CMA activity is closely 
associated with the levels of LAMP2A at the lysosomal 
membrane, and modulation of the LAMP2A content by 
cells can rapidly change the activity of this pathway[31]. The 
synthesis/degradation of LAMP2A and its redistribution 
from the lysosomal lumen to the lysosomal membrane all 
contribute to its levels at the membrane. In addition, lipid 
microdomains and cathepsin A play an important role in 
regulating the levels of this protein[32]. Previous studies have 
shown that lys-Hsc70 is a limiting factor in the modulation 
of CMA[35, 36]. Without lys-Hsc70, substrate protein cannot 
be translocated into the lysosomal lumen, and the level of 
lys-Hsc70 increases gradually with upregulation of CMA 
activity.
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Physiological Role of CMA

As one of the cellular quality-control systems, CMA was 
first proposed to participate in amino-acid recycling[37]. 
When cells or animals are exposed to serum deprivation 
or prolonged starvation, CMA is maximally activated due 
in part to increased LAMP2A transcription, decreased 
LAMP2A clearance, or increased levels of lys-Hsc70. 
Although removal of serum from cell cultures or prolonged 
starvation in animals can activate both MA and CMA, the 
kinetics of these reactions appears to be different. MA is 
maximally activated shortly after these treatments (~4–6 h) 
and persists for a short period of time. However, CMA is 
activated later (~8–10 h) and persists much longer[37]. The 
selectivity of CMA may promote cellular survival under 
serum deprivation or prolonged starvation by maintaining 
essential proteins and removing non-essential proteins, 
such as glycolytic enzymes and inhibitors of transcription 
factors containing a KFERQ-like motif in their amino-acid 
sequences[38].

In addition, CMA contributes to the selective removal 
of aberrant or damaged proteins in order to maintain 
cellular homeostasis. Under oxidative stress, up-regulation 
of CMA promotes the degradation of oxidatively-damaged 
proteins[39]. In support of this idea, CMA increases under 
oxidative stress or exposure to toxic compounds[40]. 
Inhibition of CMA signifi cantly exacerbates the accumulation 
of oxidatively-damaged proteins and decreases cell 
viability[40]. Furthermore, CMA can specifically remove 
the damaged subunits of cytosolic protein complexes[41]. 
Recent studies have shown that hypoxia induces CMA, 
and up-regulation of CMA effectively protects cells from 
hypoxia-induced cell death[42]. Although the mechanisms 
remain poorly understood, CMA may directly target 
hypoxia-inducible factor 1[43]. Recent studies have shown 
that CMA regulates tubular cell growth by modulating the 
degradation of the transcription factor Pax2[44]. Furthermore, 
CMA is involved in the immune response. Previous studies 
showed that only MA and UPS participate in processing 
antigens. However, recent studies have revealed that CMA 
is involved in antigen processing and presentation. The 
levels of autoantigen presentation are closely related to 
CMA activity[45-47].

As the two major proteolytic systems mediating the 
degradation of intracellular proteins[48, 49], the ALP and 

the UPS are not isolated and independent but tightly 
coordinated. CMA may affect the UPS and the other two 
autophagic pathways, and the UPS and the other two 
autophagic pathways can also modulate CMA activity. 
When MA and the UPS are reduced, CMA is usually 
activated[50]. Conversely, reducing CMA contributes to 
remarkable up-regulation of MA[19]. 

CMA and Neuroprotection

Because neurons are postmitotic, they are especially 
sensitive to homeostatic changes. CMA plays an important 
role in maintaining cellular homeostasis. Recent studies 
have shown that the key components of CMA, LAMP2A 
and Hsc70, are robustly expressed in the CNS[51, 52]; CMA is 
involved in the regulation of neuronal survival[30]; and CMA 
dysfunction has been linked to the pathogenic processes of 
several human disorders[21].
Parkinson’s Disease (PD)
PD is the second most common degenerative disease, 
characterized by the specifi c loss of dopaminergic neurons 
in the substantia nigra pars compacta[53]. Although the 
etiologies of PD remain elusive, protein dyshomeostasis 
is the critical mechanism responsible for the neuronal 
death and may be involved in the pathogenesis. Analysis 
of postmortem brain tissue from PD patients shows that 
the level of LAMP2A in the substantia nigra is lower than 
in controls[52]. Cuervo et al. reported a link between CMA 
and the protein α-synuclein, which is the key component 
of Lewy bodies and whose mutation and level changes are 
involved in the pathogenesis of PD[54]. They showed that the 
α-synuclein amino-acid sequence contains a KFERQ-like 
CMA-targeting motif and confi rmed it as a CMA substrate. 
They found that mutant forms of α-synuclein (A53T and 
A30P), which cause familial PD, are defective in their 
uptake by lysosomes due to their tight binding to LAMP2A 
and cannot be efficiently degraded. Although the study 
showed how mutation of α-synuclein may contribute to the 
dysfunction of CMA, it did not identify a direct mechanism 
by which CMA dysfunction may lead to neuronal death.

We recently showed that CMA directly targets for 
removal of non-functional myocyte enhancer factor 2D 
(MEF2D), a factor critical for the survival of dopaminergic 
neurons. This is critical for maintaining the homeostasis 
of MEF2D under basal conditions[30, 55]. Overexpression of 
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wild-type or disease-causing mutant α-synuclein in cells 
leads to an inhibition of its degradation by CMA. The levels 
of both MEF2D and α-synuclein are higher in the neuronal 
cytoplasm in the brains of PD patients than in controls[30, 55]. 
Thus, dysregulation of MEF2D homeostasis by CMA is a 
feature of PD. We tested the function of MEF2D that had 
accumulated in the cytoplasm due to defective CMA and 
found that the accumulated MEF2D had a much lower 
DNA-binding activity than controls[30]. Since increased 
MEF2D in the nucleus attenuates α-synuclein-induced 
cellular toxicity, our fi ndings established a direct relationship 
between CMA and the nuclear survival machinery, 
indicating that its disruption may underlie the toxic effects 
of both wild-type and mutated α-synuclein.

Since increased oxidative stress has been proposed 
to play a critical role in the pathogenesis of PD, we further 
investigated its role in the CMA-mediated maintenance of 
MEF2D homeostasis. Our results showed that oxidative 
stress leads to direct oxidative modifi cation of MEF2D and 
a significant decrease in its level[40]. This decrease is in 
part due to the accelerated removal of oxidized MEF2D 
by CMA. Consistently, the levels of oxidized MEF2D are 
much higher in the postmortem PD brain than in controls, 
consistent with the notion that reduced CMA in PD leads 
to the accumulation of damaged MEF2D, disrupting its 
homeostasis and function. 

A recent investigation of leucine-rich repeat kinase 2 
(LRRK2), mutation of which is linked to PD, showed that it 
is a CMA substrate[56]. LRRK2 G2019S, the most common 
mutant form, is poorly degraded by this pathway. Lysosomal 
binding of both wild-type and several pathogenic mutant 
LRRK2 proteins is enhanced in the presence of other CMA 
substrates, which may interfere with the organization of the 
CMA translocation complex, resulting in defective CMA. 
Similarly, ubiquitin C-terminal hydrolase L1 (UCH-L1), 
mutation of which is linked to familial PD, is degraded by 
CMA[57, 58]. It has been shown that the PD-related mutant 
UCH-L1 I93M binds much more tightly to Hsc70/hsp90 and 
LAMP2A present at the lysosomal membrane than the wild-
type protein. Therefore, it may block CMA via mechanisms 
similar to those proposed for α-synuclein or LRRK2.

Alzheimer’s Disease (AD)
AD is the most common neurodegenerative disease and 
is closely associated with aging. CMA gradually decreases 

with physiological aging. Previous studies have shown that 
dyshomeostases of intracellular proteins are critical factors 
in the pathogenesis of AD, one of which is abnormal tau 
metabolism[59]. Tau pathology in AD is characterized by its 
aggregation and cleavage[60]. How tau protein is degraded 
remains controversial. Wang et al. showed that CMA 
contributes to tau fragmentation into pro-aggregating forms 
and to the clearance of tau aggregates[61]. TauRDDK280 and 
its F1 fragment interact with the cytosolic chaperone Hsc70 
and with the CMA receptor LAMP2A. Unlike typical CMA 
substrate proteins, these forms of tau are not translocated 
into lysosomes by CMA. Instead, they aggregate on the 
outer membrane of lysosomes, leading to the disruption of 
lysosomal membrane integrity and blockade of other CMA 
substrates.

Huntington’s Disease (HD)
HD is caused by polyQ repeat expansion of huntingtin (Htt)[62]. 
The accumulation of aggregated mutant Htt protein in 
the affected neurons is its hallmark[63]. Clarifying the 
mechanisms that infl uence the cellular degradation of Htt 
may help to understand the pathology of the disease and 
identify a cure. However, the mechanisms by which Htt is 
degraded remain largely unknown. Several studies have 
demonstrated that MA regulates the degradation of Htt and 
an increase in MA activity may protect neurons[64]. Recent 
studies have shown that CMA may also be involved in 
Htt degradation[65, 66]. When post-translationally modified 
by phosphorylation/ubiquitination/SUMOylation and 
acetylation, Htt may bind to Hsc70 and LAMP2A with higher 
affi nity[24]. Consistent with the involvement of CMA in HD, 
the activity of this pathway appears to increase in mouse 
models of HD. 

Therapeutic Perspectives

Dyshomeostasis of proteins may be the cause of many 
diseases. A decrease in CMA plays an important role 
in the dyshomeostasis of various proteins. Therefore, 
restoration of CMA activity may be a strategy for treating 
many diseases, especially neurodegenerative diseases. 
Combinations of different types of approaches, including 
genetic methods and CMA-modulating drugs, have 
succee ded in slowing down the neurodegeneration in 
mouse models of HD and PD. It has been reported that 
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retinoic acid receptor alpha (RARα) negatively regulates 
CMA activity, and inhibition of RARα with synthetic 
derivatives of all-trans retinoic acid can specifi cally activate 
CMA. Activation of CMA by RARα can protect cells from 
oxidative stress and proteotoxicity[67].

Conclusions

CMA is an important proteolytic pathway characterized by 
selectivity and direct translocation of substrate proteins 
across the lysosomal membrane. It is critical for maintaining 
cellular homeostasis and for many different aspects of 
cell physiology, especially in the central nervous system. 
The roles of CMA in the physiological functions of neurons 
and in the pathogenesis of neurodegenerative diseases 
are largely unknown. Further investigation of its functions 
should help understand the pathogenic mechanisms 
underlying these diseases. Since a decrease in CMA 
is associated with many neurodegenerative diseases 
of aging, increasing CMA by various means should be 
explored as a treatment strategy.
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