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Abstract Neuroinflammatory processes are a central fea-

ture of Alzheimer’s disease (AD) in which microglia are

over-activated, resulting in the increased production of pro-

inflammatory cytokines. Moreover, deficiencies in the anti-

inflammatory system may also contribute to neuroinflam-

mation. Recently, advanced methods for the analysis of

genetic polymorphisms have further supported the rela-

tionship between neuroinflammatory factors and AD risk

because a series of polymorphisms in inflammation-related

genes have been shown to be associated with AD. In this

review, we summarize the polymorphisms of both pro- and

anti-inflammatory cytokines related to AD, primarily

interleukin-1 (IL-1), IL-6, tumor necrosis factor alpha, IL-

4, IL-10, and transforming growth factor beta, as well as

their functional activity in AD pathology. Exploration of

the relationship between inflammatory cytokine polymor-

phisms and AD risk may facilitate our understanding of

AD pathogenesis and contribute to improved treatment

strategies.
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Introduction

Alzheimer’s disease (AD) is a common neurodegenerative

disease characterized by progressive declines in cognitive

and functional abilities. Amyloid-beta (Ab) plaques and

neurofibrillary tangles (NFTs) are its main pathological

hallmarks.Ab aggregates seem to initiate the pathogenesis of

AD,while NFTsmay bemore involved in its progression [1].

However, the exact mechanisms by which AD occurs and

develops remain ill-defined, and effective methods to cure

the disease or halt the associated cognitive decline remain

undiscovered. Nevertheless, neuroinflammation and oxida-

tive stress have received increasing attention as accumulat-

ing evidence suggests their involvement in its development

[2, 3]. Activation of microglia, the brain-specific macro-

phages, has been reported in both AD patients and animal

models [4], accompanied by an activated complement sys-

tem [5] and increased levels of chemokines and cytokines

[6, 7]. In addition, the protective effects of non-steroidal anti-

inflammatory drugs against AD risk [8] further support the

neuroinflammation hypothesis of AD.

Moreover, AD is amultifactorial diseasewith a hereditary

component, and advanced technologies for the analysis of

genetic polymorphisms have identified numerous genetic

loci that affect AD. Recent genome-wide association studies

(GWASs) strongly support the interaction of inflammation

and AD because several inflammation-related genes, such as

CR1 (complement receptor 1), MS4A (membrane-spanning

4-domains subfamily A), TREM2 (triggering receptor

expressed on myeloid cells 2), and CD33 [9], have been

identified as AD risk modifiers in Caucasians. The associa-

tion has been further supported in other populations. For

instance, variants of immune-related genes, including com-

plement factor H [10],MS4A [11], CR1 [12], and CD33 [13]

are associated with AD susceptibility in Han Chinese.
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Moreover, based on the findings that the levels of cytokines

are altered in AD patients and that cytokines are key com-

ponents of neuroinflammation, numerous case-control

studies have explored the association between AD risk and

genetic polymorphisms of inflammatory cytokines, primar-

ily interleukin-1 (IL-1), IL-4, IL-6, IL-10, tumor necrosis

factor alpha (TNFa), and transforming growth factor beta

(TGFb).However, the results have been inconsistent. Thus, a
series ofmeta-analyses was conducted, and conclusionswith

high reliability were obtained. However, because genetic

polymorphism analyses are increasingly used in different

populations, the data in this field are continually updated.

Accordingly, in the current review, we comprehensively

summarize the key genetic polymorphisms of inflamma-

tory cytokines associated with AD, including the latest

evidence (summarized in Table 1). In addition, progress in

the exploration of the functional activity of these poly-

morphisms and the mechanisms by which they modify AD

susceptibility are illustrated.

Pro-inflammatory Cytokines

IL-1

Increased expression of IL-1 has been reported in AD

brains [48]. Subsequent investigations suggest that the

overexpressed IL-1 restrains the function of cholinergic

systems [49] and favors the formation of Ab plaques and

accumulation of NFTs [50, 51], supporting the important

role of IL-1 in AD development. This concept has been

further supported by gene association analysis, as several

variants located in the genes of IL-1A and IL-1B have been

found to influence AD risk.

The relationship between AD risk and the IL1A-889 C/T

polymorphism has been tested in numerous experiments that

include different ethnic groups from different regions, and

the results vary because a polymorphism in the 5’ regulatory

region was shown to either increase the AD risk [52, 53] or

failed to influence it [54, 55]. Two recentmeta-analyses have

consistently found significant associations in Caucasians but

not in Asians [14, 15]. Hayes and colleagues showed that

microglial activation is greater in the brains of AD patients

with the T allele, particularly those with the apolipoprotein E

(APOE) e4 allele [16]. Moreover, the functional significance

of this polymorphism may be attributable to its promotional

effect on IL1A gene transcription and IL-1a protein synthe-

sis, as has been shown in both a human pancreatic tumor cell

line and an astrocyte cell line [56, 57]. Overall, the T allele of

IL1A -889 C/T diminishes AD progression via the promo-

tion of microglial activation and an increase of IL1A gene

transcription, causing overexpression of pro-inflammatory

cytokines, which can facilitate neuroinflammatory processes

and AD pathology. However, the causes of the differing

results in Caucasians and Asians remain unclear. Further-

more and paradoxically, patients who are homozygous for

the C allele exhibit an accelerated rate of cognitive decline

[58]. Therefore, further work, especially in vivo investiga-

tions, are needed to explore the mechanisms by which this

polymorphism influences AD-related phenotypes.

Several polymorphisms of the IL1B gene have been sug-

gested to increase AD risk [59, 60], while negative associa-

tions are also frequently reported. Meta-analysis by Di Bona

et al. [18] revealed that the IL1B ?3953 TT genotype is

associated with an increased AD risk and that the IL1B-511

TT genotypemight be a risk factor for ADonly in Caucasians,

supporting an association between IL1B genetic polymor-

phisms and AD. However, according to the latest meta-

analysis, the IL1B -511 single nucleotide polymorphism

(SNP) has no significant relationship with overall AD risk

while the CC genotype is a risk factor for AD in non-Euro-

peans [17]. The inconsistency concerning IL1B -511 par-

tially results from the inclusion criteria that involve subgroup

analysis, because a significant effect could be obtained only

when the investigators analyzed the four studies of Cau-

casians with the highest statistical power [18]. Thus, studies

with larger sample sizes are needed to confirm or refute these

conclusions. The significance of the IL1B-511 SNP is under

investigation, and the findings that monocytes from healthy

carriers of the T allele and lymphocytes from patients with

epilepsy carrying the T allele have a slight but non-significant

elevated capacity to produce IL-1b in vitro [61, 62], indi-

cating that the SNP in the promoter region may have a pro-

motional effect on IL-1b production. In addition, IL1B-511

may influence IL-1b in coordination with other genetic loci,

such as IL1B ?3953, as suggested by Santtila et al [62].

Furthermore, the findings that the IL1B -511 T allele is

related to both increased Ab42 in the cerebrospinal fluid

(CSF) and decreased homocysteine in the plasma suggest that

this SNP is associated with AD risk factors other than neu-

roinflammation [19, 20]. Regarding IL1B?3953, ADpatients

carrying the T allele have a significantly earlier onset, par-

ticularly those who carry the IL1A -889 TT genotype [21].

However, the T allele is also associated with a delayed age at

AD onset in patients without the APOE e4 allele and is

accompanied by reduced amyloid plaques and NFTs [22].

These findings suggest that gene-gene interactions are

involved in AD progression, and analyses of haplotypes

should be considered in further studies. Similarly, Payão et al.

suggested that the haplotypes of IL1B -511C, IL1B -31T,

and an IL1 receptor antagonist (VNTR2) have protective

effects against AD [63]. Moreover, the IL1B -31 TT geno-

type seems to be a risk factor for AD in Caucasians [23], but

fails to influence the risk in the Chinese population [64];

therefore, additional studies with larger populations are nee-

ded to confirm or deny this association.
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IL-6

Associations between AD and IL-6 have also been identi-

fied, as AD patients show increased IL-6 expression in both

the periphery [65] and the CNS [66]. An in vitro study

suggested that overexpressed IL-6 influences the cdk5/p53

pathway to induce the phosphorylation of tau, increasing

the AD risk [67]. Regarding genetic polymorphisms of the

IL-6 gene, the protective role of IL-6 -174 in AD devel-

opment has been highlighted [68, 69]. However, inconsis-

tent results have also been reported [70]. Several meta-

analyses have suggested that the CC genotype is likely a

protective factor for AD [24, 71]. Moreover, the latest

study involving 1,246 individuals in Italy revealed that the

frequency of the GG genotype in AD patients is signifi-

cantly higher than that in controls [23]. This finding further

Table 1 Genetic polymorphisms of cytokines associated with AD.

Gene Variant rs number Functional consequence Association with AD Ethnicity Key ref.

IL1A -889 C/T rs1800587 50 UTR variant Increased risk Caucasian [14, 15]

Increased microglial activity Caucasian [16]

IL1B -511C/T rs16944 Upstream variant Decreased risk Non-European [17]

Possible increased risk Caucasian [18]

Increased Ab42 in CSF German [19]

Decreased plasma homocysteine Italian [20]

?3953 C/T rs1143634 Synonymous codon Increased risk Caucasian [18]

Earlier onset Italian [21]

Delayed onset

Reduced NP

Reduced NFT

American Caucasian [22]

-31 T/C rs1143627 Upstream variant Decreased risk Italian [23]

IL-6 -174 G/C rs1800795 Intron variant Reduced risk Asian, Caucasian [23–25]

Increased IL-6 in blood and brain Italian [26]

-572 C/G rs1800796 Intron variant Reduced risk Han Chinese [27, 28]

TNFA -850 C/T rs1799724 Upstream variant Increased risk Australian Caucasian,

European

[29]

-308 G/A rs1800629 Upstream variant Increased risk East Asian [30]

Earlier onset Italian [31]

VEGF -2578 C/A rs699947 Upstream variant Increased risk in APOE e4 (-) Caucasian, Asian [32]

-1154 G/A rs1570360 Upstream variant Decreased risk in APOE e4 (-) Caucasian, Asian [32]

IL-18 -607 C/A rs1946518 Upstream variant Decreased risk Han Chinese, Italian Caucasian [33–35]

Decreased IL-18 production Italian Caucasian [35]

-137 G/C rs187238 Upstream variant Decreased risk Han Chinese [34]

Faster cognitive decline Italian Caucasia [33]

IL-33 rs7044343 rs7044343 Intron variant Decreased risk

Decreased CAA

Caucasian [36]

rs1157505 rs1157505 Intron variant

rs11792633 rs11792633 Intron variant

IL-12A rs568408 rs568408 Intron variant Decreased risk Han Chinese [37]

IL-12B rs3212227 rs3212227 30 UTR variant Decreased risk Han Chinese [37]

IL-4 -590 C/T rs2243250 Upstream variant Decreased risk Caucasian, Han Chinese [38, 39]

-1098 T/G rs2243248 Upstream variant Decreased risk Caucasian [38]

Increased risk Han Chinese [39]

IL-10 -1082G/A rs1800896 Intron variant Increased risk European [40, 41]

Decreased risk Brazilian [42]

TGFB1 ?10 T/C rs1800470 Missense mutation Increased risk Caucasian [43, 44]

Decreased CAA

Increased neocortical plaques

Japanese-American, Japanese [45, 46]

-509 C/T rs1800469 Upstream variant Increased risk Caucasian [47]

CAA cerebral amyloid angiopathy; NFT neurofibrillary tangle; NP neuritic amyloid plaque
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supports a protective effect of the -174 C allele on AD

risk. Based on findings that the G allele is associated with

both increased IL-6 secretion in vitro and increased levels

of plasma IL-6 [72], it has been assumed that the SNP in

the IL-6 gene promoter region may modify the risk of AD

by influencing IL-6 protein release in the brain, playing an

important role in the neuroinflammatory cascade and the

AD process. However, the association between this geno-

type and IL-6 plasma level has been queried, and negative

results have been reported [73]. Furthermore, a study by

Licastro and colleagues provided results that further con-

fuse the association because they reported increased levels

of IL-6 in the blood and brain of AD patients with the CC

genotype. Similarly, the same study showed that the C

allele also increased AD risk [26]. Very recently, this SNP

was shown to influence the CSF level of clusterin protein,

which is significantly associated with AD risk and the tau/

Ab ratio in CSF [74]. These contradictory results may arise

from the different genetic backgrounds, but they also

strongly imply multifaceted roles of IL-6 -174 in AD. The

G allele of the IL-6 -572 C/G polymorphism also has

protective effects against AD risk in Han Chinese popu-

lations [27, 28], whereas contrary results have been

reported in other populations [65, 75, 76]. Moreover, pro-

tective effects of the IL-6 -174G and IL-6 -597A hap-

lotypes have been found [76], further suggesting gene-gene

interactions and the complicated effects of genetic poly-

morphisms on AD.

TNFA

The role of TNF-a seems to be multifunctional. In animal

models of AD, increased TNF-a is a key element in

inflammatory cascade and increases the Ab and tau

pathology [77]. Moreover, short-term anti-TNF-a treat-

ment improves cognition in AD patients [78], probably by

relieving the Ab pathology [79]. However, neuroprotective

roles of TNF-a have also been reported, as long-term and

non-specific inhibition of TNF-a signaling worsens the

AD-related pathology in the brains of AD transgenic mice

[80]. Correspondingly, TNF-a mediates the microglial

phagocytosis of Ab [80]. Two types of TNF-a receptors

(TNF-RI and TNF-RII) have been identified, and they

activate different downstream pathways to mediate distinct

biological effects. In AD brains, TNF-RI is over-activated,

while TNF-RII is inhibited [81]. Furthermore, activation of

TNF-RI promotes the deposition of Ab and Ab-induced
neuronal death [82, 83], while TNF-RII seems to coun-

teract the TNF-RI-mediated injury [84]. The interactions

between the two receptors, at least partially, lead to the

diverse effects of TNF-a on AD. Concerning genetic

polymorphisms, several SNPs have been reported to

influence the risk of AD. A meta-analysis conducted in

2009 by De Bona et al. [29] supported the -850 T allele as

a risk factor for AD susceptibility, particularly in individ-

uals who carry the APOE e4 allele. Although no further

studies on this SNP and AD risk have been published, the

conclusion is credible because no evidence of hetero-

geneity between studies was found. However, as noted by

Bona et al., larger samples are needed to confirm the

association because only five medium-sized studies have

been performed thus far. Correlations of AD risk with other

TNFA SNPs (-238, -308, -863, and -1031) have also

been included in meta-analyses, and negative results have

been reported [29]; however, significant between-study

heterogeneities may have influenced the reliability of these

conclusions. Subsequently, several studies concerning the

association between the TNFA -308 G/A polymorphism

and AD risk involving different ethnic groups have been

performed. Negative results were obtained in the majority

of these investigations [23, 38, 85], strongly suggesting that

the TNFA -308 polymorphism alone does not significantly

influence AD susceptibility. As reported by Vural et al.

[86], the AA haplotype TNF –308 and IL-10 –1082 and the

AC haplotype TNFA –308 and IL-6 –174 significantly

increase the risk of AD, suggesting that TNFA –308 exerts

its function via gene-gene interaction. However, inconsis-

tent results have also been reported [87–89], and the latest

meta-analysis by Lee et al. [30] implied that the TNFA

-308 polymorphism may influence the AD risk in certain

ethnic groups. Moreover, Lio et al. [31] reported an asso-

ciation of TNFA -308 A with the earlier onset of AD

among Italians. Thus, TNF -308 G/A might be a disease-

modifying polymorphism in AD patients of certain ethnic

groups or in coordination with other polymorphisms;

however, this interaction needs further examination. Little

progress has been made on the interactions between AD

risk and the other three SNPs of the TNF gene noted above,

with the exception of a negative result reported for the

TNFA -863 polymorphism in an Azeri Turk population

[88]. Therefore, the TNFA -308 and -850 genetic poly-

morphisms may be associated with AD susceptibility, and

they have been hypothesized to act by influencing TNFA

gene transcription. Some in vitro experiments have pro-

vided support for this hypothesis [90], but no direct evi-

dence is available [91].

Other Pro-inflammatory Cytokines

Changes in the expression of vascular endothelial growth

factor (VEGF) have been reported in AD patients; a cross-

sectional study showed that it significantly increased in the

early stage of AD while decreasing as the disease pro-

gressed [92]. In AD brains, VEGF immunoreactivity is

mainly located in reactive astrocytes [93], and oxidative

stress can regulate its expression [94]. Two functional
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SNPs (-2578C/A and -1154G/A) located in the promoter

region of VEGF have been suggested to influence AD risk,

but the results in this area are ambiguous. Previous meta-

analysis has suggested that the AA genotype of -2578C/A

is a risk factor for AD development in Europeans [95], but

further studies with larger sample sizes seem to have

negated this association [32, 96]. However, in the subgroup

of APOE e4 non-carriers, -2578C/A increases AD risk

while -1154G/A plays a protective role [32]. These results

seem puzzling, as both of these SNPs have been shown to

reduce VEGF expression via controlling the activity and

responsiveness of the gene promoter [97]. Therefore, it will

be of interest to investigate the functional role of VEGF in

AD. Initially defined as an endothelium-specific vascular

permeability factor, VEGF has neuroprotective effects, as

it promotes adult neurogenesis and associated memory and

learning [98]. Meanwhile, it may also be neurotoxic, as a

high dose has been demonstrated to reduce neuronal sur-

vival and promote neuronal apoptosis in vitro [94].

Therefore, the inconsistency concerning the associations of

AD risk with -2578C/A and -1154G/A may be

attributable to the complex roles of VEGF in AD.

IL-18 is a member of the IL-1 family. In addition to its

pro-inflammatory activity, IL-18 is involved in aging and

neurodegeneration [99]. Elevated expression of IL-18 has

been detected in AD brains [100], and peripheral cells from

AD patients show increased production of IL-18 upon

stimulation [35]. Gene association analysis further supports

the involvement of IL-18 in AD development. Two SNPs

in the promoter region of its gene have been reported to

influence AD, -137 G/C and -607 C/A. The C allele of

IL-18 -137 G/C has a negative correlation with AD risk in

Han Chinese [34], but the CC genotype is strongly asso-

ciated with accelerated cognitive decline in Caucasians

[33]. Meanwhile, the C allele of IL-18 -607 and the CC

genotype are associated with increased AD risk in Han

Chinese and Italian Caucasian populations, respectively

[33, 34]. Functional analyses have revealed that the IL-18

-607 CC genotype results in significantly elevated IL-18

production by blood mononuclear cells in AD patients [35],

implying that this polymorphism exacerbates AD processes

via the promotion of IL-18 secretion. However, negative

interactions have also been found in Italian Caucasians by

Segat et al. [101], implying that this interaction needs to be

confirmed in further studies with larger numbers of AD

patients.

IL-33 also belongs to the IL-1 family. Decreased

expression of IL-33 has been reported in the brains of AD

patients [36]. In a cellular model, overexpressed IL-33 was

reported to promote the production of Ab [36]. A study by

Chapuis et al. initially identified the association between

IL-33 polymorphisms and AD risk in Caucasian popula-

tions. They found protective effects of rare alleles of three

intronic SNPs (rs7044343, rs1157505, and rs11792633)

and the associated haplotypes [36]. In addition, functional

analyses have revealed interactions between these protec-

tive allele and decreased cerebral amyloid angiopathy in

the brains of non-APOE e4 individuals with AD [36].

Subsequently, consistent results for rs11792633 were

obtained in a Han Chinese population; however, rs7044343

failed to affect AD risk, and the rs1157505 polymorphism

was not observed [102]. These data suggest that IL-33

polymorphism modifies AD risk by influencing Ab meta-

bolism, but this needs further confirmation.

IL-12, another member of the IL-1 family, has recently

been implicated in the AD process. Elevated levels of the

p40 subunit of IL-12 have been detected in AD brains

[103]. In AD animal models, inhibition of p40 alleviates

the cognitive impairments and AD-related pathology

[103, 104]. Rs568408 and rs3212227, which are located in

IL-12A and IL-12B, respectively, have recently been

reported to influence AD risk in the Han Chinese popula-

tion [37]. Based on previous research, these SNPs may

influence the levels of IL-12 mRNA and protein, which

may account for their functional activity [105, 106].

However, associations of these two SNPs with AD risk

require further validation in other ethnic groups.

Anti-Inflammatory Cytokines

IL-4

IL-4 is an anti-inflammatory cytokine and plays a role in

neutralizing the neuroinflammatory process in AD brains.

A previous study found that peripheral mononuclear cells

from AD patients showed reduced IL-4 production upon

stimulation [107]. In vitro, IL-4 induces the microglial

clearance of Ab via promoting the expression of CD36 and

Ab-degrading enzymes (neprilysin and insulin-degrading

enzyme) [108]. Moreover, in vivo treatment with IL-4

reduces the accumulation of Ab and alleviates the cogni-

tive impairments in AD animal models [109]. Two SNPs in

the promoter region of IL-4 (-590 C/T and -1098 T/G)

have been reported to influence AD risk in a study of Han

Chinese and another study of Caucasians [38, 39]. The

-590 T allele had protective effects against AD in both

studies, but the results varied for the -1098 T/G allele. In

Caucasians, the -1098 T allele appears to be a risk factor

[38], but the -1098 G allele may increase the susceptibility

to AD in Han Chinese [39]. This discrepancy may be due to

ethnic characteristics, but it should be noted that the study

by Ribizzi et al. was conducted with only 39 individuals

(19 patients and 20 controls); therefore, further studies with

larger samples are needed to confirm or deny this interac-

tion. The significance of the SNPs might be related to the
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control of IL-4 gene transcription or IL-4 protein expres-

sion [110, 111]; this would result in an imbalance between

pro- and anti-inflammatory cytokines and ultimately

accelerate the AD process. The ?33 T/C polymorphism of

IL-4 has been identified and was assumed to affect AD risk,

but negative results have been obtained in all three relevant

studies conducted with Asians [39, 112, 113].

IL-10

IL-10 plays a neuroprotective role in the CNS, as it is anti-

inflammatory, anti-apoptotic, and promotes cellular survival

[114], but its implications for AD are complex. IL-10

expression mediated by adeno-associated virus (AAV) in the

brains of AD animal models was reported to enhance neu-

rogenesis and cognition [115]. Unexpectedly, further inves-

tigation opposed these findings, as AAV-mediated IL-10

expression increased the Ab burden and worsened cognitive

impairment in AD animal models [116]. Exploring the

interactions between AD-related phenotypes and polymor-

phisms of IL-10 will help understand its roles in AD. The

-1082G/A polymorphism has been extensively investigated,

and the GG genotype has been suggested to decrease

[86, 117], increase [38], or have no influence on AD risk

[118]. According to the two recent meta-analyses, IL-10

-1082G may be associated with reduced AD risk, particu-

larly among Europeans [40, 41]. However, negative results

were reported in two studies conducted in Asia [112, 119].

Moreover, contradictory conclusions have been drawn by

Moraes et al., who very recently found a significant associ-

ation between the IL-10 -1082 AA genotype and decreased

AD risk in a large sample in Brazil [42]. These data query the

relationship between the IL-10-1082 genetic polymorphism

and AD risk and strongly imply differences between ethnic

groups. Moreover, in a recent investigation byMedway et al.,

association of the IL-10 -1082 genetic polymorphism with

ADwas only found inwomen [120], suggesting a sex-specific

effect of this SNP. It has been reported that this SNP alters IL-

10 gene transcription and plasma IL-10 concentrations

[119, 121], which may account for the functional activity.

Moreover, interactions between the other two SNPs in the

promoter regions of IL-10 (IL-10-819 and IL-10-592) and

AD risk have also been investigated, and strong or even

complete linkage disequilibrium (-592C and -819C) has

been reported in most studies [117, 119, 122]. The GG

genotype has been reported to promote [119], decrease [117],

or have no effect [122] on AD risk, and the meta-analysis by

Bona et al. [41] suggested that neither individual SNPs nor

haplotypes were associated with AD risk. The differences

between individual experiments may have resulted from

ethnic characteristics, and further clarification of this associ-

ation requires additional studies involving larger numbers of

participants from various regions.

TGFB1

TGF-b signaling has been reported to be insufficient in the

brains of AD patients [123]. This deficiency has been

shown to cause more Ab deposition and neurodegeneration

[123], while treatment with TGF-b prevents Ab-induced
neurotoxicity [124]. All these results suggest a neuropro-

tective effect of TGF-b in the AD process. Both the ?10

T/C and -509 C/T polymorphisms have been suggested to

influence TGFB1 gene transcription and TGF-b1 protein

expression [47, 125], and a series of studies has explored

their interactions with AD risk. The ?10 T/C polymor-

phism was associated with increased AD risk in studies by

Arosio et al. and Caraci et al. [43, 44], and the -509 C/T

polymorphism exhibited the same association in a study by

Luedecking et al [47]. Moreover, patients with mild cog-

nitive impairment carrying the ?10 C allele had an

increased risk of developing AD over a 4-year follow-up

conducted by Arosio et al. [43]. Furthermore, the ?10 CC

genotype has been shown to be associated with increased

neocortical plaques in Japanese-Americans [46], but the T

allele of the ?10 T/C polymorphism exhibited a positive

correlation with the severity of cerebral amyloid angiopa-

thy in another Japanese sample [45]. These data indicate

the involvement of TGFB1 polymorphisms in AD devel-

opment and AD-related pathology. However, inconsistent

results have been reported in the majority of studies con-

ducted in various populations [126], and a negative asso-

ciation has been further supported by a recent meta-

analysis [126]. No positive results have been obtained for

the other SNPs in TGFB1 [43, 44, 46, 73, 127–129], so it

remains controversial whether TGFB1 polymorphisms

influence AD risk.

Conclusions and Perspectives

In the current review, we have summarized the key findings

on genetic polymorphisms of the inflammatory cytokines

associated with AD (Table 1). These discoveries highlight

the importance of cytokines in AD pathology and support

the neuroinflammatory hypothesis of AD. Moreover, the

majority of loci identified thus far are located in the pro-

moter regions of cytokine genes, suggesting that the

polymorphic loci function primarily by influencing the

expression of cytokines in AD. This may partially account

for the microglial priming in AD because the polymor-

phism-induced increases in gene transcriptional activity

could lead to excessive pro-inflammatory cytokine release

by microglia upon stimulation [130, 131].

Accumulating evidence has demonstrated the involve-

ment of microglia in AD [132], and cytokines are key

components that mediate microglial function (Fig. 1). Pro-
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inflammatory cytokines acutely benefit the CNS and play

major roles in immune attack when pathogens invade the

brain. However, due to their non-specific nature, these

cytokines can simultaneously damage surrounding healthy

tissue [133] via ‘‘by-stander’’ injury. Thus, the chronic

increase in pro-inflammatory cytokines in the AD brain

[134, 135] could induce sustained inflammatory-toxicity,

causing neuronal dysfunction and ultimately the deterio-

ration observed in AD progression. Furthermore, as noted

above, cytokines can also influence AD-related pathology,

including Ab and tau [67, 79, 136, 137]. Moreover, indo-

leamine 2, 3-dioxygenase, which is activated by cytokines,

may be an additional candidate mechanism of cytokine-

induced AD pathology and could lead to increased levels of

the neurotoxic factor, quinolinic acid [138], and promote

tau hyperphosphorylation [139]. In summary, chronic over-

expression of pro-inflammatory cytokines exacerbates AD,

and the influence of anti-inflammatory cytokines in the

process of AD also merits attention. The functional sig-

nificance of anti-inflammatory cytokines is to down-regu-

late the pro-inflammatory process and initiate tissue

reconstruction [140]. Therefore, it can be hypothesized that

anti-inflammatory cytokines have protective effects against

AD by neutralizing the harmful effects of pro-inflamma-

tory cytokines, and their deficiency may also promote the

risk of AD. In addition, TGF-b is protective against Ab-

Fig. 1 Involvement of microglia in AD development. AD-related pathology induces chronic activation of microglia, exacerbating

neuroinflammation and inhibiting the clearance of Ab, in turn leading to AD-related deterioration.
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induced cytotoxicity both in vivo and in vitro [124]. Defi-

ciency of TGF-b1 promotes not only Ab accumulation but

also NFT formation [141], directly highlighting the

importance of TGF-b in AD pathology. However, no direct

evidence has been obtained concerning the beneficial

effects of other anti-inflammatory cytokines in AD, and

further work is needed. In conclusion, dysfunction of the

cytokine system, which is an important component of

neuroinflammation, may be involved in AD pathology.

However, it must be noted that a recent GWAS did not

highlight the SNPs discussed here in AD development

(apart from IL-6 572 C/G and TNFA -308 G/A, all the

SNPs were included in the GWAS analysis, but none

reached genome-wide significance) [142]. It may be that

the effect size of each individual SNP was too small. In

addition, the influence of the same SNP on AD risk varies

among populations. The population-based differences

arise, at least partially, from natural selection during evo-

lution, causing the minor allele frequency to shift over

time. Furthermore, other factors such as diet, infection

(cytokines play crucial roles in immune defense against

pathogens), and the environment can also contribute to

ethnic diversity. Therefore, further research on the inter-

actions between AD and cytokine polymorphisms is nee-

ded in additional independent samples that include

different ethnic groups, and validation of the functional

activity of these loci deserve high priority. Moreover,

several other cytokines, such as IL-17, have been shown to

have interactions with AD [143], but no studies seem to

have investigated the association of polymorphisms of

these cytokines with AD. More importantly, gene-gene

interactions merit more attention, and studies of such

interactions could provide a more comprehensive under-

standing of heredity in AD. Therefore, the genetic poly-

morphisms of inflammatory cytokines are promising

targets for exploring the etiology of AD, and extensive

work remains to be done.
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