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The time scales of pathogen evolution are of major concern in the context

of public and veterinary health, epidemiology and evolutionary biology.

Dating the emergence of a pathogen often relies on estimates of evolutio-

nary rates derived from nucleotide sequence data. For many viruses, this

has yielded estimates of evolutionary origins only a few hundred years in

the past. Here we demonstrate through the incorporation of geographical

information from virus sampling that evolutionary age estimates of two

European hantaviruses are severely underestimated because of pervasive

mutational saturation of nucleotide sequences. We detected very strong

relationships between spatial distance and genetic divergence for both

Puumala and Tula hantavirus—irrespective of whether nucleotide or derived

amino acid sequences were analysed. Extrapolations from these relationships

dated the emergence of these viruses most conservatively to at least 3700

and 2500 years ago, respectively. Our minimum estimates for the age of

these hantaviruses are ten to a hundred times older than results from current

non-spatial methods, and in much better accordance with the biogeography of

these viruses and their respective hosts. Spatial information can thus provide

valuable insights on the deeper time scales of pathogen evolution and improve

our understanding of disease emergence.
1. Introduction
Rapidly evolving pathogens cause a majority of emerging diseases in humans

and livestock. There is often little consensus about their origin and evolutionary

history [1,2], but understanding the process of disease emergence and spread is

crucial for the development of preventive strategies and to combat epidemics.

Important information such as the time of emergence and evolutionary rates

can be derived from time-calibrated phylogenies of pathogen sequences using

the dates of sample collection during an outbreak [3–5]. For example, for recent

epidemics of Ebola virus, influenza virus, human immunodeficiency virus

(HIV) and others, the combination of nucleotide sequence data of the pathogens

with epidemiological reports has enabled detailed reconstructions of spatial and

temporal transmission patterns of the infectious agents [4,6,7].

Serially sampled sequence data are often also used to infer the dates of

much older events in the evolutionary history [8], but the absolute age of many

pathogens remains contentious due to the lack of fossils, ancient DNA or other

information that could provide support for the accuracy of estimated time

scales [9]. Moreover, estimates based on heterochronous sequences (tip-dating

sensu [10]) are often in conflict with biogeographic evidence or the evolutionary

history of co-evolving host species. For example, tip-dated phylogenies of

simian immunodeficiency viruses—which gave rise to HIV—indicated an
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emergence less than 2000 years ago [11]. By contrast, the

biogeography of these ubiquitously distributed viruses of

African non-human primates and their association with

the host phylogeny clearly revealed an ancient history of

co-divergence over tens of thousands of years [12].

Temporal reconstruction of virus evolutionary history

based on heterochronous sequence data has been questioned

on grounds of insufficient temporal structure in phylogenetic

trees [13] and underestimated genetic divergence due to muta-

tional saturation [14]. The latter is a consequence of the high

evolutionary rates of many pathogen species where multiple

substitutions can occur at the same sequence position already

over relatively short absolute time scales [15]. Sophisticated

models of sequence evolution are designed to consider mul-

tiple substitutions at the same position, but the full extent of

divergence in rapidly evolving sequences might still not be

captured [16].

In this study, we exploit spatial distance as a hitherto unused

source of information about genetic divergence of rapidly

evolving pathogens and their time scales of emergence. We

capitalize on the long-established realization that genetic simi-

larity representing evolutionary divergence tends to be higher

among spatially close organisms in systems with low dispersal,

a pattern called isolation by distance (IBD) in population gen-

etics [17,18]. With this correlation, the spatial distance between

individuals can be informative about their genetic divergence.

Over larger distances, this relationship is more likely to be

affected by intrinsic (e.g. mutational saturation) and extrinsic

factors (e.g. habitat availability, colonization history). A pattern

of IBD at short spatial distances that decays over larger distances

is thus indicative of such factors impacting on genetic diver-

gence estimates. IBD has been detected in many organisms,

including humans [19,20], with only relatively few formal

reports from viruses [21–25]. However, many studies report

the spatial clustering of nucleotide sequences in phylogenetic

trees [26–30] which might indicate an IBD pattern.

Here we revise evolutionary time scales by incorporating

spatial data for the case of hantaviruses (family Hanta-

viridae)—RNA viruses with often enigmatic evolutionary

history and phenology [31]. Tip-dated phylogenies indicated

the origin of rodent-borne hantaviruses sampled across North

America, Asia and Europe only 849 [32] or 1915 years ago

[33]. Such a recent emergence is unlikely in the light of, for

example, the separation of the American and the Eurasian con-

tinent by the Bering Sea preventing rodent migration for more

than 10 000 years [34,35]. Further, the specialization of hanta-

viruses to different widely co-distributed rodent hosts (e.g. in

Europe Puumala virus, PUUV—Myodes glareolus; Tula virus,

TULV—Microtus arvalis; Dobrava-Belgrade virus—Apodemus
spec.) would have taken place within very short time. By stark

contrast, studies focusing on the association of hantaviruses

with their mostly Muroidea hosts place their origin millions of

years ago based on phylogenetic relationships of the hosts

dated with molecular and fossil data [36–38], but the actual phy-

logenetic evidence from virus data suggesting long-time

coevolution is debated [39,40]. We focus our analyses on the han-

taviruses PUUV and TULV because large-sequence datasets with

initial evidence of spatial clustering are available, and their

mostly European distribution range is relatively well covered

[41–44]. Furthermore, their sedentary arvicoline rodent hosts dis-

play evidence of IBD at larger geographical scales [45–47]. We

demonstrate that time estimates of hantavirus origins can be

strongly biased by excessive mutational saturation in divergent
sequence data, which can be detected and improved by taking

spatial information about virus sampling locations into account.
2. Material and methods
(a) Phylogenetic analysis
Nucleotide sequence data from the PUUV and TULV nucleocap-

sid protein-encoding region of the small genomic segment

(S-segment) and from complete PUUV genomes were collected

from GenBank. Sequences of short overlap in the alignment,

those originating from humans or cell lines instead of rodent

hosts or with unknown place or date of sampling, as well as

identical sequences from the same location, were excluded.

Final alignments consisted for PUUV S-segment of 97 sequences

of 504 bp length and for TULV of 115 sequences of 543 bp length.

Sampling dates ranged between 1987 and 2012 for PUUV, and

between 1987 and 2013 for TULV. The PUUV full genome align-

ment contained concatenated coding sequences from all three

genomic segments (total: 11 228 bp). While PUUV sampling

localities were heterogeneously distributed over a large region

of Europe, TULV sequences mainly originated from Central

Europe (figure 1a,b). Both datasets contained additional distant

sequences from Russia and Kazakhstan (figure 1c). For phylo-

genetic inference, TULV was used as outgroup for PUUV and

vice versa. Bayesian reconstruction of phylogenetic relationships

was done with MRBAYES v. 3.2.2 [48] on the CIPRES platform [49].

Nucleotide data were partitioned into two groups: combined 1st þ
2nd and 3rd codon position, with the evolutionary rate unlinked

across partitions. Reversible-jump sampling across the entire

general time-reversible (GTR) substitution model space was

implemented for each partition [50]. Metropolis-coupled Markov

chain Monte Carlo (MCMC) sampling was performed for 107

generations in four independent runs of four chains for all datasets.

A sample was recorded every 103 generation with a burn-in frac-

tion of 25%. For amino acid sequence analyses, nucleotide

sequences were translated in MRBAYES using the protein substi-

tution model. MCMC analyses were run as described above

implementing a mixed amino acid model prior to averaging over

different amino acid rate matrices. FIGTREE v. 1.4.2 [51] was used

to draw consensus trees.
(b) Association between geographical distance and
genetic divergence

Information on the geographical origin of virus sequences was

obtained from the original publications or their authors.

GEOGRAPHIC DISTANCE MATRIX GENERATOR [52] was used to calculate

pairwise Euclidean geographical distances between localities of

origin. A GTR model with four substitution classes, among-site

rate variation and proportion of invariable sites (TIM2 þ G þ I)

was the best model of nucleotide substitution for all datasets

according to Bayesian information criterion inferred with JMODEL-

TEST v. 2.1.6 [53]. Pairwise genetic divergence was calculated in

MEGA 6 [54] as (i) p-distance (percentage of variable sites) and

(ii) under the Tamura and Nei (TrN þ G þ I) model [55], as it

best corresponds to TIM2 þ I þ G. From the Bayesian phyloge-

netic analyses described above, trees with highest likelihood

scores were used to infer (iii) pairwise genetic distance along

branches (sum of branch lengths) between samples, representing

phylogenetically interdependent divergence estimates [16]. For

amino acid sequences, p-distance and tree distance was inferred

analogously. Statistical significance of the correlation between

the matrices of geographical distance and genetic divergence

was determined with a Mantel test using 105 permutations

performed in ARLEQUIN v. 3.5.1.3 [56].
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Figure 1. Geographical origin and phylogenetic relationships of Puumala (PUUV) and Tula (TULV) hantavirus sequences. (a,b) Maps show European sampling locations
of (a) PUUV and (b) TULV sequence data (note the difference in scale). (c) Additional distant sampling locations in Russia and Kazakhstan are indicated by black and
white symbols for PUUV and TULV sequence origins, respectively. (d,e) Maximum clade credibility phylogenetic trees based on partial S-segment sequences of (d ) PUUV
and (e) TULV with posterior node probabilities shown for major branches only. Subsets of different evolutionary levels in PUUV and evolutionary clades in TULV (see text)
are indicated with brackets. Leaves are labelled with GenBank sequence accession number, sampling location and year of sample collection.
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(c) Testing for mutational saturation
To examine mutational saturation, we plotted pairwise transition

to transversion ratios (Ti/Tv) against genetic divergence estima-

ted with the TrN þ I þ G model. Saturation at synonymous

and non-synonymous sites was analysed by plotting pairwise

genetic divergence based on the combined 1st þ 2nd and the

separated 3rd codon positions against geographical distance.

Signals of mutational saturation among different evolutionary

levels were investigated following Duchêne et al. [16] by removing

basal sequences from the fixed topology of a phylogenetic

tree to obtain sequence subsets of reduced evolutionary age.

Tree topologies for this saturation test were estimated with

Maximum-likelihood (ML) in GARLI [57] on CIPRES. For the

PUUV dataset, basal branches of the ML topology were removed

to form an initial subset 1, and younger subsets 2 and 3 were

obtained by further removing basal branches (electronic sup-

plementary material, figure S1). For TULV, the evolutionary

clades described in [44] were defined as reduced-age subsets if

represented by at least ten sequences in our dataset (figure 1e).

For all trees and subsets, we calculated Ti/Tv, which is expected

to decay with evolutionary time when divergence is underrepre-

sented by the evolutionary model [58]. Analogously, we inferred

the ratio of non-synonymous to synonymous substitutions

(dN/dS), the GC contents and the shape parameter of a gamma-

distributed among-site rate variation (a) to examine potential effects

of natural selection and base composition on Ti/Tv. a is expected

to scale negatively with increasing divergence when mutational

saturation is accurately accounted for [16]. All parameters were esti-

mated using CODEML implemented in PAML v. 4.8 [59].
(d) Virus divergence and age estimates
We used the observed correlation between genetic divergence and

geographical distance among hantavirus sequences to deduce the

per-distance increase of genetic divergence (slope). While muta-

tional saturation among spatially distant sequences is expected

to weaken this correlation (and flatten the slope), for recently

diverged sequence pairs, the impact of mutational saturation on

genetic divergence is low because the overall number of accumu-

lated mutations during short time spans is small. To infer slopes

mostly from sequence data at short distances that were less affected

by mutational saturation, two different approaches were applied.

(i) We simultaneously fitted two linear regressions with minimal

overall residuals on either side of a separation point to the relation-

ships between geographical distance and genetic divergence using

R [60]. This resulted in a short-distance partition of more recently

diverged sequence pairs of low mutational saturation character-

ized by a positive slope, and a partition at longer geographical

distances representing a plateau of saturated sequence pairs (see

Results). (ii) We first determined the saturation growth rate

(SGR) model (y ¼ ax/(b þ x)) with CURVEEXPERT v. 1.3 [61] as the

best single model with regard to parametrization and standard

error to fit the geographical distance to genetic divergence relation-

ships of all data points. Then, we calculated the slope as the

derivation for zero geographical distance where no effect of muta-

tional saturation on the SGR curve is expected and determined

confidence intervals with 1000 bootstrap replicates.

The inferred slopes from both approaches were then applied to

linear models of unsaturated growth to provide estimates of

revised genetic divergence across the full distribution range

of virus species and clades. The minimum age of PUUV and

TULV was assessed by dividing the expected unsaturated genetic

divergence at maximum geographical distance by twice the substi-

tution rate. We used a median substitution rate of 2.70 � 1024

substitutions per site per year as assessed on recently diverged

PUUV sequences sampled over eight years from the same geo-

graphical region [43] so that effects of mutational saturation

should be insignificant. To compare our estimates incorporating
geographical information with results of frequently used time-

calibrated phylogenetic methods, we ran analyses in BEAST

v. 2.3.0 [62] on CIPRES. Bayesian model averaging was performed

using the bModelTest package [63] on partitioned data as

described above. A Bayesian skyline coalescent tree prior with

relaxed lognormal molecular clock was implemented in MCMC

sampling of 108 generations with samples recorded every 5000

generations. TEMPEST v. 1.5 [64] showed that the temporal signal

in our sequence datasets was very low as indicated by weak corre-

lations of sampling dates with root-to-tip distances for both viruses

(PUUV: R2 ¼ 0.00022 and TULV: R2 ¼ 0.053). The resulting age

estimates are thus given for comparative purposes only.
3. Results
(a) Phylogeographic structure of PUUV and TULV
We detected very high sequence variability in both hantaviruses

across their large distribution ranges (PUUV S-segment: 44.2%

variable sites; PUUV full genomes: 32.7%; TULV S-segment:

43.5%), but all phylogenies were informative about the geo-

graphical origin of sequences irrespective of the year of

sample collection (figure 1). Local phylogeographic clusters

were highly supported in both viruses despite exclusion of iden-

tical sequences, whereas posterior probabilities of basal tree

relationships were generally lower (figure 1d,e). For PUUV

sequences from a large geographical area with heterogeneously

distributed sampling localities, no deep phylogeographic struc-

ture could be determined (figure 1a,d), while TULV formed

geographically segregated genetic clades (figure 1b,e).
(b) Association of geographical distance, divergence
and mutational saturation

For both hantaviruses, we found an extremely strong associ-

ation between geographical distance and genetic divergence

(all p , 0.001; figure 2), irrespective of the estimator of diver-

gence used for S-segment, full genome (in PUUV; electronic

supplementary material, figure S2) or amino acid sequences

(electronic supplementary material, figure S3). There were

strong positive relationships at local scale and all slopes flat-

tened at larger geographical distances, demonstrating strong

mutational saturation for synonymous and non-synonymous

codon positions likewise (electronic supplementary material,

figure S4). This evidence of mutational saturation was corro-

borated by a clear negative correlation between Ti/Tv and

genetic divergence (electronic supplementary material,

figure S5) as well as between Ti/Tv and evolutionary age

of phylogenetic relationships (table 1). dN/dS, a and GC

contents remained constant among evolutionary levels, pro-

viding no evidence for influences on the decay of Ti/Tv

other than mutational saturation (table 1). As expected

under mutational saturation, pairwise genetic divergence

based on p-distances was lower than estimated with the

TrN þ I þ G model, which accounts for multiple substi-

tutions per site (figure 2a,b,d,e; electronic supplementary

material, table S1). Tree distances—representing branch

lengths extracted from Bayesian analyses—were considerably

larger than both pairwise sequence divergence estimates.

Branch lengths in trees were sensitive to branch length priors,

but the pattern of mutational saturation at larger geographical

distances was unaffected (figure 2c,f; electronic supplementary

material, table S1).



1.5

1.0

0.5

ge
ne

tic
 d

iv
er

ge
nc

e

0

1.5

1.0

0.5

ge
ne

tic
 d

iv
er

ge
nc

e

0

0 1000 2000
geographic distance (km)

3000 4000

s.e.res = 0.023 s.e.res = 0.037 s.e.res = 0.174

s.e.res = 0.031 s.e.res = 0.055 s.e.res = 0.322

5000 0 1000 2000
geographic distance (km)

3000 4000 5000 0 1000 2000
geographic distance (km)

3000 4000 5000

0 1000 2000
geographic distance (km)

3000 4000 5000 0 1000 2000
geographic distance (km)

3000 4000 5000 0 1000 2000
geographic distance (km)

3000 4000 5000

(e) ( f )

(b)(a) (c)

(d )
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Table 1. Sample sizes and substitution parameters determined for PUUV
and TULV S-segment phylogenies and several subsets or clades of different
evolutionary age (see text). n, number of sequences; Ti/Tv, transition/
transversion ratio; dN/dS, ratio of non-synonymous to synonymous
substitutions per site; GC, GC-content; a, shape parameter of the gamma
distribution of among-site rate variation.

n Ti/Tv dN/dS GC a

PUUV full tree 97 5.570 0.019 0.405 3.010

subset I 55 6.055 0.018 0.405 2.455

subset II 30 7.908 0.017 0.407 2.275

subset III 21 9.885 0.023 0.406 3.369

TULV full tree 115 6.025 0.010 0.426 2.237

clade I 56 8.987 0.007 0.428 2.365

clade II 26 9.263 0.005 0.422 1.804

clade III 13 13.033 0.009 0.424 1.830

rspb.royalsocietypublishing.org
Proc.R.Soc.B

284:20170857

5

Extrapolation of genetic divergence at maximum geo-

graphical distance in our datasets (PUUV: 4623 km; TULV:

5296 km) led to 16- to 52-fold higher estimates based on the

derivation of the SGR curve compared with the fitted SGR

curve (figure 2; electronic supplementary material, table S1).

Extrapolation from the regression slope over short geographi-

cal distances resulted in two to 14 times higher genetic

divergence at maximum geographical distance compared

with the SGR curve (figure 2; electronic supplementary

material, table S1). For PUUV, slopes of the short-distance

regressions and SGR curves were consistent no matter how

genetic divergence was inferred (figure 2a–c; electronic sup-

plementary material, table S1). Phylogenetic clades in TULV

(figure 1e) appear to affect the slope most noticeably for tree

distances (figure 2d– f; electronic supplementary material,

table S1) as highly diverged sequences from different clades

can be found at short geographical distances.

(c) Hantavirus emergence dating using spatial
information

Age estimates of both hantaviruses were considerably older

based on spatially informed genetic divergence than those

from tip-dated phylogenies. Analyses with BEAST estimated

the age of PUUV overall as 346 years (95% highest posterior

density interval, HPD: 201–571 years) and for TULV as 254

years (95% HPD: 145–392 years) (table 2; electronic
supplementary material, figure S6). Geographically coherent

sequence clusters in both viruses spanning vast areas of

Europe were estimated to be very young. For example, the

time to the most recent common ancestor (TMRCA) of PUUV

subset I covering much of Central and Eastern Europe was esti-

mated to 296 years (95% HPD: 177–487 years; electronic
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supplementary material, figures S1, S6). Similarly, the TMRCA

of TULV clade III with sequences from Germany, Czech Repub-

lic, Slovakia, Austria, Slovenia and Croatia was 73 years (95%

HPD: 45–109 years), and the split between clades II and III cov-

ering the area from Luxembourg to Croatia was estimated to

only 126 years (95% HPD: 74–194 years) (figure 1b; electronic

supplementary material, S6). By contrast, divergence time esti-

mates based on linear regression slopes suggested a minimum

evolutionary age of PUUV overall between 3700 and 5000 years,

and of TULV between 2600 and 20 100 years (table 2). The mini-

mum age estimates based on derivations from SGR slopes

ranged between 16 800 and 24 300 years for the full PUUV data-

set and 18 600–55 000 years for all TULV sequences. Based on

Bayesian branch lengths, PUUV subset I was at least 6500

years and TULV clade III at least 6200 years old (table 2).

When we alternatively applied the extremely high substitution

rates inferred with BEAST (9.38 � 1024 substitutions per site

per year for PUUV and 1.51 � 1023 substitutions per site per

year for TULV), our age estimates incorporating spatial infor-

mation were still 2 to 38 times higher than the tip-dated

estimates (electronic supplementary material, table S2).
4. Discussion
Consistent spatial structure in PUUV and TULV allows for the

first time to describe the extent of mutational saturation in two

RNA virus species. We showed that models of sequence evol-

ution severely underestimate the genetic divergence in our

datasets (electronic supplementary material, table S1), which

corroborates concerns about the accuracy of evolutionary

time scales inferred with time-calibrated phylogenies for

many rapidly evolving pathogen species [15,16]. For two

RNA viruses, we demonstrated that combining sequence

data with spatial information can lead to highly improved

age estimates. The strong correlation between geographical

distance and genetic divergence in PUUV and TULV makes

the sampling locations informative about evolutionary differ-

ences even in highly saturated sequence data. While local

disturbance of the IBD pattern is expected (e.g. through geo-

graphical barriers like larger water bodies), the general

association between spatial distance and genetic divergence

in these hantaviruses remains relatively unaffected. Our

approach relies on predictable geographical structuring that

may not necessarily be found among far-dispersing pathogens

or may break down with extensive host migration. These fac-

tors differ widely between different study systems, but it is

generally straightforward to test for IBD patterns in a sequence

dataset and fit a saturation model. In more complex systems,

simple spatial distances are unlikely to describe evolutionary

relationships sufficiently well, but it might be possible to

characterize pathogen diffusion patterns, for example through

network connections [65]. The use of network distances that

consider host mobility, migration history [66] and landscape

factors [12] could thus potentially enable distance-based diver-

gence estimation even for highly dispersed infectious agents.

We found that phylogenetic relationships of serially

sampled PUUV and TULV sequences are determined rather

by spatial proximity (figure 1) than by the time-points of

sample collection. This suggests a long-lasting stationary pres-

ence of both hantaviruses across Europe, where genetic

divergence between sequences is rather the result of long-

term IBD than due to the collection of samples through time.
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The observed loss of phylogeographic resolution even for

whole-genome and amino acid sequences over geographical

distances of less than 1000 km due to strong mutational satur-

ation (figure 2; electronic supplementary material, S2, S3)

supports a scenario of ancient colonization and low dispersal

for both hantaviruses. Ancient emergence times as inferred in

this study (table 2) are therefore in much better accordance

with phylogeographic insights than results of tip-dated

analyses [32,33], and they are in line with hypotheses of

virus–host co-divergence at least in recent evolutionary

periods [36–38]. Still, our results represent minimum estimates

for the emergence of these hantaviruses, and their true age

might be even higher: the data analysed here may not cover

the full spatial distribution of PUUV and TULV and larger geo-

graphical distances would indicate higher overall evolutionary

divergence. Higher divergence estimates deduced from the

derivation of the SGR curve might be closer to true values

than the ones from linear regressions because slopes over

short-distance data are expected to be affected by gradually

increasing mutational saturation (figure 2). While the variance

of evolutionary time scales of hantaviruses inferred in this

study remains large, all estimates are decisively older than

tip-dated results (table 2).

Unlike in recent virus outbreaks, where the place of origin

and direction of spread could be recovered from serially

sampled sequence data [21,23,28], high mutational saturation

probably impedes better temporal calibration of PUUV and

TULV phylogenies using the dates of sample collection [13].

We found strong signals of mutational saturation at different

levels of genetic divergence indicated by a clear decline in

Ti/Tv ratios towards more diverged evolutionary levels

(table 1). We tested for the influence of other factors on phylo-

genetic dating studying further evolutionary parameters,

namely time-dependency of evolutionary rates [67]. Recently

diverged sequences may contain slightly deleterious non-

synonymous mutations, which have not yet been removed by

purifying selection. Substitution rates of younger evolutionary

groups would therefore appear to be higher than those of

groups that have diverged a long time ago. Rates inferred for

recently diverged sequences may thus not be applicable to sub-

sequently date deeper phylogenetic relationships. However, we

did not find evidence for changes in the evolutionary rates over
time [10,68] as dN/dS ratios were consistently low among

evolutionary levels (table 1). The number of pairwise synon-

ymous and non-synonymous substitutions both increased

with spatial distance and displayed mutational saturation

over large distances (electronic supplementary material, figure

S4). While we cannot exclude some effects of rate variability,

our results demonstrate that for highly diverged hantavirus

sequences, mutational saturation is the predominant cause of

biases in molecular clock dating.
5. Conclusion
Evolutionary models, time-calibrated phylogenies and

sampling data provide valuable information on pathogen

transmission dynamics and instant processes of sequence

change during disease outbreaks. However, the investigation

of deeper evolutionary processes in rapidly evolving pathogens

benefits also from taking spatial information into account.

With a better understanding of the particular ecology of a

pathogen–host system, it might be possible to define more

reliably evolutionary time scales and reconstruct key processes

of host jumps and long-term adaptive change. Learning about

the evolutionary past of rapidly evolving pathogens is crucial

to understand their fundamental biology, and to prevent and

control future disease outbreaks.
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40. Geoghegan JL, Duchêne S, Holmes EC. 2017
Comparative analysis estimates the relative
frequencies of co-divergence and cross-species
transmission within viral families. PLoS Pathog. 13,
e1006215. (doi:10.1371/journal.ppat.1006215)

41. Schmidt-Chanasit J et al. 2010 Extensive host
sharing of Central European Tula virus. J. Virol. 84,
459 – 474. (doi:10.1128/JVI.01226-09)

42. Mertens M et al. 2011 Phylogenetic analysis of
Puumala virus subtype Bavaria, characterization and
diagnostic use of its recombinant nucleocapsid
protein. Virus Genes 43, 177 – 191. (doi:10.1007/
s11262-011-0620-x)

43. Weber de Melo V et al. 2015 Spatiotemporal
dynamics of Puumala hantavirus associated with its
rodent host, Myodes glareolus. Evol. Appl. 8,
545 – 559. (doi:10.1111/eva.12263)

44. Schmidt S et al. 2016 High genetic structuring of
Tula hantavirus. Arch. Virol. 161, 1135 – 1149.
(doi:10.1007/s00705-016-2762-6)

45. Heckel G, Burri R, Fink S, Desmet J-F, Excoffier L.
2005 Genetic structure and colonization processes in
European populations of the common vole, Microtus
arvalis. Evolution 59, 2231 – 2242. (doi:10.1111/j.
0014-3820.2005.tb00931.x)

46. White TA, Perkins SE, Heckel G, Searle JB. 2013
Adaptive evolution during an ongoing range
expansion: the invasive bank vole (Myodes
glareolus) in Ireland. Mol. Ecol. 22, 2971 – 2985.
(doi:10.1111/mec.12343)

47. Fischer MC, Foll M, Heckel G, Excoffier L. 2014
Continental-scale footprint of balancing and positive
selection in a small rodent (Microtus arvalis). PLoS
ONE 9, e112332. (doi:10.1371/journal.pone.
0112332)

48. Ronquist F et al. 2012 MrBayes 3.2: efficient
Bayesian phylogenetic inference and model choice
across a large model space. Syst. Biol. 61, 539 – 542.
(doi:10.1093/sysbio/sys029)

49. Miller MA, Pfeiffer W, Schwartz T. 2010 Creating the
CIPRES Science Gateway for inference of large
phylogenetic trees. In Proceedings of the Gateway
Computing Environments Workshop (GCE), 14
November 2010, New Orleans, LA, pp. 1 – 8.
Piscataway, NJ: IEEE.

50. Huelsenbeck JP, Larget B, Alfaro ME. 2004 Bayesian
phylogenetic model selection using reversible jump
Markov Chain Monte Carlo. Mol. Biol. Evol. 21,
1123 – 1133. (doi:10.1093/molbev/msh123)

51. Rambaut A. 2012 FigTree version 1.4. See http://
tree.bio.ed.ac.uk/software/figtree/.

52. Ersts P. 2012 Geographic Distance Matrix Generator
(version 1.2.3). See http://biodiversityinformatics.
amnh.org/open_source/gdmg.

53. Darriba D, Taboada GL, Doallo R, Posada D. 2012
jModelTest 2: more models, new heuristics and
parallel computing. Nat. Methods 9, 772. (doi:10.
1038/nmeth.2109)

54. Tamura K, Stecher G, Peterson D, Filipski A, Kumar
S. 2013 MEGA6: molecular evolutionary genetics
analysis version 6.0. Mol. Biol. Evol. 30, 2725 –
2729. (doi:10.1093/molbev/mst197)

55. Tamura K, Nei M. 1993 Estimation of the number of
nucleotide substitutions in the control region of
mitochondrial DNA in humans and chimpanzees.
Mol. Biol. Evol. 10, 512 – 526.

56. Excoffier L, Lischer HEL. 2010 Arlequin suite version
3.5: a new series of programs to perform population
genetics analyses under Linux and Windows. Mol.
Ecol. Resour. 10, 564 – 567. (doi:10.1111/j.1755-
0998.2010.02847.x)

57. Zwickl D. 2008 GARLI (Genetic algorithm for
rapid likelihood inference), version 0.96. See
http://www.bio.utexas.edu/faculty/antisense/garli/
garli.html.

58. Purvis A, Bromham L. 1997 Estimating the
transition/transversion ratio from independent
pairwise comparisons with an assumed phylogeny.

http://dx.doi.org/10.1128/JVI.77.7.3893-3897.2003
http://dx.doi.org/10.1128/JVI.77.7.3893-3897.2003
http://dx.doi.org/10.1186/s12862-015-0312-6
http://dx.doi.org/10.1186/s12862-015-0312-6
http://dx.doi.org/10.2307/2410134
http://dx.doi.org/10.1038/nature07331
http://dx.doi.org/10.1038/nature07331
http://dx.doi.org/10.1038/ncomms4513
http://dx.doi.org/10.1128/JVI.78.7.3252-3261.2004
http://dx.doi.org/10.1128/JVI.78.7.3252-3261.2004
http://dx.doi.org/10.1073/pnas.0500057102
http://dx.doi.org/10.1371/journal.pbio.0030371
http://dx.doi.org/10.1371/journal.pbio.0030371
http://dx.doi.org/10.1371/journal.pone.0008631
http://dx.doi.org/10.1007/s10682-010-9419-9
http://dx.doi.org/10.1038/414716a
http://dx.doi.org/10.1023/B:VIRU.0000036384.50102.cf
http://dx.doi.org/10.1023/B:VIRU.0000036384.50102.cf
http://dx.doi.org/10.1073/pnas.0700741104
http://dx.doi.org/10.1016/j.meegid.2012.02.021
http://dx.doi.org/10.3201/eid2301.160224
http://dx.doi.org/10.1038/nrmicro3066
http://dx.doi.org/10.1038/nrmicro3066
http://dx.doi.org/10.1093/molbev/msn234
http://dx.doi.org/10.1093/molbev/msn234
http://dx.doi.org/10.1016/j.meegid.2013.11.015
http://dx.doi.org/10.1016/j.quaint.2011.02.027
http://dx.doi.org/10.1016/j.quaint.2011.02.027
http://dx.doi.org/10.1093/sysbio/syq042
http://dx.doi.org/10.1093/sysbio/syq042
http://dx.doi.org/10.1093/oxfordjournals.molbev.a026254
http://dx.doi.org/10.1128/JVI.75.23.11803-11810.2001
http://dx.doi.org/10.1128/JVI.75.23.11803-11810.2001
http://dx.doi.org/10.1016/j.virusres.2014.01.008
http://dx.doi.org/10.1111/j.1420-9101.2007.01340.x
http://dx.doi.org/10.1111/j.1420-9101.2007.01340.x
http://dx.doi.org/10.1371/journal.ppat.1006215
http://dx.doi.org/10.1128/JVI.01226-09
http://dx.doi.org/10.1007/s11262-011-0620-x
http://dx.doi.org/10.1007/s11262-011-0620-x
http://dx.doi.org/10.1111/eva.12263
http://dx.doi.org/10.1007/s00705-016-2762-6
http://dx.doi.org/10.1111/j.0014-3820.2005.tb00931.x
http://dx.doi.org/10.1111/j.0014-3820.2005.tb00931.x
http://dx.doi.org/10.1111/mec.12343
http://dx.doi.org/10.1371/journal.pone.0112332
http://dx.doi.org/10.1371/journal.pone.0112332
http://dx.doi.org/10.1093/sysbio/sys029
http://dx.doi.org/10.1093/molbev/msh123
http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
http://biodiversityinformatics.amnh.org/open_source/gdmg
http://biodiversityinformatics.amnh.org/open_source/gdmg
http://biodiversityinformatics.amnh.org/open_source/gdmg
http://dx.doi.org/10.1038/nmeth.2109
http://dx.doi.org/10.1038/nmeth.2109
http://dx.doi.org/10.1093/molbev/mst197
http://dx.doi.org/10.1111/j.1755-0998.2010.02847.x
http://dx.doi.org/10.1111/j.1755-0998.2010.02847.x
http://www.bio.utexas.edu/faculty/antisense/garli/garli.html
http://www.bio.utexas.edu/faculty/antisense/garli/garli.html
http://www.bio.utexas.edu/faculty/antisense/garli/garli.html


rspb.royalsocietypublishing.org
Proc.R.Soc.

9
J. Mol. Evol. 44, 112 – 119. (doi:10.1007/
PL00006117)

59. Yang Z. 2007 PAML 4: Phylogenetic analysis by
maximum likelihood. Mol. Biol. Evol. 24, 1586 –
1591. (doi:10.1093/molbev/msm088)

60. R Core Team. 2014 R: a language and environment
for statistical computing. Vienna, Austria: R
Foundation for Statistical Computing.

61. Hyams DG. 2010 CurveExpert software version 1.3.
See https://www.curveexpert.net/.

62. Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-
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