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Major depressive disorder (MDD) is a complicated multifactorial induced disease, characterized by 
depressed mood, anhedonia, fatigue, and altered cognitive function. Recently,   many studies have shown 
that antidepressants regulate autophagy. In fact, autophagy, a conserved lysosomal degradation pathway, 
is essential for the central nervous system. Dysregulation of autophagic pathways, such as the mammalian 
target of rapamycin (mTOR) signaling pathway and the beclin pathway,   has been studied in neurodegenerative 
diseases. However, autophagy in MDD has not been fully studied. Here, we discuss whether the dysregulation 
of autophagy contributes to the pathophysiology and treatment of MDD and summarize the current evidence 
that shows the involvement of autophagy in MDD.
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Introduction

Major depressive disorder (MDD) is a prevalent, 
heterogeneous illness characterized by depressed mood, 
anhedonia, low energy or fatigue, and altered cognitive 
function. Other symptoms, such as sleep and psychomotor 
disturbances, feelings of guilt, low self-esteem, suicidal 
tendencies, as well as autonomic and gastrointestinal 
disturbances, are also often present[1, 2]. If left untreated, 
it can be fatal. The lifetime prevalence of MDD is ~17% of 
the population and results in tremendous secondary costs 
to society[3, 4]. The ‘gold standard’ for depression treatment 
involves a combination of psychotherapy and medication. 
Unfortunately, current anti-depressant medications do 
not help everyone, and both normally take a number of 
weeks of regular treatment before they begin to have an 
effect[5]. Diagnosis of MDD is based on relatively subjective 
assessments of diverse symptoms representing multiple 

endo-phenotypes[6]. And most current treatments are 
based on monoamine neurochemical alterations in MDD[7]. 
Therefore, knowledge of the mechanism of MDD will 
help the development of effective treatment. As currently 
known, MDD is a complicated multifactorial induced 
disease associated with both genetic and environmental 
factors, and the detailed molecular mechanisms underlying 
the pathogenesis remain difficult to elucidate. The 
pathophysiology of MDD involves complex signaling 
networks[8], including alterations of cytokines, monoamine-
defi ciency in the central nervous system, and dysfunction 
of the glutamate system. Moreover, MDD is most often 
related to disturbed neurogenesis, structural and functional 
alterations of several limbic and cortical regions[9]. It is also 
proposed that dysfunction of synaptic plasticity is a basis of 
the etiology of MDD[10, 11]. Furthermore, postmortem brain 
tissues from MDD patients also display increased apoptotic 
stress and apoptosis-related factors[12, 13]. Recent studies 
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indicate that neuronal autophagic signaling pathways are 
also involved in MDD.

Autophagy is important for most cells in various 
tissues including the central nervous system; it is 
sensitive to the accumulation of toxic proteins/damaged 
organelles[14]. Therefore, alteration of autophagy during 
neurodevelopment and synaptic plasticity might cause 
abnormal development and synaptic malfunction. In 
addition, impairment of autophagy pathways may lead to 
the accumulation of pathogenic proteins and damaged 
organelles, which may finally result in neurological 
disorders, such as Alzheimer’s disease (AD), Parkinson’s 
disease (PD), and Huntington’s disease (HD)[15, 16]. 
Recently, many antidepressants were found to be involved 
in the neuronal autophagy signaling pathway. The co-
chaperone FKBP5/FKBP51 (FK506 binding protein 5) 
acting as an antidepressant plays a role in autophagy[17]. 
These fi ndings suggest that neuronal autophagy signaling 
pathways play an important role in MDD, so this review 
focuses on neuronal autophagy that is involved in MDD 
and is affected by antidepressants. 

Neuronal Autophagy Dysregulation in Neur o-

degenerative Diseases

Basal Autophagy May Be Benefi cial and Required 
for Normal Function of Neurons
Autophagy is extremely important in maintaining cellular 
homeostasis, which requires the continuous turnover 
of nonfunctional proteins and organelles[18]. Neurons 
are highly postmitotic, with specialized structures for 
intercellular communication. Therefore, neuronal integrity is 
more sensitive to alterations in basal autophagy than that 
of non-neurons[14]. Recent findings show that autophagy 
in neurons is indeed constitutively active, and that 
autophagosomes accumulate rapidly when their clearance 
is blocked[19, 20]. 

Many studies have shown that autophagy protects 
neurons under stress conditions. Jeong et al. showed that 
sirtu in 1 (SIRT1) overexpression prevents prion peptide 
neurotoxicity by inducing autophagy, while preventing 
autophagy by knock-down of autop  hagy-related 5 (Atg5) 
abolishes SIRT1-induced neuroprotection[21]. Shen et 
al. discovered that neuroautophagy positively regulates 

synaptic development, and overexpression of Atg1, a key 
regulator of autophagy, is sufficient to induce high levels 
of autophagy and subsequent enhancement of synaptic 
growth. In contrast, reducing autophagy results in the 
reduction of synapse size[22]. Moreover, the autophagosomal 
marker LC3-II and Akt and mamma lian target of rapamycin 
(mTOR) dephosphorylation have a time-course coincident 
with degradation of the α-ami  no-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptor GluR1 in neurons, which 
indicates that autophagy is a positive regulator of N-methyl-
D-aspartate receptor (NMDAR)-dependent synaptic 
plasticity[23]. Neuronal autophagy may play important roles 
in the structural refinement of neurite growth, neuronal 
differentiation, synaptic growth, or synaptic plasticity, which 
ensures the formation of appropriate neuronal connections 
and their functions[24, 25]. 
Aberrant Autophagy Leads to Neurodegenerative 
Diseases, Including Depression
Dysregulation of autophagy might cause a cellular traffi c-
jam during neuronal development and synaptic plasticity, 
leading to neurodevelopmental disorders; it also might lead 
to the accumulation of misfolded protein aggregates and 
damaged organelles, leading to neuronal dysfunction and 
even death. Disruption of autophagy after spinal cord injury 
may contribute to endoplasmic reticulum-stress-induced 
neuronal apoptosis[26]. Neuron-specifi c knockout of the key 
autophagic gene Atg5 or Atg7 leads to accumulation of 
intracellular protein aggregates and neuronal death[19, 20]. 

Autophagy-lysosome defects occur early in the 
pathogenesis of AD and have been proposed to be a 
signifi cant contributor to the disease process[27]. Nixon et al. 
provided evidence from electron microscopy that autophagy 
is extensively involved in the neurodegenerative process in 
AD[28]. And the transport of autophagic vacuoles and their 
maturation to lysosomes might be impaired in AD[29]. 

Autophagy of mitochondria can be regulated by 
parkin, PINK1 and DJ-1, and importantly, mutations in 
these proteins are thought to cause familial PD[30]. Xilouri 
et al. showed that α-synuclein, a major constituent of Lewy 
bodies, is degraded by autophagy in PD[31]. And recently, 
researchers have established an essential link between 
mitochondrial autophagy impairment and dopamine neuron 
degeneration in an in vivo model based on genetic deletion 
of either parkin or PINK1 (known PD genes)[32].
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An autophagy defect has also been suggested by 
genetic studies of amyotrophic lateral sclerosis (ALS) 
and frontotemporal lobe dementia (FTD). For instance, 
mutations in UBQLN 2 and SQSTM1/p62 have been 
reported in ALS and FTD[33-35]. In fact, UBQLNs are present 
in autophagosomes and bind LC3 in a complex while 
SQSTM1/p62 binds ubiquitinated proteins and LC3[36, 37]. 
Besides, evidence of direct alteration of the autophagic 
pathway, bypassing mTOR modulation has been shown 
in epileptogenesis[38]. As for depression, increased 
autophagosomal marker LC3-II has been reported in a 
cellular model of chemically-induced long-term depression 
(LTD)[18]. 

Interestingly, in the parkinsonian mimetic 6-hydroxy-
dopamine (6-OHDA) model, the 6-OHDA-induced apoptosis 
is prevented by treatment with the early-phase inhibitor of 
autophagy, 3-methyladenine, but the late-phase inhibitor 
of autophagy, bafi lomycin A1, aggravates this apoptosis[39]. 
In fact, most evidence points to autophagy as a protective 
process in neurons, but other studies also provide genetic 
and cellular evidence that otherwise argues for a role of 
autophagy in promoting neuronal death[40]. Autophagy might 
show a Janus face, too much or not enough would lead to 
disorders like neurodegenerative diseases[41]. 

  Autophagy-Related Pathways in Depression
Dysregulation of the autophagic pathway in neurons 
may result in depression[42]. Autophagy is regulated by 
intracellular and extracellular signals via at least three 
pathways: (1) The mTOR-dependent pathway: the Atg1/
unc-51-like kinase complex acts downstream of mTOR 
complex 1 (mTORC1); (2) the PI3K/beclin1 pathway; and (3) 
the Ca2+ pathway[43]. mTORC1 integrates nutrients, energy, 
growth factors, and amino-acid signaling; once activated, 
mTORC1 inhibits autophagy by acting on the Atg1 
kinase complex, while the beclin complex positively regulates 
autophagy[44, 45]. It is now well established that Ca2+ is a 
regulator of autophagy, while it is still unclear whether Ca2+ 
is a positive or a negative regulator[46].

The PI3K-Akt-mTOR pathway is related to depression[47]. 
Decreased AKT1/mTOR mRNA expression has been 
reported in short-term bipolar disorder[48]. A recent study 
showed that neuronal stimulation induces NMDAR-
dependent autophagy through the PI3K-Akt-mTOR pathway 

in   a cellular model of LTD[25]. Simultaneously,   metabotropic 
glutamate receptor (mGluR) activation results in increased 
PI3K-mTOR signaling and activation of protein synthesis 
near synapses in a mouse model of LTD[25]. And inhibition 
of protein synthesis or mTOR signaling blocks mGluR-
dependent LTD[49]. In fact,  mTOR signaling lies at the 
crossroads of multiple signals involved in protein synthesis 
and impairment of autophagy during neurodegeneration[50, 51]. 
Activation of mTOR has been functionally linked with local 
protein synthesis in synapses, resulting in the production of 
proteins required for the formation, maturation, and function 
of new spine synapses[50]. In the meantime, mTORC1 
inhibits autophagy, an essential protein-degradation and 
recycling system[52]; for example, PI3K-Akt-mTOR is 
associated with autophagy impairment and is impaired in 
mild cognitive impairment and AD[53]. mTOR regulates both 
neuroprotective (via autophagy) and neuroregenerative 
(via protein synthesis) functions in various diseases of the 
central nervous system[42]. 

Brain-derived neurotrophic factor (BDNF) plays an 
essential role in neuronal plasticity, and downregulation of 
its expression/function is reproduced in a variety of animal 
models of MDD[54]. Indeed, the neuroprotective effect of 
BDNF not only prevents apoptosis by inhibiting caspase 
activation but also promotes neuron survival through 
modulation of autophagy[55]. And BDNF can be mediated by 
autophagy through the PI3K-Akt-mTOR pathway[56]. These 
results also suggest that autophagy plays an important role 
in MDD.

In addition, Cummings et al. showed that the minimal 
requirements for inducing LTD involve simply a transient 
infl ux of Ca2+ into the postsynaptic cell via either NMDARs 
or voltage-dependent Ca2+ channels[57]. 

We assume that cellular stress in the form of reactive 
oxygen species or other factors causes proteins to misfold 
and aggregate. Under normal conditions, this would in turn 
diminish or overwhelm degradation via the autophagy or 
ubiquitin–proteasome system. However, with autophagy 
impairment, cells would be unable to clear aggregates 
and damaged organelles. And additional mitochondrial 
dysfunction, excitotoxicity, and pore formation lead to 
increased intracellular Ca2+ levels, ultimately resulting 
in necrosis and apoptosis[58]. But  excessive autophagy 
also induces apoptosis[59]. In fact, injury and a  poptosis of 
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hippocampal tissue is the reason for MDD[60]. From this 
point of view, autophagy would be an accomplice of MDD 
(Fig. 1).

Antidepressants and Autophagy
Beyond their impact on monoaminergic neurotransmission, 
recent reports have evidenced that many antidepressants 
affect autophagy pathways in the process of anti-
depression[17, 61]. Several studies have demonstrated that 
cellular autophagy markers are upregulated upon treatment 
with antidepressants[62]. Many antidepressants like 
sertraline activate mTOR. However, antidepressant activity 
of rapamycin (an mTOR inhibitor) has also been reported in 
an animal model[63]. Moreover, autophagic markers, such as 
beclin1, are increased following antidepressant treatment in 
mouse brain[64]. Autophagy might be a double-edged sword 
in MDD, which may be the reason why some MDD patients 
remain resistant to certain antidepressant medications. 
Antidepressants Affect the Autophagic Pathway
The antidepressant drug amitriptyline (AMI) and the 

selective serotonin re-uptake inhibitor citalopram (CIT) 
have been reported to increase the expression of the 
autophagic markers LC3-II and beclin1, but venlafaxine 
fails to exert these effects[65]. AMI- and CIT-induced 
autophagy is functional in terms of autophagic fl ux, and is 
partially mediated by class III PI3K- and ROS-dependent 
pathways[62]. FKBP51 can synergize with antidepressants 
by binding beclin1, changing its phosphorylation and 
enhancing markers of autophagy and autophagic flux 
as well as triggering autophagic pathways[17]. Chronic 
paroxetine treatment of a depression-relevant stress model 
revealed that the physiological effects of antidepressants 
on behavior and autophagic markers depend on FKBP51[64]. 
Trehalose may have antidepressant-like properties through 
its enhancement of autophagy[66].  Lithium, which has been 
used for several decades to treat manic-depressive illness 
(bipolar affective disorder), induces autophagy, thereby 
promoting the clearance of mutant huntingtin and alpha-
synucleins from experimental systems[67]. Thus some but 
not all antidepressants affect autophagy. 

Fig. 1. Possible involvement of autophagy in the pathogenesis of MDD.
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Autophagy  Is  a  Potent ia l  Mechanism of 
Antidepressant Action
Antidepressants are commonly used in the treatment 
of cancer patients with depression, and the underlying 
mechanisms are also related to inducing autophagy. 
Elevated levels of the autophagic protein beclin-1 and 
the cellular redistribution of the marker LC3 have been 
found in C6 glioma cells treated with the antidepressant 
desipramine (DMI), which induces autophagic cell death by 
the formation of autophagosomes[61]. Moreover, activation 
of the PI3K-AKT-mTOR pathway, which is considered to be 
a negative regulator of autophagy, is also inhibited by DMI. 
Furthermore, DMI activates PERK-eIF2α and ATF6 of the 
endoplasmic reticulum stress pathway to induce autophagy 
in C6 glioma cells[61]. As another example, the tricyclic 
antidepressant imipramine stimulates the progression of 
autophagy, and exerts antitumor effects on PTEN-null 
U-87MG human glioma cells by inhibiting PI3K-Akt-mTOR 
signaling and by inducing autophagic cell death[68]. The 
antidepressants maprotiline and fl uoxetine, which are novel 
pro-autophagic agents, induce autophagic programmed 
cell death (PCD) in the chemoresistant Burkitt's lymphoma 
(BL) cell line DG-75; this does not involve caspases, DNA 
fragmentation, or PARP cleavage, but is associated with the 
development of cytoplasmic vacuoles, all consistent with an 
autophagic mode of PCD[69]. Therefore, autophagy-initiating 
mechanisms should be considered as a pharmacological 
target to improve the treatment of depression.
Antidepressants and the mTOR-Dependent 
Signaling Pathway
The classic antidepressant drugs inhibit the PI3K-Akt-
mTOR signaling pathway[68]. Fluoxetine, an antidepressant 
that inhibits the reuptake of serotonin in the central 
nervous system, promotes neurogenesis and improves the 
survival rate of neurons. A further study suggested that the 
improvement of neuron survival is achieved by upregulated 
expression of the phosphorylated AKT protein, which is 
a key factor in the PI3K-Akt-mTOR signaling pathway[70]. 
Another study showed novel in vitro evidence that some 
antidepressant drugs promote dendritic outgrowth and 
increase synaptic protein levels through mTOR signaling[71]. 
Warren et al. demonstrated that administration of fl uoxetine 
in combination with methylphenidate induces mTOR activity 
in rats[72]. A rapid antidepressant and nonselective NMDAR 

antagonist, ketamine, activates the mTOR signaling 
pathway, leading to increased synaptic proteins in the rat 
prefrontal cortex[73]. 

In fact, most previous reports focused on the 
mTOR synaptogenesis by antidepressants[74]. Probably, 
neuronal autophagy-related mTOR signaling pathways 
could also explain the mechanism of antidepressant 
function, for mTOR signaling is at the crossroads 
between protein synthesis and impairment of autophagy 
in neurodegeneration[50, 51]. However, more studies are 
defi nitely needed.
  Antidepressants and the mTOR-Independent 
Pathway
Besides, some antidepressant drugs seem to act via an 
mTOR-independent pathway to affect autophagy. For 
example,  autophagy triggered by AMI and CIT is partially 
mediated by beclin pathways since 3-methyladenine 
slightly diminishes the effects of AMI. The antidepressant 
maprotiline has been shown to inhibit dendritic γ-amino-
butyric acid- and NMDA-induced increases in Ca2+ in primary 
cultured rat cortical neurons[75] and in human prostate 
cancer cells[76]. Further, calcium channel blockade affects 
the processes related to antidepressant-induced changes in 
the crosstalk between α1- and β-adrenergic receptors[77]. In 
fact, it is now well established that intracellular Ca2+ is one of 
the regulators of autophagy[46]. All these results showed that 
many antidepressants are involved in autophagy via diverse 
pathways to synergize with antidepressant action. However, 
more detailed studies are needed to characterize the 
autophagic pathways in depression and their participation in 
antidepressant mechanisms[42].

Conclusion
In summary, MDD is one of the most prevalent debilitating 
public health problems worldwide. The current review 
summarized and discussed the possible involvement 
of neuronal autophagy in MDD. Although the molecular 
mechanisms underlying MDD are still largely unclear, 
we proposed that neuronal autophagy signaling network 
is also implicated in the pathogenesis of MDD and the 
mechanisms of some antidepressant actions. Further 
understanding of neuronal autophagy regulation in MDD is 
expected to contribute to the development of therapeutic 
interventions in MDD.
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