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Abstract

Cytokinesis represents the final stage in the cell cycle, in which two daughter cells, each with their 

complement of the duplicated genome, physically separate. At the core of this process sits highly 

conserved machinery responsible for specifying the plane of division, building a contractile 

apparatus and ultimately cleaving cells in two. Although the ‘parts list’ of contributing proteins 

has been well described, mechanisms by which these parts are spatially and temporally regulated 

are only beginning to be understood. With advancements in biochemical and proteomic analyses, 

recent work has uncovered multiple new roles for post-translational modifications in the regulation 

of cytokinesis. Here, we review these latest findings and interpret our current understanding of 

cytokinesis in light of relevant modifications.

Modifications as a means to regulate cytokinesis

In a variety of organisms and cell types, cytokinesis follows nuclear division and directs the 

cleavage of the cellular cytoplasm. Although this process ultimately manifests itself with the 

physical separation of two daughter cells, myriads of preliminary events set the necessary 

framework to ensure the accurate execution of this concluding stage in the cell cycle. 

Cytokinesis initially requires the selection of an appropriate division site. Following this, a 

contractile apparatus assembles at the division site and undergoes constriction. Daughter 

cells fully separate as cleavage completes during abscission, and each daughter cell then 

initiates its division cycle anew (Figure 1). Actin filaments combined with nonmuscle 

myosin II provide the actomyosin core of the cytokinetic machinery in many organisms. 

Additionally, dozens of accessory proteins localize to the site of division and dynamically 

impact cytokinesis. Given the conservation of many of these factors among eukaryotes, 

regulatory mechanisms that mediate this process in one organism probably mirror those used 

by others (reviewed in [1,2]).

The post-translational modification of proteins serves as one means by which protein 

activity, localization and interactions acquire temporal and spatial specificity. Although roles 

for modifications in general cell cycle control have been known for some time (reviewed in 

[3,4]), their varied contributions to cytokinesis have only recently gained appreciation on a 

broader spectrum, most notably because of improved techniques in targeted and genome-
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wide proteomics. In this review, we highlight recent advances in the field of cytokinesis, 

with a specific focus on regulatory post-translational modifications (Figure 2). In addition to 

addressing the consequences of phosphorylation and ubiquitination in individual stages of 

cytokinesis, we present smaller discussions of other modifications emerging as modulators 

of cytokinesis with the goal of underscoring not only the diversity in signaling achieved 

through these mechanisms but also their potential for interplay.

Phosphorylation

The covalent attachment of phosphate groups to proteins by kinases is a widespread post-

translational modification (Figure 2a). This modification can exert positive, negative and 

even cooperative effects depending on the context (Figure 2b). The reversal of 

phosphorylation by phosphatases contributes an additional level of control to this 

modification. Although the description below focuses on symmetric cell divisions, 

phosphorylation contributes to the regulation of asymmetric divisions as well (Box 1).

Positioning and assembly of the contractile apparatus

In the fission yeast Schizosaccharomyces pombe, two separate but integrated mechanisms, 

both of which possess ties to upstream kinase regulation, are involved in the assembly of a 

contractile apparatus (Figure 3a), known as a cytokinetic ring because of its shape. The first 

mechanism, known as the search, capture, pull and release model, is based on the 

observation that formin Cdc12 and type II myosin Myo2 localize to a broad series of medial 

nodes at the onset of mitosis, where they respectively mediate F-actin nucleation and actin 

filament condensation into a ring structure [5,6]. The recruitment of both Cdc12 and Myo2 

into nodes depends on the anillin-related protein Mid1. Nuclear export via phosphorylation 

by the polo-like kinase Plo1 concentrates Mid1 medially in early mitosis (Figure 3a, left), 

thereby coupling the nucleus to division plane positioning in this organism [7,8]. Cues from 

distal cell tips, including the inhibitory phosphorylation of the Mid1-binding protein kinase 

Cdr2 by the DYRK-family kinase Pom1, meanwhile reinforce medial node distribution to 

promote the assembly of the cytokinetic ring in the middle of the cell [9–11]. De novo ring 

assembly from node-like bands of myosin II has also been reported in animal cells [12,13]. 

Whether this represents a conserved assembly mechanism and whether phosphorylation 

plays a role in this process in animal cells have yet to be fully addressed.

Nonetheless, in the absence of detectable nodes and Midi, the formation of a cytokinetic ring 

still occurs in S. pombe, albeit with reduced speed and efficiency [14]. The spot/leading 

cable mechanism of ring assembly might account for this fact, because electron microscopy 

suggests that actin filaments arise from a single aster and spread around the circumference of 

the cell to form the cytokinetic ring [15] (Figure 3a, right). A conserved signaling network, 

known as the septation initiation network in fission yeast, has been implicated in Mid1-

independent ring assembly [16]. The septation initiation network, which is orthologous to 

the mitotic exit network of the budding yeast Saccharomyces cerevisiae, consists of a 

GTPase-regulated kinase cascade that is initially triggered through polo-like kinase. The 

most downstream kinase, known as Dbf2 in S. cerevisiae and Sid2 in S. pombe, 

phosphorylates Cdc14 family phosphatases to control their cytoplasmic accumulation 
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[17,18], which is significant given the role of Cdc14 phosphatases in reversing 

phosphorylations catalyzed by M phase cyclin-dependent kinases (CDKs). Although 

signaling through some kinases, including polo, advances cytokinesis, other kinases, such as 

M phase CDKs, instead inhibit cytokinesis. Indeed, the dephosphorylation of several 

microtubule-binding CDK substrates, including protein regulator of cytokinesis 1 (PRC1), 

facilitates the formation of the spindle midzone [19], and the reduction of CDK activity in 

mitotically arrested mammalian cells causes cytokinesis [20]. In S. pombe, the Cdc14 family 

phosphatase Clp1, which is activated via the autodephosphorylation of CDK phosphosites 

[21], dephosphorylates the cytokinetic F-BAR scaffold Cdc15 [22]. The activation of the 

septation initiation network controls Cdc15 hypophosphorylation [16], which is logical 

given the role of Sid2-mediated phosphorylation in Clp1 regulation [18]. The 

dephosphorylation of Cdc15 subsequently promotes Cdc15 scaffolding activity and 

cytokinetic ring assembly [16,23]. The removal of CDK phosphorylations on the cytokinetic 

IQGAP in the polymorphic fungus Candida albicans likewise promotes ring formation [24], 

although it is unclear whether this can be triggered via related signaling pathways. Currently, 

it is also unknown if the S. pombe septation initiation network or orthologous pathways in 

other organisms mediate the direct phosphorylation of ring components other than Cdc14 

phosphatases to control ring assembly.

In both models of S. pombe ring assembly, signaling begins through polo-like kinase (Figure 

3a). In budding yeast (Figure 3b) and animal cells (Figure 3c), polo also influences small 

Rho GTPases, Rho1 and RhoA, respectively, to control the early stages of cytokinesis and 

cytokinetic ring assembly. Rho proteins become activated through the loading of GTP by 

guanine nucleotide exchange factors (GEFs) and inactivated following GTP hydrolysis 

mediated by GTPase-activating proteins (GAPs). In budding yeast, the polo-like kinase 

Cdc5 phosphorylates Rho1 GEFs to target them to the bud neck [25]. Rho1 GEFs 

subsequently bind and activate Rho1 at this site (Figure 3b) [25,26]. In animal cells, polo 

signaling likewise controls RhoA function, with polo-like kinase Plk1 phosphorylating the 

RhoGAP Cyk4/MgcRacGAP [27,28]. Cyk4 associates with the kinesin MKLP1 to form 

centralspindlin, a microtubule-bundling complex that stably accumulates at the spindle 

midzone once CDK phosphosites on MKLP1 are reversed and once Aurora B 

phosphorylates MKLP1 to locally impede the 14-3-3 inhibition of central-spindlin in this 

region [29,30]. Plk1-mediated phosphorylation of Cyk4 then primes centralspindlin for the 

recruitment of the RhoGEF Ect2 to the midzone and the subsequent medial activation of 

RhoA [27,28] (Figure 3c). Rho GTPase flux achieved through active RhoGAP meanwhile 

limits the lateral spread of active Rho zones such that they are maintained medially [31]. 

RhoGEF and GAP activities are themselves modulated through phosphorylation by diverse 

kinases such as Aurora B, CDKs and polo-like kinases [32–36]. The protein phosphatase 

PP2A can reverse such phosphorylation [32], consistent with protein kinases and 

phosphatases operating in concert to dictate the timing of cytokinesis in various organisms.

Constriction of the contractile apparatus

Although the exact mechanism guiding the constriction of the cytokinetic ring has not been 

fully defined, the general assumption is that ring constriction proceeds similarly to the 

constriction of muscle sarcomeres, with antiparallel F-actin sliding on myosin II [1]. 
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Therefore, regulatory inputs impacting myosin II profoundly shape this step of cytokinesis. 

Like other type II myosins, those involved in cytokinesis possess both heavy and light 

chains. In animal cells, regulatory light chain phosphorylation at two sites, threonine 18 and 

serine 19, enhances myosin II ATPase activity as well as myosin II filament formation [37]. 

Consistent with a role for light chain phosphorylation in cytokinesis, diphosphorylated 

myosin II promotes total cellular contractility [38,39], and cancer cells that fail cytokinesis 

exhibit reduced myosin light chain phosphorylation [40]. Although light chain 

phosphorylation was also previously thought to act as the predominant determinant of the 

cortical localization of myosin II during cytokinesis [37], more recent research has 

suggested that factors independent of phosphorylation can control this targeting and thereby 

impact initial ring assembly [41,42].

A variety of kinases, including two Rho-effector kinases, ROCK and citron kinase, as well 

as a calmodulin-effector kinase, namely myosin light chain kinase, contribute to myosin II 

diphosphorylation [37]. Scaffolding through the septin SEPT2 is reported to enable many of 

these kinases to assemble together with myosin II for robust phosphorylation [43]. The 

dissociation of ROCK and citron kinases from myosin II has been associated with cleavage 

furrow regression in Chinese hamster cells [43]. Correspondingly, the silencing of ROCK 

signaling has been posited to cause the late cytokinesis failure observed during the 

polyploidization of human megakaryocytes [44], and the knock-down of citron kinase in 

HeLa cells blocks cytokinesis [45]. The effect of ROCK on myosin II function during 

cytokinesis is complicated by its phosphorylation of myosin light chain phosphatase. Such 

phosphorylation indirectly heightens myosin light chain phosphorylation by opposing the 

binding of myosin light chain phosphatase to myosin II and by also inhibiting the activity of 

the phosphatase [37]. Unlike Rho-effector kinases, myosin light chain kinase becomes 

activated by calcium-calmodulin binding. In sea urchin eggs, the forced release of calcium in 

early metaphase triggers premature cortical contraction, suggesting a prominent role for 

myosin light chain kinase in cytokinetic contractility in this organism [46]. Consistent with 

transient calcium-calmodulin-myosin light chain kinase inter-actions inducing localized 

cellular contraction, the maximal equatorial binding of calcium-calmodulin to myosin light 

chain kinase occurs just prior to ring constriction during cytokinesis in rat kidney cells [47]. 

Although all of these kinases can shape myosin activation during cytokinesis, more research 

is required to detail their relative timings and contributions in different organisms and cell 

types.

In addition to activating roles for myosin phosphorylation, some identified phosphorylation 

events instead confer inhibitory cues for cytokinesis. For example, the S. pombe PAK-

related kinase Pak1/Orb2 phosphorylates the myosin II light chain Rlc1 to inhibit the 

constriction of the cytokinetic ring [48], and the phosphorylation of the myosin II heavy 

chain in the slime mold Dictyostelium actually prevents the formation of myosin II filaments 

that are responsible for myosin II function in this organism [49]. The involvement of heavy 

chain phosphorylation in myosin II regulation during cytokinesis has furthermore been 

documented in fission yeast, where such phosphorylation contrarily stimulates constriction 

through an unknown mechanism [50]. Clearly, myosin II function in various organisms is 

controlled through a complicated array of phosphorylation events, although the exact 

locations and effects of these phosphosites might differ among species.
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Separation of daughter cells

Just as the initiation of cytokinetic ring assembly requires concentrated, medial RhoA 

activation in animal cells, the completion of cytokinesis only occurs as active RhoA declines 

at the cleavage furrow. Protein kinase C ε (PKCε) promotes this local decrease in active 

RhoA following the priming phosphorylation of PKCε, 14-3-3 binding and full activation 

[51]. However, the relevant PKCε substrate mediating this effect has yet to be identified.

Concomitant with such Rho inhibition, the local lipid composition at the furrow must be 

dynamically refashioned for cytokinesis to complete [52]. Lipid kinases perform crucial 

roles in this task and thereby deserve recognition as key players in molecular modifications 

during cytokinesis. Despite being broadly distributed on the plasma membrane earlier in 

mitosis, the phosphoinositide phosphatidyl-4,5-bisphosphate (PtdIns(4,5)P2) concentrates in 

the cytokinetic furrows of fission yeast and mammalian cells [52–55]. The recruitment of 

relevant phosphoinositide kinases to the furrow is thought to be largely responsible for such 

accumulation [52,53]. Significantly, the loss of PtdIns(4,5)P2 from mammalian furrows 

results in late cytokinesis failure, probably because of an inability to recruit post-furrowing 

factors such as septins and ezrin/radixin/moesin proteins and related defects in linking the 

cytokinetic apparatus to the plasma membrane [52–54]. Unlike PtdIns(4,5)P2, another 

phosphoinositide, namely phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3), is 

undetectable at the cleavage furrow but instead localizes to the poles of dividing 

Dictyostelium cells. The experimental disruption of kinases controlling PtdIns(3,4,5)P3 

destroys this localization pattern and prevents the completion of cytokinesis following 

ingression [56], likewise underscoring the significance of spatial control in lipid kinase 

function.

During abscission, additional regulatory factors tied to phosphoinositide signaling are 

shuttled to the furrow. Indeed, the disruption of cellular trafficking, especially of two Rab 

GTPases, Rab11 and Rab35, affects the final steps of cytokinesis in higher eukaryotes 

[52,55,57,58]. In the fruit fly Drosophila melanogaster, the kinase Four wheel drive 

catalyzes the formation of phosphatidylinositol-4-phosphate (PtdIns(4)P). The subsequent 

incorporation of PtdIns(4)P into Golgi-derived vesicles promotes the trafficking of Rab11 to 

the midbody, the microtubule remnant of the anaphase spindle midzone that links the two 

daughter cells [59]. It will be interesting to examine whether lipid kinase function also 

directs Rab11 trafficking in mammals given the role of Rab11 in mammalian abscission 

[57,58]. The disruption of Rab35-based cycling meanwhile perturbs the cellular distribution 

of PtdIns(4,5)P2, probably by affecting the transport of relevant kinases to the furrow 

[52,55]. Therefore, lipid kinases act both upstream and downstream of Rab GTPase-

mediated endocytosis at the cleavage furrow. Moreover, phosphoinositides at the midbody 

can also directly bind factors needed for abscission. For example, phosphatidylinositol-3-

phosphate (PtdIns(3)P) recruits the centrosomal protein FYVE-CENT to the midbody. Here, 

FYVE-CENT binds CHMP4B [60], which is an ESCRT-III component, and this interaction 

is significant given the proposed function of ESCRT-III in membrane bending and scission 

[61]. Given that lipid kinase activity directs secretory machinery and transport in yeasts as 

well [62], these enzymes could potentially affect cell separation in multiple organisms 

through similar pathways.
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In addition to cues that trigger abscission, chromatin persisting in the plane of division has 

been reported to delay the completion of cytokinesis. In both budding yeast [63,64] and 

human cells [65], Aurora B kinase activity safeguards cells from dividing through 

unsegregated chromosomes. In these organisms, Aurora B transfers with the rest of the 

chromosomal passenger complex to the spindle midzone in anaphase following the reversal 

of CDK-mediated phosphorylation on the passenger protein INCENP [66,67]. Thus, Aurora 

B is nicely positioned at this stage of the cell cycle to detect chromatin in the cleavage plane. 

Indeed, acetylated chromatin stalled in the vicinity of the central spindle activates Aurora B 

in budding yeast [63]. Active Aurora B then initiates a NoCut checkpoint by targeting the 

abscission inhibitors Boi1 and Boi2 to the bud neck, where they prevent chromosome cutting 

by the cytokinetic apparatus [64]. In HeLa cells, chromosome bridges likewise prolong 

Aurora B activity at the midbody, and this stabilizes ingressed furrows and protects against 

tetraploidization caused by furrow regression [65]. Although the mechanism by which such 

stabilization occurs is currently unclear, it has been suggested that Aurora B phosphorylation 

of the centralspindlin kinesin MKLP1 could be involved [65]. Aurora B-mediated abscission 

checkpoints do not operate in S. pombe, and the generality of these mechanisms awaits 

further examples.

Ubiquitination

Ubiquitin is a small, 76-residue protein that is attached to substrates via a cascade of E1 

activating, E2 conjugating and E3 ligase enzymes (Figure 2a). Although widely recognized 

for its role in proteasomal degradation, ubiquitination also primes proteins for various 

regulatory functions (Figure 2b).

Positioning and assembly of the contractile apparatus

As previously noted, Rho signaling contributes primary cues for cytokinetic ring assembly in 

animal cells. A crucial upstream regulator of such signaling, via the phosphorylation and 

clustering of the centralspindlin complex at the midzone [29] and the direct phosphorylation 

of various Rho GAPs and GEFs [32,34,36], is Aurora B kinase. Once recruited to the 

midzone, Aurora B establishes a phosphorylation gradient that spatially organizes the 

informational outputs required for cytokinesis [68]. Although much of the signal originating 

from midzone-activated Aurora B comes in the form of phosphorylation, the initial 

recruitment and accumulation of Aurora B at the midzone in animal cells requires ubiquitin 

modification. Aurora B associates with numerous Bric-a-brac-Tramtrack-Broad (BTB) 

domain adaptors for the Cullin3 E3 ubiquitin ligase [69,70]. The BTB adapter KLHL21 

specifically mediates Aurora B transfer to microtubules at the midzone, and this targeting 

seems partially enzymatically driven given that Cullin3-KLHL21 complexes ubiquitinate 

Aurora B [70]. Interestingly, Aurora A kinase is likewise ubiquitinated in human cells. 

Although such ubiquitination targets Aurora A for degradation at anaphase, this allows for 

the formation of a mature spindle midzone [71]. Thus, through its destruction ubiquitinated 

Aurora A paves the way for ubiquitinated Aurora B to exert its cytokinesis functions at the 

spindle midzone. In this way, the ubiquitination of both Aurora A and Aurora B affect 

subsequent Aurora B phosphorylation events that guide cytokinesis.
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Constriction of the contractile apparatus

One important issue in cytokinesis concerns what happens to ring components as the 

cleavage apparatus constricts (Figure 4). In fission yeast, the local levels of several ring 

proteins, including the IQGAP Rng2, the F-BAR scaffold protein Cdc15 and the formin 

Cdc12, decrease at the cytokinetic ring in relation to the reduction in ring size [72]. 

Interestingly, the disassembly of cleavage furrow components in definable units has been 

proposed to contribute to the scalability of this process in animal cells [73]. Given its role in 

protein degradation, ubiquitination represents one means by which the clearance of proteins 

from the cleavage furrow could be achieved (Figure 4), and there are several examples of 

ubiquitin-mediated degradation of cytokinetic proteins. In budding yeast, the ubiquitin-

mediated destruction of the cytokinetic IQGAP Iqg1 and the F-BAR scaffold Hof1 fosters 

the disassembly of the contractile apparatus and promotes actomyosin constriction, 

respectively [74,75]. Both Iqg1 and Hof1 are phosphoproteins [76], and the phosphorylation 

of Hof1 has been suggested to affect its degradation [75], indicating potential links between 

phosphorylation and ubiquitination in such regulation. Anillin and anillin-like proteins are 

also targeted for degradation by ubiquitin-mediated pathways in animals and fission yeast 

[77,78], with the destruction of fission yeast anillin-like protein Mid2 impacting septin 

dynamics at the ring [78]. mDia2, the mammalian formin responsible for cytokinetic actin 

[79], is also degraded via ubiquitin modification at the completion of the cell cycle [80], 

although the exact contribution of such ubiquitination to ring constriction is unknown. Thus, 

protein turnover through ubiquitin pathways contributes to the proper cycling of cleavage 

furrow components in various organisms (Figure 4), which probably impacts the integrity of 

constriction.

Ubiquitin signaling also confers a checkpoint function just prior to ring constriction. When 

chromosomes are not properly attached to the mitotic spindle in fission yeast, the E3 

ubiquitin ligase Dma1 blocks the localization of the polo-like kinase Plo1 by ubiquitinating 

the scaffold of the septation initiation network [81]. This antagonizes the septation initiation 

network, probably by preventing the upstream Plo1-mediated phosphorylation of factors in 

this signaling pathway [81]. Thus, Dma1 ubiquitination indirectly curbs Plo1 kinase function 

and consequently inhibits downstream kinases in the septation initiation network. Dma1 

possesses a phosphothreonine-binding FHA domain in addition to a RING finger domain, 

suggesting that phosphorylation of its binding partners is likely to impact its recruitment and 

ubiquitin-mediated checkpoint function. Related E3 ubiquitin ligases in humans, known as 

CHFR and RNF8, are also involved in mitotic checkpoints, although their relation with polo-

like kinases and a possible involvement in cytokinesis remain unclear [82,83].

Separation of daughter cells

During the final stages of cytokinesis in animal cells, GFP-ubiquitin accumulates as a dense 

cluster on the midbody, specifically concentrating on the midbody ring that encircles 

antiparallel midbody microtubules [84]. Indeed, several proteins capable of binding to 

ubiquitin, including ESCRT components, localize to the midbody [60,85]. BRUCE, a large, 

multidomain protein possessing hybrid E2/E3 ubiquitin ligase activity, regulates 

ubiquitination at the midbody ring and impacts various facets of abscission signaling, 

including the assembly of the midbody structure and targeting of membrane to the cleavage 
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furrow [84]. Accordingly, BRUCE probably links ubiquitination to these crucial processes. 

In addition, given that BRUCE shuttles with Rab11-associated endosomes [84], which as 

previously discussed traffic to the midbody in Drosophila partly through the incorporation of 

PtdIns(4)P [59],it seems reasonable to speculate that relevant lipid kinases could affect 

BRUCE function and ubiquitination at the midbody.

Ubiquitin modification of the midbody ring furthermore primes it for degradation. However, 

this does not occur through the proteasome. Instead, ubiquitin at the midbody ring binds the 

autophagy factor p62 during abscission, thereby coupling midbody ring clearance following 

daughter cell separation to these late stages in cytokinesis [86].

Considering the dramatic increase in ubiquitin at the midbody just prior to abscission, it 

seems reasonable that ubiquitin is participating in regulatory roles that have yet to be 

described. Currently, whether ubiquitination affects abscission in lower eukaryotes is 

unclear, although this deserves further analysis given the involvement of ubiquitination in 

the preceding stages of fungal cytokinesis.

Additional modifications of interest

In addition to phosphorylation and ubiquitination, other modifications dynamically regulate 

cytokinesis factors (Figure 2). However, the contributions of these additional modifications 

to the control of cytokinesis have yet to receive as much attention as have phosphorylation 

and ubiquitination. We highlight emerging roles for three of these modifications, namely 

glycosylation, sumoylation and acetylation, in brief discussions below, and we also note 

links that exist among these and other modifications in this process.

Glycosylation

Glycosylation entails the addition of sugar moieties to relevant substrates. In various 

organisms, including the nematode worm Caenorhabditis elegans [87] and D. melanogaster 
[88], defects in protein glycosylation have been reported to affect cell separation via the 

disruption of intracellular transport pathways. Even so, how glycosylation impinges upon 

other post-translational modifications in cytokinesis remained largely unaddressed until 

recent investigations of O-linked beta-N-acetylglucosamine (O-GlcNAc). As with general 

glycosylation defects, the disruption of O-GlcNAc modification impairs cytokinesis [89]. 

These defects probably result from altered phosphorylation signaling, because 

glycoproteomic and phosphoproteomic screens of animal proteins that localize to the mitotic 

spindle and midbody have demonstrated that O-GlcNAc modification affects the 

phosphorylation status of cytokinesis regulators, including CDK and the chromosomal 

passenger complex [90]. Sites modified by O-GlcNAc can coincide with or neighbor 

phosphorylated sites, indicating potential crosstalk [90]. Therefore, although glycosylation 

probably exerts effects of its own, it also presumably feeds into additional regulatory circuits 

that complicate the linearity of its signaling. Future efforts to unravel these complicated 

webs, to define how glycosylation cooperates with or antagonizes nearby modifications and 

to understand whether responsible glycosyltransferases are themselves regulated should be 

of considerable interest.
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Sumoylation

SUMO, or small ubiquitin-like modifier, is structurally similar to ubiquitin and is attached to 

substrates through a similar E1, E2 and E3 enzymatic cascade. However, SUMO 

modification does not promote the degradation of target proteins but rather confers specific 

regulatory functions. In cytokinesis, two main targets of sumoylation, the septins and the 

chromosomal passenger complex, have been identified. In budding yeast, septins were the 

first identified sumoylation targets [91]. These proteins localize to a ring at the S. cerevisiae 
bud neck and act as scaffolds for proteins involved in various aspects of cytokinesis. The 

disruption of septin sumoylation impairs septin ring organization and disassembly [91]. 

Thus, cell cycle-regulated nucleocytoplasmic transport of the SUMO machinery is used to 

properly control septin sumoylation and desumoylation [92]. In mammalian cells, two 

members of the chromosomal passenger complex, Aurora B kinase and Borealin, are 

sumoylated [93,94]. During mitosis, Aurora B mutants lacking SUMO modifications persist 

at chromosome arms rather than relocating to the spindle midzone, causing cytokinesis 

failure [94]. In budding yeast, the Survivin ortholog Bir1 is also sumoylated [95], suggesting 

that sumoylation confers a conserved means of regulating the chromosomal passenger 

complex. Therefore, it will be interesting to examine how SUMO modification influences 

phosphate and ubiquitin modifications that control the targeting of the chromosomal 

passenger complex to the midzone [66,69,70].

Acetylation

Although historically well known as a histone modification, acetylation, or the attachment of 

acetyl groups to substrates, also occurs on other proteins and affects myriads of cellular 

processes, including cytokinesis. For instance, increasing evidence suggests that the 

acetylation of tubulin subunits represents one means by which microtubule properties are 

controlled at the animal midbody to guarantee proper midbody-based signaling during 

cytokinesis. The N-acetyltransferase NAT10 transfers from the centrosome to the midbody 

during late mitosis, where it influences the acetylation of this structure. Reducing NAT10 

doubles the amount of time needed to complete cytokinesis and results in an increase in 

multinucleate cells, indicating a general cytokinesis defect when midbody acetylation is 

disrupted [96]. In addition, the knockdown of the Arf family GTPase Arl3, which also 

localizes to the midbody, alters the cellular levels of tubulin acetylation and can impair 

midbody disassembly [97]. Potential connections between the acetylation and ubiquitination 

pathways have also been proposed to occur via the histone deacetylase inhibitor CYLD, a 

deubiquitinating enzyme that localizes to the midbody and controls the rate of cytokinesis 

through its interactions with HDAC6 at this site [98]. Therefore, although specific 

mechanisms contributing to midbody acetylation have yet to be fully described, it seems 

reasonable that this modification controls cytokinesis partly through its modulation of 

participating microtubules.

Concluding remarks

In summary, cytokinesis factors are subject to a vast array of modifications, and these 

modifications have been found to operate both individually and interdependently in 

numerous stages of cytokinesis (Box 2)(Figure 2b). Presumably, thousands of individual 
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modification events have yet to be defined, leaving considerable room for discovery in this 

field. Future research should not only attempt to identify these events but also focus on 

defining the upstream controls and downstream consequences of known modifications (Box 

3). Despite current shortcomings, our present inventory of post-translational modifications in 

cytokinesis is impressive. Even so, this knowledge base provides us with even more 

challenges, because we must now consider how all of these modifications are coordinated to 

confer robust control (Box 2). Only by doing so will we achieve a full appreciation of the 

intricate mechanisms by which post-translational modifications guide cytokinesis.
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Box 1

Phosphoregulation of asymmetric cell divisions

Asymmetric cell divisions result in daughter cells with unique molecular identities. As 

part of this process, distinct fate determinants differentially segregate to opposite halves 

of dividing cells early in the division process. Neuroblasts of D. melanogaster have 

emerged as leading models for the study of asymmetric cell division (reviewed in [101]). 

In this organism, the Par and Pins complexes initially define the apical cortex. Atypical 

protein kinase C (aPKC), which is a member of the Par complex, is activated following 

Aurora A phosphorylation of another Par complex component, namely Par6 [102]. Active 

aPKC in turn blocks basal determinants from the apical side via both direct 

phosphorylation and indirect mechanisms [101,103]. Partner of Inscruteable (Pins), the 

namesake of the Pins complex, meanwhile binds proteins that can attach to microtubules 

at the apical cortex, thereby establishing proper spindle alignment and spindle-based 

furrow positioning [101]. Aurora A phosphorylates Pins in its central linker region. The 

loss of this phosphorylation impedes the recruitment of proteins involved in microtubule 

attachment to the apical cortex and severely disrupts spindle orientation [104]. 

Interestingly, the site phosphorylated by Aurora A in Drosophila is conserved in the 

mammalian Pins ortholog, and this site is phosphorylated by the aPKC of the mammalian 

Par complex to likewise affect protein binding and spindle orientation in epithelial cells 

[105]. Therefore, the phosphorylation of Pins orthologs might represent a conserved 

means for guiding spindle orientation and division plane positioning during asymmetric 

cell divisions in various organisms. Even so, recent evidence from Drosophila and C. 
elegans suggests that spindle-independent pathways based on unequal myosin 

partitioning also drive asymmetric division plane positioning [106,107]. In Drosophila, 
the required polarization of myosin depends on apical Pins [106]. Therefore, it will be 

interesting to assess whether the direct phosphorylation of Pins or other polarity factors 

contributes to the spindle-independent placement of the cleavage furrow.
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Box 2

Additional crosstalk between modifications during cytokinesis

In this review, examples of potential and documented interplay between protein 

modifications during cytokinesis have been provided. However, these examples are by no 

means exhaustive. For example, the importance of polo-like kinases was highlighted in 

the discussion of phosphorylation-driven cytokinetic ring assembly (Figure 3). However, 

polo-like kinases are themselves controlled by post-translational modification. In human 

cells, the anaphase-promoting complex/cyclosome, an E3 ubiquitin ligase, targets the 

polo-like kinase Plk1 for proteolysis [100], indicating a direct role for ubiquitination in 

silencing Plk1 function at the end of cell division. Therefore, direct ubiquitin-dependent 

mechanisms as well as indirect ones, such as the ubiquitination of polo scaffolds [81], 

control this kinase family. Interestingly, the anaphase-promoting complex/cyclosome is 

activated by multiphosphorylation [99]. This is significant given that the anaphase-

promoting complex/cyclosome triggers the destruction of animal anillin [77] and the 

budding yeast IQGAP Iqg1 [74]. Thus, the phosphorylation of the anaphase-promoting 

complex/cyclosome affects ring constriction via promoting the ubiquitin-mediated 

degradation of cytokinetic proteins. Furthermore, recognition by another E3 ubiquitin 

ligase, namely the Skp1-cullin-F-box complex, generally requires substrate 

phosphorylation [108]. During cytokinesis, the proteolysis of the S. cerevisiae F-BAR 

protein Hof1 and the S. pombe anillin-related protein Mid2 relies on this complex 

[75,78]. Both proteins are phosphorylated in vivo [75,109], suggesting added crosstalk 

occurs through the phosphoregulated targeting of substrates to E3s during ring 

constriction. Thus, as indicated by these additional examples of crosstalk between 

phosphorylation and ubiquitination on regulators of cytokinesis, interplay amongst 

modifications is multifaceted and seemingly limitless (Figure 2b).

In light of such complexity, bioinformatics tools for analyzing networks of post-

translational modifications have begun to evolve. The development of PHOSIDA [110], 

for example, has eased the task of mining published datasets for varied modifications on 

a specific protein. This tool integrates approximately 70 000 known phosphorylation sites 

along with the largest databases of protein acetylation and glycosylation sites into one 

search engine for multiple species. A search of animal septin SEPT2, described in the 

text as a scaffold for protein kinases that affect myosin phosphorylation [43], identified 

phosphorylation sites as well as a unique acetylation site. Given that such easily available 

information could direct future hypotheses pertaining to the scaffolding function of 

SEPT2 in myosin activation, our understanding of crosstalk between modifications in 

cytokinesis should be enhanced through the continued improvement of this and similar 

databases.
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Box 3

Outstanding questions

• What are the targets of kinase networks that control the assembly of the 

cytokinetic apparatus, and what is the contribution of post-translational 

modifications to the maintenance of Rho zones in relevant organisms?

• What is the complete repertoire of cytokinesis factors that must be degraded 

as the cytokinetic apparatus constricts to ensure that this stage of cytokinesis 

proceeds appropriately?

• What specific role(s) does ubiquitin play at the animal cell midbody during 

abscission, and does ubiquitination also affect abscission in lower eukaryotes 

such as yeasts?

• How do post-translational modifications modulate checkpoint pathways 

controlling cytokinesis, and what are the relevant targets involved in this 

signaling?

• How is proper crosstalk of various modifications achieved to ensure coherent 

informational output during cytokinesis?
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Figure 1. 
Stages of eukaryotic cytokinesis. Schematic representations of the process of cytokinesis in 

(a) the budding yeast S. cerevisiae, (b) the fission yeast S. pombe and (c) animal cells. 

Examples of cells at individual stages of cytokinesis are presented, with progression through 

the cell cycle oriented downward. In budding yeast and animal cells, the cytokinetic 

apparatus is positioned and assembled from an active Rho region. In wild type fission yeast, 

cytokinetic ring assembly instead initiates from node-like structures containing formin and 

myosin II, although initial ring assembly can occur via node-independent mechanisms in 

mutants lacking these structures. Following the constriction of the cytokinetic apparatus in 

budding and fission yeasts, new cell wall material is deposited at the division site to form a 

septum, which is subsequently cleaved to allow for cell separation (reviewed in [1,2]). In 

animal cells, vesicular transport to the midbody, the microtubule-based remnant of the 

anaphase spindle midzone, likewise promotes abscission via its effects on membrane 

composition at the division site as well as its delivery of important cleavage factors 

(reviewed in [52]).
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Figure 2. 
Regulatory post-translational modifications guide cytokinesis. (a) Enzymes responsible for 

catalyzing or reversing the post-translational modifications of interest are indicated. 

Ubiquitination and sumoylation are unique in that they require a cascade of E1 activating, 

E2 conjugating and E3 ligase enzymes and can result in mono-, multi- or polymodifications. 

(b) Proteins can be influenced by different modifications simultaneously. The schematic 

broadly illustrates potential for crosstalk based on known modifications of cytokinesis 

regulators. Protein kinases phosphorylate a variety of proteins during cytokinesis, including 

themselves and E3 ubiquitin ligases (yellow lines). The phosphorylation of some E3 

ubiquitin ligases then drives their activation, leading to the degradation of key cytokinesis 

factors, including many of the kinases initially responsible for this phosphorylation (red 

lines) [99,100]. However, not all ubiquitination causes degradation. In fact, E3 ligases can 

also mediate regulatory ubiquitination, which commonly affects protein localization in direct 

and indirect ways (purple lines) [70,81]. Modification by SUMO has been reported to 

similarly regulate protein localization (pink lines) [94] and, on a global scale, ubiquitination 

and sumoylation could potentially compete for the same sites on proteins (purple and pink 
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lines), given that they both target lysines. Deubiquitinating enzymes, which remove 

ubiquitin from proteins, presumably influence this balance (gray lines). In addition to 

ubiquitin and SUMO, acetyl groups are also attached to lysine residues. Deacetylase 

enzymes could thereby free potential lysines for either ubiquitination or sumoylation (green 

lines, which are dashed because the effect is indirect). Crosstalk between acetylation and 

ubiquitination is probably complicated by interactions among enzymes involved in these 

modifications, with a deubiquitinating enzyme inhibiting deacetylase activity in one reported 

case [98]. Thus, if relevant deubiquitinating enzymes are indeed active, they might remove 

ubiquitin from key substrates, inactivate relevant deacetylases and allow for the 

accumulation of acetyl groups on lysines previously modified by ubiquitin. Additionally, just 

as ubiquitination, sumoylation and acetylation can compete for sites, recent findings suggest 

that glycosylation can occur on residues identical to or flanking phosphorylation sites, and 

this can in turn affect the phosphorylation state of glycosylated proteins, many of which are 

kinases (blue lines) [90]. Accordingly, crosstalk during cytokinesis is multifaceted, with 

singular events often acting both upstream and downstream of numerous others. Ub, 

ubiquitin; SUMO, small ubiquitin-like modifier; P, phosphate group; Ac, acetyl group.
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Figure 3. 
Upstream polo kinase function in cytokinetic ring assembly. Polo-like kinases execute a 

conserved role in regulating the assembly of the cytokinetic apparatus. In the fission yeast S. 
pombe, the polo-like kinase Plo1 promotes the accumulation of the anillin-like protein Mid1 

in medial nodes [7,8], to which it subsequently recruits cytokinesis factors such as formin 

and myosin II [5,6] (a, left). However, cytokinesis can occur independently of both Mid1 

and nodes through Plo1-mediated activation of the septation initiation network [14,16], and 

analysis of F-actin in the cytokinetic ring suggests that this might occur through a spot-

leading cable model [15] (a, right). In the budding yeast S. cerevisiae (b) and animal cells 

(c), signaling through polo-like kinases establishes active Rho zones, which are needed for 

the positioning and assembly of the cytokinetic apparatus. In budding yeast (b), the polo-like 

kinase Cdc5 phosphorylates (‘P’) RhoGEFs, thereby targeting them to the bud neck and 

activating Rho1 in this area [25,26]. In animals (c), the polo-like kinase Plk1 instead 

phosphorylates RhoGAP, which subsequently recruits RhoGEF medially and promotes 

RhoA activation in the middle of the cell [27,28]. In the figure, solid arrows denote direct 

activation and/or recruitment, whereas dashed arrows indicate the cellular implications of 

relevant upstream signaling.
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Figure 4. 
Involvement of ubiquitination in cytokinetic ring disassembly. In various organisms, the 

contractile apparatus disassembles as it constricts. In animal cells, constriction is proposed 

to occur through the shortening of contractile units (separated by black lines in the overall 

ring structure), which thereby couples initial ring size to constriction rate [73]. In the fission 

yeast S. pombe, the cytokinetic IQGAP Rng2, the F-BAR scaffold Cdc15 and the formin 

Cdc12 have been shown to decrease in levels within the cytokinetic ring relative to the 

decrease in overall ring size [72]. Although ubiquitin-mediated degradation (signified by 

‘Ub’ in thefigure’s table) has not been linked to the disassembly of these factors in S. 
pombe, the F-BAR scaffold and IQGAP proteins in the budding yeast S. cerevisiae are 

targeted for destruction via ubiquitination, and such ubiquitination promotes ring 

disassembly and constriction in this organism [74,75]. Furthermore, formin and anillin are 

degraded at the completion of the cell cycle in animal cells [77,80], suggesting a potential 

link between ubiquitination and ring disassembly in this organism, although the exact 

contribution of such ubiquitination awaits further analysis. An anillin-like protein Mid2 is 

likewise degraded in fission yeast via ubiquitin pathways, and the destruction of this protein 

has been posited to affect the dynamics of septin structures [78]. Therefore, the 

ubiquitination of conserved ring components is common in various organisms, and such 

modification probably allows constriction to proceed appropriately.
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