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ABSTRACT

Idiosyncratic drug-induced liver injury (IDILI) typically occurs in a
small fraction of patients and has resulted in removal of other-
wise efficacious drugs from the market. Current preclinical
testing methods are ineffective in predicting which drug candi-
dates have IDILI liability. Recent results suggest that immune
mediators such as tumor necrosis factor-a (TNF) and interferon-y
(IFN) interact with drugs that cause IDILI to kill hepatocytes. This
proof-of-concept study was designed to test the hypothesis that
drugs can be classified according to their ability to cause IDILI in
humans using classification modeling with covariates derived
from concentration-response relationships that describe cyto-
toxic interaction with cytokines. Human hepatoma (HepG2) cells
were treated with drugs associated with IDILI or with drugs
lacking IDILI liability and cotreated with TNF and/or IFN. Detailed

concentration-response relationships were determined for cal-
culation of parameters such as the maximal cytotoxic effect,
slope, and ECsq for use as covariates for classification modeling
using logistic regression. These parameters were incorporated
into multiple classification models to identify combinations of
covariates that most accurately classified the drugs according to
their association with human IDILI. Of 14 drugs associated with
IDILI, almost all synergized with TNF to kill HepG2 cells and were
successfully classified by statistical modeling. IFN enhanced the
toxicity mediated by some IDILI-associated drugs in the pres-
ence of TNF. In contrast, of 10 drugs with little or no IDILI liability,
none synergized with inflammatory cytokines to kill HepG2 cells
and were classified accordingly. The resulting optimal model
classified the drugs with extraordinary selectivity and specificity.

Introduction

Idiosyncratic drug-induced liver injury (IDILI) is a typically
rare reaction that occurs at drug doses that are safe in the
majority of patients. Cases of IDILI can be severe, leading to
liver transplantation or death (Ostapowicz et al., 2002). In
addition to public health concerns, IDILI is a common cause of
removal of drugs from the pharmaceutical market due to the
occurrence and severity of these reactions and to the poor
ability of standard toxicity tests to identify drug candidates
with IDILI liability before they reach the market (Watkins,
2005; Aithal et al., 2011). The causes of IDILI are unknown,
but it is thought that genetic and/or environmental factors
predispose patients to toxicity from an otherwise safe dose of
a drug (Roth and Ganey, 2011). Because these reactions are
usually rare, drugs with IDILI potential are often not
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identified during clinical trials that employ limited numbers
of human subjects. More effective preclinical strategies to
identify drug candidates with IDILI potential could inform
decisions about whether to allow a drug candidate to proceed
through the development process. An in vitro approach that
uses cells that are readily available and easily grown in
culture, requires little compound, employs a single relevant
endpoint, and is amenable to high-throughput format would
be highly desirable.

Development of such an approach has been challenging due
to limited knowledge about mechanisms underlying IDILI.
Several attempts have been made based on direct effects of
drugs on hepatocellular biochemistry and/or on physical-
chemical characteristics of drugs (Usui et al., 2009; Low et al.,
2011; Sakatis et al., 2012; Thompson et al., 2012; Chen et al.,
2013, 2014; Khetani et al., 2013; Morgan et al., 2013; Aleo et al.,
2014; Zhu et al., 2014; Choi et al., 2015; Schadt et al., 2015;
Susukida et al., 2015; Ware et al., 2015; Zhang et al., 2016a,b).
For the most part, the performance of these (selectivity and/or
specificity) has not been ideal. Although it is commonly believed
that activation of the immune system underlies IDILI, the

ABBREVIATIONS: AUC, area under the curve; IDILI, idiosyncratic drug-induced liver injury; IFN, interferon-y; IL, interleukin; LDH, lactate
dehydrogenase; NSAID, nonsteroidal anti-inflammatory drug; ROC, receiver operating characteristic; TNF, tumor necrosis factor-a; VEH, vehicle.
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results of such activation are typically not considered in the
design. Such consideration could lead to an improved approach.

Activation of immune cells culminates in the release of
immune mediators such as cytokines. Some recently devel-
oped animal models as well as human genetic association
studies suggest that adaptive immunity plays a role in the
precipitation of IDILI responses to some drugs (Lucena et al.,
2011; Chakraborty et al., 2015). Mice that have impaired
immune tolerance developed liver injury after several adminis-
trations of IDILI-associated drugs such as halothane and
amodiaquine (Metushi et al., 2015; Chakraborty et al., 2015).
Although these models involving activation of the adaptive
immune system resulted in only mild liver injury, they could
represent an advance in understanding IDILI pathogenesis.
Thus far, very few animal models of IDILI have been developed
that recapitulate the severity of hepatocellular injury observed in
humans. Most of these are based on the interaction of drugs with
an activated innate immune system (Roth and Ganey, 2011).
Among the models based on the interaction between drugs and
the innate immune system, the inflammatory mediators tumor
necrosis factor-a (TNF) and interferon-y (IFN) were critical to
the pathogenesis of liver injury (Hassan et al., 2008; Shaw et al.,
2009a,b; Zou et al., 2009; Dugan et al., 2011; Lu et al., 2012).

Both innate and adaptive immune responses culminate in
the release of these potentially cytotoxic, proinflammatory
cytokines. Findings from the animal studies raised the possibility
that IDILI-associated drugs sensitize hepatocytes to cell death
signaling from cytokines such as TNF and IFN (Roth and Ganey,
2011). Indeed, using a series of drugs, Cosgrove et al. (2009)
found a correlation between IDILI liability and the ability of
drugs to synergize with cytokines to kill primary human hepa-
tocytes in vitro. Using a smaller subset of drugs, Cosgrove et al.
(2009) also found that their results in primary human hepato-
cytes could be reproduced using HepG2 cells, suggesting that the
latter cells hold promise in classifying drugs according to IDILI
liability. These and other studies suggest that IDILI-associated
drugs act in part by causing stress to hepatocytes, such that they
become susceptible to killing mediated by cytokines (Cosgrove
et al., 2009; Zou et al., 2009; Fredriksson et al., 2011, 2014; Beggs
et al., 2014, 2015; Maiuri et al., 2015; for review, see Roth et al.,
2017).

Using HepG2 cells, we recently studied the cytotoxic interac-
tion of TNF/IFN with a series of nonsteroidal anti-inflammatory
drugs (NSAIDs) with various IDILI liabilities and also with an
antibiotic, trovafloxacin (Beggs et al., 2014, 2015; Maiuri et al.,
2015). In studies presented here, we expand on those findings
with a larger set of drugs. Importantly, elucidation of detailed
concentration-response relationships permitted calculation of
various parameters (e.g., ECso, maximal response, slope, etc.)
that we then incorporated into statistical models to evaluate the
ability of this approach to classify drugs according to their
association with IDILI. The results suggest a highly promising,
in vitro approach to predict IDILI liability.

Materials and Methods

Materials

All drugs were purchased from Sigma-Aldrich (St. Louis, MO) or
Santa Cruz Biotechnology (Dallas, TX) unless otherwise noted.
Recombinant human TNF and IFN were purchased from R&D
Systems (Minneapolis, MN) or Millipore (Billerica, MA). Phosphate-
buffered saline, Dulbecco’s modified Eagle’s medium, fetal bovine

serum, antibiotic-antimycotic, and 0.25% trypsin-EDTA were pur-
chased from Life Technologies (Carlsbad, CA).

Cell Culture

Human hepatoma HepG2 cells (American Type Culture Collection,
Manassas, VA) were grown in 25-cm? tissue culture flasks and
maintained in Dulbecco’s modified Eagle’s medium supplemented
with 10% fetal bovine serum and 1% antibiotic-antimycotic in a
humidified incubator at 37°C under 95% air and 5% CO,. Cells were
passed or used for experiments when they reached approximately 80%
confluence. Cells were used at passages 6-16; at higher passage
numbers, the responses became less consistent and, in some cases, less
robust.

IDILI Classification

The 24 drugs evaluated in this study were classified as being
associated with (IDILI+) or not associated with (IDILI—) IDILI.
Known classification was based on a set of criteria established by Xu
et al. (2008). Table 1 lists the drugs evaluated in this study, their
maximal plasma concentration (Cy,,x) after pharmacologic dosing in
human patients, and their known IDILI classification. The drugs that
were used span several therapeutic classes (i.e., antibiotics, NSAIDs,
anticancer, antiepileptic, antidiabetic, and anxiolytic/neuroleptic/
antidepressant/antipsychotic drugs). Most of the IDILI+ drugs we
chose have caused hepatocellular injury in people, although some
(flucloxacillin, chlorpromazine, flutamide, and clavulanate) have
been associated with mixed or cholestatic liver damage. Some of the
IDILI+ drugs (chlorpromazine, diclofenac, and trovafloxacin) pro-
duced liver injury in experimental animals when coupled with an
inflammatory stimulus (Buchweitz et al., 2002; Deng et al., 2006;
Shaw et al., 2009b).

Cytotoxicity Assessment

HepG2 cells were plated at a density of 4 x 10* cells per well in
black-walled, 96-well tissue culture plates and were allowed to attach
overnight before being treated with compounds. Drugs were recon-
stituted in vehicles (VEHSs) consisting of sterile water or dimethylsulf-
oxide (concentration <0.5%). Cells were treated with various
concentrations of the drug or its VEH (control) alone or in combination
with the cytokines TNF (10 ng/ml) and/or IFN (10 ng/ml) or their
phosphate-buffered saline VEH. Cytotoxicity was evaluated as lactate
dehydrogenase (LDH) activity released from the cells into culture
medium using the Homogeneous Membrane Integrity Assay kit from
Promega (Madison, WI). A spectrophotometric method was used to
measure the percentage of LDH release in cases in which the drug
interfered with the fluorescence-based assay (Vanderlinde, 1985).

Concentration-response curves were generated for 24 drugs, 14 of
which are associated with human IDILI and 10 of which are not. Cells
were treated with drug concentrations generally ranging from 0 to
100 times the C,.x observed in human patients. This range of
concentrations is based on scaling factors described in Xu et al.
(2008) and accounts for variability in Cy,.x as well as exposure of the
liver to greater concentrations. The cytokine concentrations used in
this study are within 10-fold of the concentrations found in the serum
of human patients undergoing an inflammatory response (Pinsky
et al., 1993; Taudorf et al., 2007). If a cytotoxic response was observed
but did not reach a plateau by the 100x C,,.x concentration, further
testing was performed with larger concentrations of drug to generate a
complete (sigmoidal) concentration-response curve. Typically, the
range of drug concentrations included at least two that were without
effect, two defining the maximal effect, and two surrounding the EC5,.
This was necessary because four-parameter logistic modeling used in
the statistical analysis requires well defined, sigmoidal concentration-
response curves. Cells were exposed to drug/cytokine combinations for
24 hours. This time was chosen based on previous results demon-
strating that cytotoxicity from drug/cytokine exposure begins within



TABLE 1

Drug/Cytokine Cytotoxic Synergy In Vitro 461

IDILI classification, daily dose, Cpax, and references from which C,., values were taken

Drug IDILI Liability Cmax Daily Dose Cmax Reference
uM mg

Aspirin IDILI- 47 1300 Brandon et al., 1986
Azithromycin IDILI- 0.5 500 Xu et al., 2008
Buspirone IDILI- 0.005 15 Xu et al., 2008
Idarubicin IDILI- 0.02 1 Xu et al., 2008
Levofloxacin IDILI- 15.7 500 Xu et al., 2008
Moxifloxacin IDILI- 6.2 400 Stass et al., 1998
Pioglitazone IDILI- 2.67 15 Xu et al., 2008
Promethazine IDILI- 0.06 25 Xu et al., 2008
Rofecoxib IDILI- 1 12.5 Gottesdiener et al., 2003
Sertraline IDILI- 0.06 50 Xu et al., 2008
Bromfenac IDILI+ 13.5 50 Gumbhir-Shah et al., 1997
Chlorpromazine IDILI+ 0.84 200 Xu et al., 2008
Clavulanate IDILI+ 12 125 Hu et al., 2002
Diclofenac IDILI+ 7.44 100 Xu et al., 2008
Doxorubicin IDILI+ 1 1 Barpe et al., 2010
Flucloxacillin IDILI+ 72.6 250 Rgder et al., 1995
Flutamide IDILI+ 0.36 750 Xu et al., 2008
Ibuprofen IDILI+ 164 800 Bramlage and Goldis, 2008
Isoniazid IDILI+ 77 300 Xu et al., 2008
Naproxen IDILI+ 300 500 Setiawati et al., 2009
Nimesulide IDILI+ 21.08 200 Xu et al., 2008
Telithromycin IDILI+ 2.77 800 Xu et al., 2008
Trovafloxacin IDILI+ 5 300 Xu et al., 2008
Valproic acid IDILI+ 175 60 Rha et al., 1993

IDILI classification was determined by a set of criteria described in Xu et al. (2008). IDILI— indicates that the drug is
not associated with IDILI, whereas IDILI+ indicates that the drug is associated with IDILI.

24 hours (Beggs et al., 2014; Maiuri et al., 2015). For analysis of drug
concentration-response data, concentrations of each drug were ex-
pressed as a fraction of its Cax.

Statistical Analysis

The statistical approach used in this study can be divided into three
phases: 1) drug concentration-response modeling and covariate devel-
opment using four-parameter logistic models, 2) classification model
development using logistic regression models, and 3) analysis of
classification accuracy with receiver operating characteristic (ROC)
curves.

Defining Covariates: Four-Parameter Logistic Concentration-
Response Model. In the first phase, variables (potential covariates) for
use in the classification analysis were defined from the analysis of drug
concentration-response data. Initially, a one-way analysis of variance was
used as an omnibus test to determine whether a particular treatment
(e.g., drug alone or in combination with TNF and/or IFN) caused a
significant change in LDH release relative to baseline (i.e., LDH release in
the absence of drug, hereafter designated “min”). The criterion for sig-
nificance for the analysis of variance was set at @ = 0.01. A 1% level of
significance was used to rule out more vigorously marginal relationships
between concentration and response. For treatments that did not result in
a significant change in LDH above min (P > 0.01), the following was
assumed for the purpose of concentration-response modeling: the mini-
mum LDH response (min) = the maximum LDH response (max). For
drug/cytokine treatment combinations that did result in a statistically
significant LDH response, the concentration-response data were modeled
using the following four-parameter logistic function:

max — min
slope
1+ (9Bcy)

where LDH(x) is the percentage of LDH released at a given concen-
tration x, x is [drugl/C ,.x, min is the percentage of LDH release at
0 drug concentration (i.e., baseline), and max is the maximal LDH
response (i.e., maximum percentage of LDH release). From this
equation, the drug concentration associated with the 50% maximal

LDH(x) = min +

response (ECs5p) and the slope of the concentration-response curve
were calculated. The four-parameter logistic models were generated
using R statistical software (R package “drc”; R Foundation for
Statistical Computing, Vienna, Austria) (R Core Team, 2015; Ritz
and Streibig, 2005).

In addition to slope and ECsg, several other “base covariates” were
calculated from the concentration-response curves for use in further
analyses. These were calculated for each of the 96 drug/cytokine
treatment combinations evaluated in this study (24 drugs x 4 cytokine
combinations) (Supplemental Tables 1-9). Delta was defined as max
minus min. In addition to the covariates determined from concentration-
response curves, Cp,.x was considered as another base covariate.

Similar to ECsg, the covariate ECyy represents the [drugl/Ci,ax
value associated with a 10% increase above min relative to max and
was determined by the following equation:

1
EC1o = Dy9-ECj50-9 /slope

where Dy is a categorical variable related to reaching a threshold
LDH response above which a drug is classified as positively associated
with IDILI. D¢ is defined as 0 if delta is < 10% LDH release and as 1 if
delta is = 10% LDH release.

The base covariate Ryq represents the [drugl/C,,., value associated
with an increase in 10 LDH percentage points above min for a
particular treatment condition and was determined by the following
equation:

1
R10 = ECs0- {dil(;ca - 1} fslope
Rigis considered to be 0 when delta is < 10% LDH (i.e., when Dy = 0).

From the base covariates defined above, several other covariates
were derived. These included the EC5¢ quotient, ECo quotient, Ryo
quotient, deltadiff, and TNF change. Each of these “derived” cova-
riates is explained in more detail below.

The ECso quotient, EC;y quotient, and R;y, quotient represent
the ratio between the EC59, EC1g, or Rig of the drug/cytokine
concentration-response curve and the respective value for the
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drug/VEH concentration-response curve. In some instances, the value
derived from this calculation is indeterminate (i.e., when the de-
nominator = 0). To incorporate the quotient values into the classifi-
cation models described below, the categorical variable “Q” was used to
eliminate the possibility of the quotient being indeterminate. Q is
defined as 0 if delta VEH and/or delta cytokine is < 10% LDH and 1 if
both delta VEH and delta cytokine are = 10% LDH. For the purposes
of calculating the EC5( quotient, the following condition was applied: if
Q = 0, then the EC5¢ quotient = 0; if Q = 1, then the EC5( quotient =
EC5o VEH/EC5, cytokine. The same condition was applied for calcu-
lation of the EC¢ quotient and Ry quotient.

Deltadiff represents the difference between the delta of the
drug/cytokine concentration-response curve and the delta of the
drug/VEH curve. In other words, deltadiff = (delta cytokine) — (delta
VEH). Figure 1 graphically illustrates several of the covariates
defined above. Supplemental Tables 1-9 list the values of all of the
covariates computed in this study. In addition to the covariates
derived from the concentration-response curves, the maximal thera-
peutic plasma drug concentration (Cp,.,) in human patients was used
in some models (Table 1).

TNF change is a categorical variable related to the alteration in the
drug-induced cytotoxic response in the presence and absence of TNF,
determined as follows:

TNF change =D;yp TNF - D,y VEH

Recall that Dy is defined as 0 if delta is = 10% change in LDH release,
and D, is defined as 1 if delta is > 10% change in LDH release.
Accordingly, TNF change = 1ifthe TNF curve has a delta > 10% LDH
release and the VEH curve has a delta = 10% LDH release; TNF
change = 0 in all other situations.

Classification Modeling Using Defined Covariates. In the
second phase of analysis, classification models were developed using
logistic regression with covariates as independent variables in the
analysis and known IDILI classification as the dependent variable.
The ability to classify drugs accurately was evaluated using the known
IDILI classifications shown in Table 1. A model selection process was
used to determine whether a covariate or set of covariates is associated
with IDILI liability. Covariates were first evaluated individually to
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Fig. 1. Depiction of base covariates considered for evaluation. The blue
curve represents hypothetical response to drug alone; the red curve
represents response to drug in the presence of cytokine. Min is the LDH
release in the absence of drug, max is the maximal LDH release. Delta =
max(LDH) — min(LDH) for each curve. Although not depicted in the figure,
deltadiff = delta cytokine — deltaVEH. ECsxq is the [drugl/Cy,.x value at
50% delta. Ryo is not depicted but it represents the [drugl/C . value
associated with a 10% increase in LDH release above min(LDH).

determine how well a particular covariate classified drugs according to
IDILI liability, and then covariates were evaluated in combination.
Combinations of covariates were selected to maximize the ability of
the model to distinguish between drugs associated or not with IDILI.
Specifically, covariates that describe changes in efficacy (delta,
deltadiff, etc.) were paired with covariates that describe changes in
potency (ECsg, EC19, Ry, etc.) to find covariate combinations that led
to models that most accurately discriminated between drugs that are
and are not associated with IDILI. The best-fit logistic regression
models were used as classification models to compute a probability
that a given drug is associated with IDILI. The logistic regression
models use the following equation:

A eBot 2Bix;

y; = prob(IDILI = 1Jx;) = 15 oo TShm

where y; is the calculated (predicted) probability that drug i with a
vector of covariates x; is associated with IDILI. The 8 coefficients (B,
the regression intercept; and B;, the regression slopes for model
covariates, x;) were derived from the logistic regression models using
1) combinations of the covariates (x;) generated by concentration-
response modeling for each of the 24 drugs evaluated in this study plus
daily dose and C,,.x, and 2) the known IDILI classification for the
dependent variabley; (i.e., 1 for IDILI+ drugs and 0 for IDILI— drugs).
For treatments that did not result in a significant change in LDH
above min (P > 0.01), a value of 0 was assigned for covariates derived
from ECj5 for purposes of calculating 8;. The regression coefficients
(B;) were calculated using Firth’s method, which eliminates bias when
estimating the value B; (Firth, 1993). Firth’s method was necessary
since many of the covariates used in this study exhibited quasi-
complete separation. This occurs when a covariate almost perfectly
separates observations into the appropriate categories. In this study,
several covariates almost completely separated drugs according to
their IDILI liability. When separation or quasi-complete separation
occurs, use of the standard method (i.e., maximum likelihood estima-
tion) provides biased, unreliable estimates of 8;. Firth’s method uses a
penalized likelihood regression to rectify this and is an appropriate
method to use for estimating B; when quasi-complete separation of
data occurs (Firth, 1993). All logistic regression models were com-
puted using R statistical software (R package “logistf”) (Heinze et al.,
2013; R Core Team, 2015).

ROC Analysis. In the third phase of the statistical approach, the
classification models, generated as logistic regression models using
single covariates or combinations of covariates, were evaluated by
ROC analysis to determine which model and corresponding sets of
covariates led to the most accurate classification of drugs according to
their potential to cause IDILI. An ROC curve was created for each
model by graphing the true positive rate (sensitivity; i.e., proportion of
drugs correctly classified as associated with IDILI) against the true
negative rate specificity (1 — false positive rate; i.e., proportion of
drugs correctly classified as not associated with IDILI) at various
probability cutoff thresholds (k). ROC curves were generated using R
package pROC (Robin et al., 2011; R Core Team, 2015). An area under
the curve (AUC) and confidence interval were computed for each ROC
curve (where each logistic regression model has one ROC curve). Plots
depicting the AUCs and 95% confidence intervals of the ROC curves
were generated for the purpose of comparing multiple logistic re-
gression models using R package Metafor (Viechtbauer, 2010).
Corresponding to each ROC curve is an optimal threshold value (k*),
the threshold yielding the highest point of accuracy on the curve [i.e.,
the point nearest the point (1,1) on the curve]. Thus, each ROC curve
has a corresponding AUC and an optimal cutoff (k*) that corresponds
to the highest point of accuracy on that ROC curve.

Combinations of covariates were strategically selected for evalua-
tion based on what was deemed to lead to the most accurate classi-
fication of drugs. ROC curves and corresponding whisker plots were
generated to illustrate graphically the ability of each classification
model to classify drugs accurately. This allowed for selection of
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Fig. 2. Drug/cytokine-induced cytotoxicity: concentration-response. HepG2 cells were treated with 14 drugs associated with IDILI and 10 drugs not
associated with IDILI, alone (VEH) and in combination with TNF and/or IFN. Cytotoxicity (% LDH release) was evaluated 24 hours after treatment. The
numbers listed on the x-axis represent the concentration of drug relative to Cy,ax (fold Cy,.x). Refer to Table 1 for the Cy,.x information and known IDILI
classification for each drug and to the Materials and Methods for the rationale concerning the range of drug concentrations evaluated. Each data point
represents the mean * standard error of the mean (SEM) of at least three separate experiments. The dotted curves indicate that the treatment condition
(i.e., VEH, TNF, IFN, or TNF/IFN) resulted in a statistically significant change in LDH from baseline (no drug) at one or more drug concentrations
(ANOVA P < 0.01). Solid lines indicate that the treatment condition did not result in a statistically significant change in LDH relative to baseline at any
drug concentration (ANOVA P = 0.01). The dotted curves were modeled using a four-parameter logistic function as described in the Materials and
Methods to compute parameters describing curve characteristics (minimum cytotoxic effect, maximum cytotoxic effect, ECs5o, etc.).

optimal set(s) of covariates for accurate drug classification according
to IDILI liability. Our goal was to achieve a classification model and a
corresponding set of covariates with an AUC as close to 1 as possible
with the narrowest 95% confidence interval. A model that is able to
classify drugs perfectly according to their potential to cause IDILI
would have an ROC curve with an AUC = 1. DeLong’s method was
used to determine whether there were statistically significant differ-
ences among ROC curves (DeLong et al., 1988).

A separate classification analysis was also performed to evaluate
the ability of C,,4x to classify a larger set of drugs with known IDILI
potential. C. values were obtained for 272 drugs from a study
conducted by Xu et al. (2008) and evaluated using ROC analysis.

Results

Drug/Cytokine Cytotoxicity: Concentration Response
In Vitro

HepG2 cells were treated with various concentrations of
a drug alone or in combination with TNF and/or IFN, and cy-
totoxicity was assessed 24 hours later as increased LDH activity
in the culture medium. Detailed cytotoxicity concentration-
response curves were generated for 24 drugs (Table 1):
14 drugs that are associated with IDILI and 10 that are not
(negative comparators) (Fig. 2; Supplemental Fig. 4). Of the
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Fig. 2. Continued.

14 drugs associated with IDILI, almost all synergized with
cytokines in causing cell death (Fig. 2). Four of these
(diclofenac, bromfenac, nimesulide and clavulanate) caused no
cytotoxicity on their own but synergized with TNF to cause
cytotoxicity. Nine IDILI-associated drugs led to a statistically
significant increase in LDH release (relative to no drug) in the
absence of cytokines (valproic acid, doxorubicin, telithromycin,
ibuprofen, naproxen, chlorpromazine, flutamide, trovafloxacin,
and isoniazid). Interestingly TNF significantly enhanced the
cytotoxicity mediated by eight of these drugs (valproic acid,
doxorubicin, telithromycin, ibuprofen, naproxen, chlorpromazine,
trovafloxacin, and isoniazid). In contrast to TNF, IFN did
not interact with any drug to cause cytotoxicity. How-
ever, coexposure to IFN enhanced the cytotoxic interaction
between TNF and several of the drugs (diclofenac, bromfenac,
trovafloxacin, valproic acid, chlorpromazine, telithromycin,
and isoniazid). Two of the 14 IDILI-associated drugs (flutamide
and flucloxacillin) did not synergize with cytokines to kill
HepG2 cells. Of the 10 negative comparators, pioglitazone

was the only drug that caused cytotoxicity on its own; however,
this effect was not enhanced by the addition of cytokines. With
the exception of azithromycin, which was modestly cytotoxic
in the presence of TNF/IFN, none of the remaining negative
comparator drugs synergized with cytokines to kill HepG2 cells
(Fig. 2).

Classification Models and ROC Analysis

Data used in the classification models consisted of covariate
data generated as described above (i.e., parameters of the
concentration-response curves for each of the 24 drugs and
additional variables derived from these parameters) in addi-
tion to the daily dose and C,,,, for each drug. Daily dose and
C.ax values are shown in Table 1. Supplemental Tables 1-9
summarize parameters of the concentration-response curves
for each drug and all derived covariates. Numerous logistic
regression models were constructed. We began with models
employing each covariate alone, then moved onto models
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Fig. 2. Continued.

populated with combinations of covariates (Supplemental
Table 10). All classification models were evaluated for their
ability to classify the 24 drugs using ROC analysis. Findings
are described below.

Cmax Is Moderately Associated with IDILI Potential

IDILI reactions were once thought not to be dose related;
however, the observation that most drugs that have been
withdrawn from the market or have received a black box
warning due to IDILI were prescribed at doses >50 mg/d
suggested that daily dose plays some role in the propensity of a
drug to cause IDILI (Uetrecht, 1999). Based on this obser-
vation, we evaluated how accurately the daily dose or the
Cax of a drug classifies drugs listed in Table 1 according to
their potential to cause IDILI. We used logistic regression

modeling and ROC analysis as described in the Materials
and Methods. The AUC of the ROC curve generated for the
model incorporating daily dose was 0.64 (95% confidence
interval, 0.37,0.9) (Fig. 3). Since the 95% confidence interval
for the ROC curve from the daily dose model contained the
value 0.5, representing no better than random classification,
it cannot be concluded that the magnitude of the daily dose
is predictive of IDILI for this drug set. A larger set of drugs
may be needed to determine whether daily dose can predict
IDILI.

The AUC of the ROC curve generated for the model
employing C.,.x for our set of 24 drugs was 0.80 (95%
confidence interval, 0.61, 0.98) (Fig. 3). Similar results were
obtained by Shah et al. (2015) for a set of 125 drugs. These
results suggest that C,,,, is associated with IDILI.
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Fig. 2. Continued.

To determine whether our set of 24 drugs is representative
of a larger set of drugs and to further evaluate the ability of
Cnax to predict IDILI liability, C,,.« values were obtained
for 272 drugs from a study conducted by Xu et al. (2008) and
converted to micromolar units. C,.x was significantly
associated with IDILI for this larger data set (Bcmax=
0.044, P < 0.001). The AUC of the ROC curve generated
from this larger set of drugs was 0.70 (95% confidence
interval, 0.64, 0.76). The ROC curves derived from the set
of 24 drugs and from the set of 272 drugs are depicted along
with their 95% confidence intervals in Supplemental Fig. 2.
The confidence interval corresponding to the ROC curve
derived from the set of 272 drugs (shaded red) is contained
within the confidence interval for the ROC curve derived
from the set of 24 drugs (shaded gray). This suggests that the
smaller set of drugs adequately represents the relationship
between C,,,, and IDILI potential seen in a much larger set
of drugs.

ROC Analysis of Models Incorporating the Base Covariates

Almost all of the 14 IDILI-associated drugs synergized with
TNF to cause death of HepG2 cells, and some of them were
cytotoxic by themselves (Fig. 2). These results suggested that
cytotoxic synergy with TNF might be associated with IDILI
liability. Accordingly, classification models were constructed
using base covariates from the concentration-response curves
to determine whether the presence of TNF improved a model’s
ability to classify drugs according to IDILI liability. The base
covariates were modeled for each drug individually; base
covariates that were at least moderately associated with
IDILI liability included delta VEH, delta TNF, ECso, VEH,
ECso TNF, EC,, VEH, EC,(, TNF, R;q VEH, and R;, TNF.
AUCs and 95% confidence intervals are shown in Fig. 4A for
each of these covariates. It can be seen that the confidence
interval for each of these covariates does not contain the value
0.5, indicating a significantly better than random ability to
classify the 24 drugs according to IDILI potential. The model
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Fig. 3. Comparison of the model incorporating daily dose to that incorporating
Cnax- (A) AUCs and 95% confidence intervals are depicted for the ROC curves
derived from the models incorporating either daily dose or C,.«. The covariates
are listed on the left, and the AUC for each one is shown on the right next to
the 95% confidence interval (shown in brackets). (B) The ROC curves for the
model incorporating daily dose and Ci,.x are indicated by red and blue lines,
respectively. The 95% confidence intervals for the model incorporating daily
dose and C,,., are shaded red or blue, respectively. Overlap between the
confidence intervals for the two ROC curves appears in violet.

incorporating delta TNF produced the ROC curve with the
greatest AUC (0.93) and the narrowest 95% confidence in-
terval (0.83, 1.00); this suggesting that of these models, it
provided the most accurate classification of the drugs (Fig.
4A). Furthermore, the base covariates that described the
response to drug/TNF (labeled “TNF”) led to models that
produced ROC curves that had improved AUCs with narrower
confidence intervals than those that described the response to
drug alone (i.e., labeled “VEH”) (Fig. 4).

ROC Analysis of Models Incorporating Derived Covariates

Probability models were also generated using the individual
covariates that were derived from the base covariates: ECs,
quotient, EC( quotient, Rg quotient, and deltadiff. In Fig. 5,
the EC59, EC1g, and Rjo quotient covariates represent the
ratio of the drug/TNF concentration-response curve to the
drug/VEH curve, and deltadiff represents the difference be-
tween the deltas from the drug/TNF concentration-response
curve and the drug/VEH curve. Each of these covariates
(except deltadiff) was moderately associated with IDILI
liability (Fig. 5); however, the ROC curves generated based
on these models did not have greater AUCs or narrower
confidence intervals than the models produced by incorporat-
ing the base covariates (compare Figs. 4 and 5).

Addition of IFN Data Did Not Improve the Classification of
Drugs

None of the drugs synergized with IFN in the absence of
TNF to cause cytotoxicity, but several IDILI-associated drugs
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Fig. 4. Evaluation of models incorporating the base covariates. (A) AUCs
and 95% confidence intervals are illustrated for the ROC curves derived
from the models incorporating the base covariates delta VEH, delta TNF,
ECs50 VEH, EC5, TNF, EC,, VEH, EC,( TNF, R, VEH, or Ry TNF. The
covariates are listed on the left, and the AUC for each is shown on the right
next to the 95% confidence interval (shown in brackets). *P < 0.05
(statistically significant difference between ROC curves as determined by
DeLong’s test) (DeLong et al., 1988). (B) ROC curves were generated and
indicate for each model the 95% confidence interval shaded in gray. The
covariates incorporated in the model are listed on the bottom right corner
of each ROC curve.
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Fig. 5. Evaluation of models incorporating the derived covariates. (A)
AUCs and 95% confidence intervals for the ROC curves are depicted for the
models incorporating the derived covariates individually. The covariates are
listed on the left, and the AUC for each is shown on the right next to the 95%
confidence interval (shown in brackets). (B) ROC curves were generated and
indicate for each model the 95% confidence interval shaded in gray. The
covariate incorporated in the model is listed on the bottom-right corner of
each ROC curve.

synergized with IFN in the presence of TNF (Fig. 2). Accord-
ingly, we examined whether incorporation of the TNF/IFN
responses would improve the performance of models that em-
ployed only TNF responses. The drug/TNF/IFN models tended
to have smaller AUCs and larger confidence intervals than the
drug/TNF models (Supplemental Fig. 3), indicating that the
addition of data describing the IFN response did not enhance
the ability of models to classify drugs.

ROC Analysis of Models Incorporating Combinations of the
Base and Derived Covariates

Although it was illustrative to evaluate the base and derived
covariates individually, we hypothesized that incorporation of
several covariates into a model would lead to more accurate
classification of drugs than incorporation of a single covariate.
Accordingly, various combinations of the base and derived
covariates were evaluated to identify a set of covariates that
led to the most accurate drug classification. Combining base
and derived covariates led to several models with greater
AUCs and narrower confidence intervals than the models
incorporating only a single covariate. A representative set
including the best-performing models is presented in Fig. 6.
Furthermore, when C,,,x was added as a covariate, it im-
proved the performance (AUC and confidence interval) of
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Fig. 6. Evaluation of models incorporating combinations of the base and
derived covariates with and without Ci,.x. AUCs and 95% confidence
intervals for the ROC curves are depicted for the models incorporating
various combinations of base and derived covariates in the absence (upper
half) and presence (lower half) of C,,.«. The covariates are listed on the left,
and the AUC for each is shown on the right next to the 95% confidence
interval (shown in brackets).

some models but not others (Fig. 6). Supplemental Table 10
shows the coefficients (8 values) and their P values for the
models shown in Fig. 6.

Some of the combination models were associated with
remarkably high AUCs, and some of these were associated
with small confidence intervals. There were no statistically
significant differences among the models with an AUC > 0.95
as determined by DeLong’s method for comparing ROC curves
(P >0.05) (DeLong et al., 1988). The ROC curves that met this
criterion (AUC > 0.95) are shown in Fig. 7.

Discussion

The purpose of this proof-of-concept study was to develop
and evaluate an in vitro approach combined with statistical
modeling to classify drugs according to their potential to cause
IDILI. The overall hypothesis tested was that the ability of a
drug to synergize with the cytokines TNF and/or IFN to kill
HepG2 cells is associated with the drug’s propensity to cause
IDILI in humans. Detailed concentration-response curves
were generated, and this proved to be critical for development
of a statistical classification model with the capacity to classify
drugs correctly.

Since it has been suggested that the daily dose of a drug
might be associated with its potential to cause IDILI and since
dose is often related to Cy,.x, we evaluated how well daily dose
or Cp,ax classifies drugs according to their IDILI liability. Daily
dose was not effective at classifying the set of 24 drugs
according to their potential to cause IDILI (Fig. 3). Plasma
drug concentration is used as a surrogate for tissue or intra-
cellular concentration, which is difficult to obtain. The re-
lationship between C,,,, and the concentration of free drug in
liver cells can differ among drugs. The intrahepatocellular
concentration of drugs can be affected not only by physico-
chemical properties of the drug, but also by uptake and efflux
mechanisms and metabolism as well as binding to cellular or
acellular components (Chu et al., 2013). Accordingly, for some
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drugs, the intrahepatocellular drug concentration can be
many times the plasma concentration. Despite this potential
disconnect, C,,.x Wwas somewhat effective at classifying the
set of 24 drugs, suggesting that the magnitude of plasma
drug concentration is a contributor to IDILI. However, it is
clear that the use of C,,,« as the sole covariate did not lead
to a model with great classification ability (Supplemental
Fig. 2).

We then determined whether cytotoxicity induced by treat-
ment with drugs in the absence of cytokines could produce a
high-performing model. Models employing only individual
base covariates describing cytotoxicity in the absence of TNF
performed no better than C,,., (compare Figs. 3 and 4). In

contrast, the models incorporating TNF performed signifi-
cantly better in classifying the drugs.

The derived covariates, when evaluated individually, did
not produce more desirable ROC curves than the base
covariates (compare Fig. 5 with Fig. 4). However, when
covariates that account for TNF-induced changes in potency
and/or efficacy were combined with those derived from drug
alone, much better models resulted (Figs. 6 and 7). Further-
more, incorporating C,,.x into these models led to the ROC
curve with the greatest AUC (0.99) and narrowest confidence
interval (0.97, 1) (Figs. 6 and 7). The coefficients and test
statistic values for this best-performing classification model,
which incorporated deltadiff, EC5q VEH, EC5, TNF, delta


http://jpet.aspetjournals.org/lookup/suppl/doi:10.1124/jpet.117.242354/-/DC1
http://jpet.aspetjournals.org/lookup/suppl/doi:10.1124/jpet.117.242354/-/DC1

470

Maiuri et al.

VEH, and C,,., as covariates, are listed in Table 2. A cutoff
value is an estimated probability above which a drug would be
classified as associated with IDILI (1 = associated with IDILI)
and below which a drug would be classified as not associated
with IDILI (0 = not associated with IDILI). The optimal cutoff
threshold is the probability cutoff that permits the most
accurate classification of drugs according to IDILI liability
for a given model [i.e., the point on the ROC curve closest to the
coordinate (1, 1)]. Table 3 shows the sensitivity and specificity
of the best-performing model when the optimal cutoff thresh-
old was applied. Based on this model, the estimated probabil-
ity that a specific drug from the set of 24 drugs is associated
with IDILI is shown in Table 4. As can be seen in Table 4, this
classification model led to almost complete separation be-
tween IDILI-associated drugs and drugs that are not associ-
ated with IDILI. If this model were to be used in a preclinical
safety evaluation setting to predict IDILI potential of a set of
drugs, the user could either select the optimal cutoff threshold
or choose a cutoff threshold that is either more or less sensitive
depending on what false positive rate is deemed acceptable.

IFN contributed to hepatotoxicity in several animal mod-
els of IDILI and was therefore of interest to include in our
examination (Hassan et al., 2008; Shaw et al., 2009a; Dugan
et al., 2011; Roth et al., 2017). Interestingly, IFN did not
synergize with any of the drugs in our study to cause cell
death (Fig. 2); however, as we showed previously for
diclofenac (Maiuri et al., 2015), IFN enhanced the cytotoxic
interaction between several IDILI-associated drugs and TNF.
What underlies this pattern of response to IFN is not known;
however, IFN can increase expression of TNF receptors
(Wang et al., 2006) and, conversely, TNF can increase IFN
signaling (Han et al., 1999; Robinson et al., 2003). These
actions could explain why IFN had an effect only in the
presence of TNF.

We evaluated whether a change in the concentration-
response curves due to exposure to IFN could improve the
classification of drugs. The classification model developed from
the covariates that described the response to drug/TNF/IFN
produced ROC curves that were not improved from those
incorporating covariates that describe the response to
drug/TNF (Supplemental Fig. 3). These results indicate that
cytotoxic synergy between IDILI-associated drugs and TNF is
sufficient to produce a statistical model that accurately
classifies drugs irrespective of the presence of IFN. They also
suggest that the cell killing activity of IFN depends on the
presence of TNF.

It is worth considering the possibility that other cytokines
play a role in the pathogenesis of IDILI, and it would be
interesting to examine whether other cytokines could interact
with drugs to cause cytotoxicity in vitro and/or synergize with
TNF to enhance cytotoxicity. Cosgrove et al. (2009) performed
a study examining drug/cytokine interactions in vitro and
found that interleukin (IL)-18 in combination with TNF and
IFN interacted with some drugs to cause cytotoxicity. It is
unclear to what extent IL-18 contributed to this interaction.
However, Shaw et al. (2009b) demonstrated that IL-13 levels
are elevated in mice cotreated with trovafloxacin and lipo-
polysaccharide, raising the possibility that IL-8 plays a role in
the hepatotoxicity observed in these mice. Whether the pres-
ence of IL-18 or other immune mediators would improve the
ability of the models presented herein to classify drugs is
unknown but worth considering in future studies.

TABLE 2

Logistic regression coefficients and P values for the optimal classification
model incorporating the covariates deltadiff, EC5q VEH, EC5o TNF, delta
VEH, and C,,.«

Covariate B X P Value
Intercept -1.924 7.091 0.008
Deltadiff 0.108 2471 0.116
EC5o VEH —0.066 6.215 0.013
ECs5o TNF 0.050 4.480 0.034
DeltaVEH 0.081 11.038 0.001
Crax 0.0031 0.129 0.720

The coefficients (B values) were computed using Firth’s approach as described in
the Materials and Methods (Firth, 1993). A P value < 0.05 indicates that the
covariate contributes significantly to the prediction of outcome (IDILI liability).

We reported recently that IFN-mediated enhancement of
NSAID/TNF-induced cytotoxicity occurs with some IDILI-
associated NSAIDs but not others, and this effect was related
to chemical structure and to the magnitude of clinical concern
about IDILI for specific NSAIDs (Maiuri et al., 2015). Specif-
ically, several acetic acid derivatives that are associated with
IDILI of greatest clinical concern synergized with TNF to
cause HepG2 cell death, and IFN enhanced this effect. In
contrast, two propionic acid derivatives, which are associated
with IDILI that is of less clinical concern, also synergized with
TNF, but IFN was without effect. In the analysis presented
here, we were seeking a binary answer (IDILI potential yes or
no) and inclusion of IFN did not affect the outcome. It would be
interesting if the ability of drugs to sensitize cells to the
harmful effects of IFN could distinguish drugs of greater
concern clinically for IDILI from those of less concern. Clearly,
a larger number of drugs would need to be analyzed to
evaluate this.

A potential challenge that might be faced when employing
this assay during preclinical safety evaluation is the inability
to generate complete concentration-response relationships
due to solubility limitations of the drug or other factors.
Computing covariates using the four-parameter logistic model
requires complete concentration-response curves; however,
we defined several covariates that can be computed without
the need to generate a complete concentration-response curve.
One of these is R, or the drug concentration at which there is
an increase of 10% LDH activity above min. Another covariate
that could be computed without the need to generate a com-
plete concentration-response curve we defined as “TNF
change.” TNF change identifies those drugs that are only
cytotoxic in the presence of TNF without the need for com-
plete concentration-response curves. Interestingly, combining
the covariates Ry quotient (i.e., R;g TNF/R;o VEH) and TNF
change resulted in an ROC curve with an AUC of 0.88 (95%
confidence interval, 0.75, 1) (Supplemental Fig. 1). This
suggests that a model that leads to good classification of drugs
according to their potential to cause IDILI can be generated
without the need to delineate complete concentration-
response relationships. This model might be useful for
predicting the IDILI potential of drug candidates when
availability of compound is limited or when solubility limita-
tion prevents generation of a complete concentration-response
curve.

Although HepG2 cells are human derived, their use for drug
toxicity evaluation has been criticized because they have
limited capacity to bioactivate drugs to toxic metabolites via
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Sensitivity and specificity for the optimal classification model incorporating the covariates deltadiff, EC5,

VEH, EC5o TNF, delta VEH, and Cyax

Measure Value 95% Confidence Interval
Optimal cutoff threshold (k*) 0.46
True negative rate (specificity) using threshold k* 1 0.7, 1)
True positive rate (sensitivity) using threshold k* 0.93 0.79, 1)
AUC 0.99 097, 1)

The optimal cutoff threshold (k*) is shown as are the specificity and sensitivity of the model at k*. Also indicated are
the area under the ROC curve (AUC) and the 95% confidence intervals for the specificity, sensitivity, and AUC.

cytochrome P450—mediated pathways. Despite this potential
limitation, Cosgrove et al. (2009) found that HepG2 cells
behave similarly to primary human hepatocytes in their
cytotoxic responses to drug-cytokine combinations. We have
also observed comparable responses in primary murine hepa-
tocytes (Zou et al., 2009; Beggs et al., 2014; Maiuri et al., 2015).
These findings suggest either that 1) metabolic activation of
drugs by HepG2 cells, although limited, is sufficient to stress
cells so that they respond to cytokine exposure by dying or 2)
metabolism is not generally needed for the cytotoxic interac-
tion of drugs with cytokines.

Visual inspection of Fig. 2 revealed three IDILI+ drugs for
which there was modest (flutamide, clavulanate) or no
(flucloxacillin) response. Despite this, statistical modeling
classified flutamide and clavulanate as IDILI+. In the case of
flucloxacillin, analysis of variance of the concentration-
response data determined that there was no statistically
significant increase in LDH alone or in the presence of TNF.
As a result, covariates were set to zero with the exception of
Cax, and the calculated probability for flucloxacillin was low
(0.154; see the formula in the Materials and Methods). In
contrast, analysis of variance applied to the concentration-
response data for flutamide alone and in combination with

TABLE 4

Estimated probabilities that a drug is associated with IDILI computed
from the best-performing logistic regression model employing deltadiff,
EC50 VEH, EC5¢ TNF, delta VEH, and C,,.x as covariates

Drug Estimated Probability True Classification
Buspirone 0.1275 IDILI-
Idarubicin 0.1275 IDILI-
Promethazine 0.1275 IDILI-
Sertraline 0.1275 IDILI-
Azithromycin 0.1276 IDILI—-
Rofecoxib 0.1278 IDILI-
Moxifloxacin 0.1296 IDILI-
Levofloxacin 0.1329 IDILI-
Aspirin 0.1445 IDILI-
Flucloxacillin 0.1545 IDILI+
Pioglitazone 0.2935 IDILI-
Telithromycin 0.6685 IDILI+
Flutamide 0.7036 IDILI+
Trovafloxacin 0.7448 IDILI+
Isoniazid 0.7562 IDILI+
Diclofenac 0.8578 IDILI+
Naproxen 0.8589 IDILI+
Doxorubicin 0.8839 IDILI+
Bromfenac 0.9397 IDILI+
Clavulanate 0.9509 IDILI+
Chlorpromazine 0.961 IDILI+
Ibuprofen 0.9733 IDILI+
Valproic acid 0.9909 IDILI+
Nimesulide 1 IDILI+

With regard to the true IDILI classification of drugs, IDILI—- indicates that the
drug is not associated with IDILI and IDILI + indicates that the drug is associated
with IDILI in human patients.

TNF detected very small but statistically significant increases
in LDH release relative to baseline (Fig. 2; Supplemental Fig.
1). Consequently, nonzero covariates were generated from the
concentration-response data. Similarly for clavulanate, there
was an interaction with TNF that was small but statistically
significant, resulting in nonzero covariates. These nonzero
covariates led to calculated probabilities that, at the optimal
cutoff, identified flutamide and clavulanate correctly as
IDILI+. The pronounced reproducibility of even small
changes using HepG2 cells and the apparent sensitivity of
the model in these two cases may be a strength of this ap-
proach to classification.

Flutamide is metabolized in vivo to 2-hydroxyflutamide
(Crnax, 5.74 uM), which is more potent pharmacologically as an
antiandrogen (Brogden and Clissold, 1989) and is thought to
contribute to IDILI responses (Ball et al., 2016). To strengthen
this proof-of-concept study and to further evaluate the modest
cytotoxic effect of flutamide, we investigated the performance
of 2-hydroxyflutamide in the assay. Concentration-response
curves were generated (Supplemental Fig. 5), and covariates
derived from the curves were used in the best-performing
classification model. A high probability for association with
IDILI was calculated (0.999) for 2-hydroxyflutamide. Further-
more, we replaced the flutamide covariate data in the best-
performing model with the 2-hydroxyflutamide covariates.
Recalculation of the best-performing classification model
yielded coefficients similar to those presented in Table 2
(Supplemental Table 11), the same AUC for the ROC curve,
and no change in classification of drugs as IDILI+ or IDILI-.
These results strengthen the conclusions based on the modest
cytotoxic response to flutamide and support the approach to
classifying IDILI-associated drugs.

The observation that flucloxacillin was incorrectly classi-
fied as not associated with IDILI suggests that the best-
performing model, although seemingly promising, has limita-
tions. It is worth noting that flucloxacillin typically pro-
duces liver injury in humans that is classified as cholestatic
rather than hepatocellular (Enat et al., 1980; Williams and
Malatjalian, 1981; Bengtsson et al., 1985; Moseley, 2013).
Clavulanate is also associated predominately with a chole-
static pattern of injury in human patients (Sanchez-Ruiz-
Granados et al., 2012; Beraldo et al., 2013) and interacted only
weakly with TNF. Accordingly, it is possible that the approach
described herein is more robust in classifying drugs that cause
hepatocellular rather than cholestatic patterns of injury.

In summary, these results add to evidence that drug-
induced stress can sensitize hepatocytes to the killing actions
of cytokines such as TNF and IFN (reviewed in Roth et al.,
2017). Moreover, this could be requisite for the pathogenesis of
IDILI, since numerous IDILI-associated drugs show cytotoxic
synergy with cytokines in vitro at drug concentrations near
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those that occur in patients. Currently, effective assays to
screen preclinically for IDILI potential are lacking. A method
that accurately identifies drug candidates with the potential
to cause IDILI could revolutionize preclinical testing strate-
gies. Our results suggest an in vitro assay that could do just
that (i.e., by delineating drug concentration-response curves
in the absence and presence of TNF and employing resulting
covariates in an appropriate statistical model for classifica-
tion). One of the strengths of this approach is that the user
would have discretion to choose a level of risk tolerance guided
by the results of ROC analysis. That choice could depend on a
variety of factors, including risk tolerance in the context of the
therapeutic use, other drug candidates that are in contention
for going forward into development, and so forth. For example,
if several potentially effective compounds with no apparent
toxicity were identified in early preclinical screens but some
returned an “IDILI+” result in a drug-cytokine assay, this
might prompt a decision to pursue other candidates for devel-
opment. The magnitude of interaction with TNF assessed
by direct inspection of concentration-response curves (Fig. 2)
might also be useful to inform such decisions. Overall, this
classification approach is attractive because it 1) uses a cell type
that is easily obtained and maintained in culture and yields
consistent results, 2) requires minimal amounts of test com-
pound, 3) employs a single, easily and inexpensively measured
phenotypic endpoint that is directly relevant to IDILI (hepato-
cellular death), 4) is based on interaction between drug and a
product of immune system activation likely to be relevant to
IDILI pathogenesis, and 5) is adaptable to high-throughput
technology. Validation of this approach as a screening tool will
require the evaluation of additional drugs, but the results
presented herein are quite promising.
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