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Abstract

Introduction—Evolutionarily selected over billions of years for their interactions with 

biomolecules, natural products have been and continue to be a major source of pharmaceuticals. In 

the 1990s, pharmaceutical companies scaled down their natural product discovery programs in 

favor of synthetic chemical libraries due to major challenges such as high rediscovery rates, 

challenging isolation, and low production titers. Propelled by advances in DNA sequencing and 

synthetic biology technologies, insights into microbial secondary metabolism provided have 

inspired a number of strategies to address these challenges.

Areas covered—This review highlights the importance of genomics and metagenomics in 

natural product discovery, and provides an overview of the technical and conceptual advances that 

offer unprecedented access to molecules encoded by biosynthetic gene clusters.

Expert opinion—Genomics and metagenomics revealed nature’s remarkable biosynthetic 

potential and her vast chemical inventory that we can now prioritize and systematically mine for 

novel chemical scaffolds with desirable bioactivities. Coupled with synthetic biology and genome 

engineering technologies, significant progress has been made in identifying and predicting the 

chemical output of biosynthetic gene clusters, as well as in optimizing cluster expression in native 

and heterologous host systems for the production of pharmaceutically relevant metabolites and 

their derivatives.
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1. Introduction

Humans have long recognized the rich repertoire of molecules produced by microorganisms 

as a fertile source of therapeutics. Evolutionarily selected for interactions with biomolecules, 

the remarkably diverse and complex core chemical scaffolds of natural products have a 

higher chance to be biologically active than compounds from combinatorial synthesis 

approaches. In fact, more than half of clinical drugs from 1981 to 2014 are derived from or 

inspired by natural products [1]. In the pre-genomic era, most natural product discovery 

efforts employed a ‘top-down’ approach driven by the screening biological samples for 

desirable bioactivities, followed by compound isolation and characterization [2]. Yet by the 

1990s, such strategies had largely failed to uncover new natural products as pharmaceutical 

companies struggled with high rediscovery rates and de-emphasized their natural product 

discovery efforts. Driven by the rapidly decreasing cost and increasing throughput of DNA 

sequencing technologies [3], significant progress in genomics has renewed interest in natural 

product discovery [4]. Rapidly expanding microbial genomic and metagenomic datasets 

reveal a vast number of biosynthetic gene clusters in nature, which are predicted to encode 

far more natural products than what we have characterized to date [5]. Uncovering novel 

natural products is not only fascinating but also highly pertinent in face of today’s 

burgeoning drug resistance and health problems.

The conventional ‘top-down’ discovery approach can only provide us access to a small 

fraction of microbial biosynthetic potential given that majority of microorganisms cannot be 

isolated or cultured [6, 7]. Furthermore, even in culturable organisms, the encoded 

secondary metabolites of many biosynthetic gene clusters (BGCs) are unknown [8, 9]. This 

may be due to strong down-regulation of product biosynthesis at the transcriptional, 

translational and/or post-translational levels in the absence of the right activating cues in the 

laboratory. Alternatively, secondary metabolites that are produced at very low yields may 

escape detection and characterization. The ability to efficiently and strategically access these 

vast unexplored chemical resources will be invaluable to drug discovery. Besides relying on 

serendipitous discoveries of bioactive compounds, natural product discovery is now 

increasingly driven by genomics and focused on BGCs that are predicted to encode novel 

biomedically relevant molecules [4]. A better understanding of genotype-chemotype 

relationships informs researchers about the chemical logic of natural product biosynthesis 

and guides ‘bottom-up’ approaches that begin with genetic manipulation for the “detectable” 

production of target metabolites. Natural product discovery, which used to be predominantly 

an analytical chemistry problem, has become a challenge in genomics and molecular biology 

on how to manipulate relevant genes and sequences to produce the desired encoded 

metabolites.

In this review, we highlight key technical and conceptual advances in genomics-driven 

natural product discovery. These include bioinformatics-guided identification of BGCs in 

genomes and metagenomes, pathway and host engineering strategies for the activation of 

silent gene clusters in native and heterologous systems, as well as combinatorial 

biosynthesis for generating natural product analogs. This is not meant to be an exhaustive 

review and we apologize if key studies were inadvertently left out.
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2. Genome-mining for natural product BGCs

The development of next-generation sequencing has significantly accelerated the sequencing 

of microbial genomes at much reduced costs, leading to an exponential growth of genomic 

sequencing data with over 30,000 sequenced bacterial genomes currently deposited in public 

archives [10]. However, an immediate bottleneck is our current ability to readily analyze and 

process such large volumes of data. For natural product drug discovery, this means to 

identify potential secondary metabolites BGCs that encode for novel bioactive metabolites 

from microbial genomes. Toward this end, a variety of genome-mining tools have been 

developed.

AntiSMASH (antibiotics and secondary metabolite analysis shell) allows in silico 
identification of BGCs in bacterial and fungal genomes [11, 12]. Studies using antiSMASH 

have revealed numerous BGCs in bacteria and fungi [13, 14, 15, 16], many of which encode 

novel bioactive metabolites. Notable features of antiSMASH version 3.0 include more 

comprehensive analysis of gene clusters, annotation of key residues in biosynthetic enzymes, 

and the inclusion of a lantipeptide-focused module [12, 17]. In addition, there are genome-

mining tools specific for particular biosynthetic pathways or species. SMURF (secondary 

metabolite unknown region finder) focuses on genome-mining in fungi [18], while BAGEL3 

is developed for the analysis of bacteriocin encoding-genes and relatively unexplored classes 

of posttranslationally modified peptides [19]. Multiple tools including NP.searcher and 

ASMPKS are available for analyzing PKS (polyketide synthase)/NRPS (non-ribosomal 

peptide synthetase) pathways and predicting their substrates [20, 21, 22]. Recognizing 

knowledge gap between isolated PKs/NRPs and their gene clusters (i.e. only 10% of PKs/

NRPs are associated with gene clusters), Dejong et al. introduced a retro-biosynthetic in 
silico analysis platform to link known PKS and NRPS metabolites to emergent gene clusters 

[23]. The platform includes a retro-biosynthetic analysis component (GRAPE) and an 

alignment algorithm for cheminformatics (GARLIC), and is useful for identifying clusters 

encoding for known and novel molecules. Furthermore, a consortium effort to standardize 

BGC annotation yielded the Minimal Information about a Biosynthetic Gene cluster 

(MIBiG) format, which encourages more systematic and consistent characterization of 

BGCs by the community [12, 24]. Readers are referred to recent reviews for detailed 

discussion and comparison of genome-mining strategies focused on natural product 

discovery [25, 26, 27, 28].

Plant-derived natural products are also important drug sources [1], but compared to bacterial 

and fungal systems, genomics-driven natural product discovery in plants is in the early 

stages. Genome and transcriptome analyses led to the recent recognition of BGCs as 

common genomic features in plants and supported the regulated production of many 

bioactive natural products, including alkaloids and terpenoids [29, 30]. With an expanding 

list of plant genomes, natural product biosynthesis pathway discovery is increasingly 

genomics-driven compared to the pregenomic approach of starting with the biochemical 

characterization of a biosynthetic gene. There are already efforts to standardize the analyses 

and curation of plant BGCs with their microbial counterparts to support future genome 

mining endeavors [24, 31].

Zhang et al. Page 3

Expert Opin Drug Discov. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



As predictive software programs become increasingly robust and streamlined for genome 

mining (Figure 1), researchers will not need expertise in bioinformatics to perform a variety 

of analyses, yet one should be mindful of the limitations. Since most tools employ predictive 

rules based on characterized pathways, they are geared towards identification of major 

families of biosynthetic gene clusters such as PKSs/NRPSs, they are less reliable with regard 

other pathways. Moreover, most software programs have been unable to accurately predict 

metabolite structures [25]. Nevertheless, BGCs identified in silico are excellent starting 

points for downstream experimental investigations.

3. Accessing silent natural product gene clusters

Secondary metabolism is tightly regulated [32] and the fact that many BGCs remain “silent” 

under laboratory conditions presents a major challenge to “activate” these BGCs and assess 

the therapeutic potential of their encoded natural products. As metabolic profiling using 

advanced analytical methods continue to uncover new compounds that have eluded detection 

due to low production yields (Section 4.2), the activation of BGCs that are not or 

inadequately expressed under laboratory conditions have also resulted in the discovery of 

many diverse natural products exhibiting a range of bioactivities [5]. Here we highlight the 

major strategies to activate BGC expression with a focus on natural product discovery. 

Readers are referred to recent reviews for details on the metabolic, pathway and genome 

engineering approaches in native and heterologous host systems for secondary metabolite 

production [33, 34, 35].

3.1. Activation of silent BGCs in native hosts

Native hosts are endogenous producers of the natural products of interest. Logically, they 

possess sufficient and necessary cellular factors for metabolite biosynthesis, including 

relevant precursors, pathway regulators, and transporters. In principle, under the ‘right’ 

conditions with the appropriate biological and/or environmental cues, metabolite production 

can be elicited in native hosts. Some native hosts can successfully express silent gene 

clusters when grown under alternative conditions, while others require targeted genetic 

manipulations such as the introduction of heterologous promoters [36, 37] or perturbation of 

transcriptional and post-transcriptional regulatory mechanisms (vide infra). The 

development of genome editing and genome engineering technologies in natural product-

relevant organisms will greatly enhance the scalability of these activation strategies in native 

hosts [34]. Notably, genetic manipulation can be challenging for non-model native 

producing hosts. While developing genetic tools for uncharacterized wild type host 

organisms may be tedious and time consuming, the chances of obtaining BGC-encoded 

secondary metabolites from native producers, which likely possess all the metabolic and 

biosynthetic requirements, are high.

3.1.1. Variation of growth conditions and small molecule inducers—Systematic 

variation of growth conditions, also known as the OSMAC (one-strain, many compounds) 

strategy, has traditionally been employed to explore the biosynthetic capabilities of isolated 

strains. For Aspergillus nidulans, simple variation of fermentation conditions such as media 

and culturing period can dramatically affect its metabolite profile, leading to the 
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identification of several potential anti-cancer compounds [38, 39]. But more often than not, 

specific conditions are required to elicit the expression of target gene clusters in microbes. In 

the discovery of lugdunin, a novel peptide antibiotic produced by the human commensal 

Staphylococcus lugdunensis, Zipperer et al. noted that metabolite production was only 

elicited when S. lugdunensis was cultivated under iron-limiting conditions on solid agar 

[40]. Other physical triggers of metabolite production such as rare earth elements have been 

reported in Streptomyces spp. [41, 42]. Nonetheless, screening of different conditions in 

multiple strainsoften suffers from limited reproducibility and can quickly become 

impractical when considering a range of variables. In addition, obscure conditions cannot be 

predicted and require empirical studies. Notably, innovative culture strategies have been 

developed for natural product discovery. Designed to isolate single microbial cells in 

diffusion chambers that mimic the natural environment, iChip allows the recovery of up to 

50% of the microorganisms in environmental samples [43]. Use of iChip led to the 

identification of lassomycin, a ribosomally synthesized cyclic peptide antibiotic with activity 

against Mycobacterium tuberculosis [44], and teixobactin, a new class of antibiotics made 

by a newly identified species Eleftheria terrae that shows broad-spectrum antimicrobial 

activity without detectable resistance [45]. In addition, a high-throughput assay to identify 

small molecule elicitors for targeted BGCs in Burkholderia thailandensis was recently 

reported [46]. Since microorganisms naturally reside in a complex environment and 

constantly interact with other species, co-cultivation of different microorganisms can also 

induce expression of silent BGCs [47, 48, 49, 50].

3.1.2. Manipulation of regulators—Genome mining studies have uncovered global and 

pathway-specific transcriptional regulators that can be manipulated for BGC activation. 

Overexpression of transcriptional activators leads to production of “hidden” metabolites [51, 

52]., including the production of an unprecedented 51-membered glycosylated macrolide 

[53]. On the other hand, deletion of pathway-specific repressors has been demonstrated to 

activate a number of silent BGCs and trigger metabolite production [54, 55, 56]. Likewise, 

manipulation of transcription factors in plants has yielded the overproduction of desired 

metabolites [57]. For biosynthetic pathways without obvious regulators, global alteration of 

gene expression may be employed. In streptomycetes, specific mutations in RNA 

polymerase or ribosomal proteins can affect gene expression and production of new 

antibacterial compounds [58]. In addition, a reporter strain-based mutant selection strategy 

has been developed, enabling unbiased screening of activation conditions. Using this 

selection, two novel aminoglycosides were discovered in Streptomyces sp. PGA64 [59].

3.1.3. Perturbation of epigenetic control—The importance of epigenetic 

modifications such as DNA/histone methylation and acetylation in regulation of eukaryotic 

gene expression has been recognized in recent years [60]. Manipulation of fungal epigenome 

potentially allows BGC activation. In A. nidulans, deletion of epigenetic modification 

enzymes such as histone deacetylase (HDAC) or histone methyltransferase has been shown 

to activate several silent BGCs and dramatically change its metabolite profile [61]. In 

addition, chemical perturbation of the fungal epigenome and led to the discovery of new 

metabolites [62, 63]. However, current strategies for epigenetic modulation result in global 

changes, which cannot be predicted. With advances in DNA sequencing and editing 
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technologies, the precise location and function of an epigenetic marker in a fungal genome 

are likely to be recognized and manipulated to enable targeted BGC activation.

3.2. Activation of silent BGCs in heterologous hosts

To access silent BGCs in genetically recalcitrant or uncultured microorganisms, 

heterologous expression of BGCs in a genetically tractable organism represents an attractive 

approach. For functional expression in heterologous hosts, target BGCs often require 

additional refactoring, such as replacement of the native promoters with well-characterized 

promoters, insertion of appropriate ribosomal binding sites or terminators. Since de novo 
synthesis and genetic manipulation of large gene clusters (>40 kb) can be challenging, a 

number of synthetic biology tools have been developed to facilitate the reconstruction of 

biosynthetic pathways in heterologous hosts.

3.2.1. Direct capturing and refactoring of gene clusters—Advances in recombinant 

DNA and synthetic biology technologies allow BGCs to be directly captured into compatible 

vectors and refactored for expression in heterologous hosts [33]. For example, RecET-

mediated linear-linear recombination in E. coli is employed to capture large (>50 kb) 

megasynthases into expression vectors [64]. Similarly, yeast-based transformation-

associated recombination (TAR) allowed the capture and activation of a 67 kb NRPS cluster 

from Saccharomonospora in Streptomyces coelicolor to produce a new antimicrobial 

lipopeptide, taromycin A [65]. Use of the RNA-guided Cas9 nuclease circumvents the 

requirement for unique restriction sites flanking the target BGCs and facilitates direct 

cloning of large clusters (up to 100 kb) by Gibson assembly or TAR [66, 67]. Recently, the 

combined use of TAR with CRISPR/Cas9 in a yeast-based promoter-engineering platform 

mCRISTAR enabled the efficient multiplex replacement of eight promoters to activate the 

tetarimycin A cluster in S. albus [68].

Besides direct capture, various methods have been developed for scarless assembly of BGCs 

from de novo synthesized DNA fragments and PCR products [69]. These assembly 

techniques should also facilitate the engineering of biosynthetic gene clusters for 

combinatorial biosynthesis (Section 6) as well as cluster refactoring for heterologous 

expression. For example, Luo et al. utilized yeast DNA assembler to simultaneously 

assemble and refactor a PKS-NRPS cluster from Streptomyces griseus by inserting a 

constitutive promoter in front of each of the six biosynthetic genes. Heterologous expression 

of the refactored pathway in Streptomyces lividans yielded new polycyclic tetramate 

macrolactams [70].

3.2.2. Optimization of heterologous hosts—When choosing a heterologous host for 

expression, it is important to consider whether the production host possesses the necessary 

metabolic precursors, enzymatic machinery and appropriate regulatory systems for target 

BGCs. Uncoordinated expression of biosynthetic genes may result in imbalanced metabolic 

flux and production of toxic intermediates. For instance, Escherichia coli, which is one of 

the widely used Gram-negative bacteria for heterologous expression, has been engineered to 

express phosphopantetheine transferases (PPTases) for PKS/NRPS activation and production 

of PK/NRP natural products [71]. In order to improve secondary metabolite production, it is 
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often necessary to optimize the heterologous production hosts. Multiplexed automated 

genome engineering (MAGE), which enables facile introduction of genetic diversity at 

targeted loci during DNA replication, has been used to effectively increase lycopene 

production titer in E. coli [72]. The CRISPR/Cas9 system was recently reconstituted and 

used to delete genes and entire BGCs in multiple Streptomyces [73, 74, 75, 76], paving the 

way towards genome-minimized hosts for heterologous expression of biosynthetic pathways 

from actinomycetes. Conceivably, extension of these valuable technologies to optimize 

heterologous host systems will facilitate BGC characterization and natural product drug 

discovery.

4. Integrated strategies to access genome-encoded small molecules

4.1. Bioinformatics-guided synthetic approach

Given the fact that genetic manipulation of native and heterologous hosts can be time-

consuming, a new paradigm in natural product drug discovery which bypasses the need for 

strain cultivation, gene cluster expression and product isolation from fermentation broths 

was reported recently. Based on the primary sequence of NRPS clusters in the human 

microbiome, Chu et al. predicted and chemically synthesized a small library of peptides for 

the encoded NRP and identified humimycin, a potent anti-MRSA (methicillin-resistant 

Staphylococcus aureus) peptide with a new mechanism of action [77]. This work represents 

the first example of the synthetic-bioinformatic natural product (syn-BNP) approach for 

drug discovery and may be especially helpful in metagenomics studies (Section 5). However, 

as mentioned earlier, in contrast to well-annotated information on PKS/NRPS clusters, 

prediction algorithms for other types of BGCs are relatively limited; in those cases, 

structures of the synthetic molecules can significantly deviate from the encoded natural 

products and hence may fail to elicit the desired bioactivity. Whether the syn-BNP approach 

can be generalized to most BGCs depends on future development for more accurate 

bioinformatics predictions.

4.2. Mass spectrometry-guided genome mining

Driven by advanced analytical methods, mass spectrometry-guided genome mining involves 

the iterative matching de novo MSn sequence tags to genomic features, using retro-

biosynthetic logic in order to connect secondary metabolites to their BGCs [78, 79]. 

Matched BGC sequence information may be harnessed to further elucidate compound 

structures and/or to identify additional molecular features for searching. Mass spectrometry-

guided genome mining has been extended to connect groups of structurally related 

molecules with entire BGC families [80]. Notably, the genetic tools and pathway 

engineering strategies described in Section 3 will be invaluable to metabolomics-guided 

genome mining efforts by the functional validation and characterization of BGCs and their 

metabolites. Furthermore, when coupled with principal-component analysis of metabolite 

profiles, genetic mutants can be used to identify key molecular features that correspond to a 

BGC of interest [37]. While metabolomics-guided genome mining has been largely 

employed for the discovery of peptide (ribosomal and non-ribosomal) natural products due 

to relatively well-characterized biosynthetic logic, the approach can be extended to other 
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groups of secondary metabolites such as glycosylated natural products [81] and possibly 

polyketides.

5. Metagenomics-driven drug discovery

More than 99% of microorganisms in the environment have resisted laboratory cultivation 

and this uncultured microbial majority represents a vast chemical treasure trove [6, 7]. 

Metagenomics, which involves the direct capture and analysis of environmental DNA 

(eDNA), allows culture-independent and unbiased access to microbial biosynthetic potential 

otherwise missed by traditional methods requiring the isolation and cultivation of pure 

microbial cultures [82, 83]. In this section, we highlight the technical and conceptual 

advances in metagenomics that led to the discovery of new natural products from diverse 

environmental niches including soil, marine environments and the human body. Readers are 

referred to recent reviews for more details [28, 84].

Given that BGCs constitute only a small fraction of microbial genomes [85, 86], the ability 

to efficiently search metagenomic libraries for rare clones containing relevant biosynthetic 

genes involved in secondary metabolism and encoding for novel natural products is 

imperative. Screening is especially challenging for large complex metagenomes such as soil, 

which can contain up to 105 unique species and require multimillion-membered mega-

libraries for sufficient coverage [87, 88]. Conventional function- and sequence-based 

methods involve screening libraries for easily observable phenotypes or the presence of 

target DNA sequences, respectively (Figure 2a).

Function-based metagenomics does not require prior knowledge of genetic information and 

has been successfully applied to uncover novel chemical cores and interesting 

biotransformations associated with their biosynthesis. Facile visual screens for pigment 

production or antibiosis (zone of inhibition) led to the discovery of structurally distinct 

antibiotics such as turbomycin [89], N-acyl amino acids derivatives [90, 91] and isocyanide-

containing compounds [92, 93], which represent some of the first natural products identified 

from metagenomics libraries. Depending on the target compounds and library size, other 

functional screens include direct metabolite analysis by LC-MS methods [94, 95], reporter/

biosensor-based screens for metabolite-responsive gene expression [96, 97] and enzymatic 

assays [98, 99]. Enzyme activities unique to secondary metabolism can be harnessed to 

greatly improve the efficiency of identifying eDNA clones with functional biosynthetic gene 

pathways for downstream phenotypic screens. Required for the posttranslational activation 

of NRPSs and PKSs, PPTases were harnessed in a phage display study to recover NRPS and 

PKS sequences from environmental samples [100]. By coupling pigment production or 

cellular growth to PPTase function, complementation of PPTase activity can be used to 

screen or select for eDNA clones that contain PKS and/or NRPS gene clusters [87, 101]. 

Notably, the scope of function-based screening is limited by the insert sizes of cosmid/

fosmid eDNA libraries as well as the choice of library hosts, which may not support 

functional expression of heterologous BGCs for various reasons including codon bias, lack 

of biosynthetic precursors or enzymatic activity, and incompatible regulatory systems.
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In contrast, sequence-based metagenomics does not require functional reconstitution of 

biosynthetic pathways in library hosts and allows for the discovery of products of large 

BGCs (e.g. multimodular PKS and/or PKS clusters) that exceed the insert size for cosmid/

fosmid or bacterial artificial chromosome libraries. Conventional sequence-based screens 

involve PCR with degenerate primers targeting relatively uncommon biosynthetic genes to 

identify eDNA clones of interest (Figure 2a). In an alternative approach, barcoded PCR 

amplicons of common conserved biosynthetic features (e.g. adenylation, condensation, 

ketosynthase domains) within environmental samples are sequenced to generate sequence 

tags that reflect microbial genomic diversity, which can be used to prioritize metagenome 

mining efforts for the discovery of novel and/or biomedically relevant BGCs and 

metabolites. Akin to the reconstruction of bacterial phylogeny from 16S rRNA sequences, 

phylogenetic analysis software such as eSNaPD (environmental Surveyor of Natural Product 

Diversity) and NaPDos (Natural Product Domain Seeker) classify eDNA-derived gene 

clusters by comparing the sequence similarity of environmental sequence tags to those from 

characterized BGCs [102, 103]. By recovering eDNA sequences related to known BGCs, 

this strategy has been successfully employed to discover new bioactive glycopeptide, 

epoxyketone and anthracycline congeners [87, 104, 105]. New chemical functionalities can 

also be discovered using this method. A new subclass of natural tryptophan dimers 

possessing a pyrrolinium indolocarbazole core was uncovered by focusing on eDNA-derived 

gene clusters with sequence tags that are not closely associated with characterized 

tryptophan dimer BGCs [88]. In general, while targeted metagenome mining may not be 

suitable for the discovery of fundamentally distinct chemical entities, it can be used to 

survey the biosynthetic potential of environmental samples as well as identify and recover 

novel variants of pharmaceutically relevant BGCs for downstream analyses (Figure 2b).

With advances in next-generation sequencing, bulk eDNA can be directly sequenced and 

assembled. This approach has been successfully employed to uncover BGCs of interest and 

genomes of bacterial symbionts that produce patellazoles [106] and chemotherapeutic 

ET-473 [107]. Yet due to challenges in assembling short reads, which may be partially 

addressed by pair-end sequencing or increasing sequence coverage, shotgun metagenomics 

is largely limited to relatively simple metagenomes or pre-enriched (e.g. filtration, 

differential centrifugation) samples. Rapid progress in third-generation long-read sequencing 

technologies circumvent the difficulties in assembling highly repetitive genomic sequences 

and in the near future should enable the assembly of entire BGCs, and potentially genomes, 

that are represented in metagenomes [108]. Until then, short-read sequencing may be 

applied to survey the biosynthetic genes present in the microbiome and guide the design of 

degenerate PCR primers to complement and expand the scope of sequence-based 

metagenomics. Single-cell genome sequencing allows access to genomes that are 

underrepresented in metagenomic samples as well as the assembly of genomes from 

completely uncharacterized microorganisms [109, 110, 111]. Using a combination of deep 

sequencing, single cell sorting and whole genome amplification, Wilson et al. uncovered a 

new bacterial taxon Entotheonella that accounts for the production of almost all bioactive 

polyketides and polypeptides isolated from its host T. swinhoei [14]. The existence of 

multiple additional BGCs in Entotheonella genomes suggests that the metabolic repertoire of 

these widely distributed symbionts may rival that of Actinobacteria.
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Efficient translation of genetic sequences into actual chemical compounds is critical to the 

metagenomics approach for natural product discovery. For synthetically accessible natural 

products whose structures can be reliably predicted from nucleic acid sequences (e.g. 
NRPs), chemical synthesis circumvents the need for heterologous production systems and 

accelerates translation of genomes and metagenomes into chemical compounds that can be 

screened for desired bioactivities [77]. In most cases, accessing the biosynthetic potential of 

uncultured microorganisms will require heterologous hosts to facilitate expression of eDNA-

derived BGCs and production of the encoded metabolite. Enabled by the availability of 

broad host range shuttle plasmids, the use of distantly related hosts including diverse 

Proteobacteria [112, 113] and Streptomyces [94, 114] for functional metagenomics provides 

access to a wider range of bioactive compounds by increasing the likelihood of matching 

eDNA-derived BGCs with genetically and biochemically compatible hosts for functional 

expression. Sequence-based metagenomics also benefits from the use of gifted heterologous 

hosts with the innate ability to functionally express a variety of target biosynthetic pathways. 

In addition, multiplex pathway and genome engineering technologies to improve 

heterologous expression strains and optimize cluster expression (Section 3) promise to 

further expand the scope of uncultured biosynthetic potential that can be accessed and 

harnessed.

6. Combinatorial biosynthesis

The explosion of BGC sequence information offers critical insights into how remarkably 

complex natural products covering vast biologically relevant chemical structure space are 

assembled from a limited set of simple building blocks [115]. BGCs generally encode two 

groups of biosynthetic enzymes – one group generates key biosynthetic precursors and 

assembles the core scaffold while the other group derivatizes the scaffolds [116]. 

Understanding nature’s logic of encoding chemical diversity will enable rational engineering 

of biosynthetic pathways to obtain analogs of privileged natural product scaffolds or novel 

natural product-like scaffolds that may be challenging to synthesize chemically for drug 

discovery [116, 117].

Guided by comparative genomic studies focused on biosynthetic genes, rational engineering 

or directed evolution of biosynthetic enzymes responsible for generating biosynthetic 

precursors, assembling core chemical structures and tailoring of scaffolds to expand or alter 

their substrate selectivity is one of the main strategies for diversification of natural product 

scaffolds. For example, scaffold diversification of terpenes to create non-native terpenes can 

be achieved by manipulating isoprenoid precursor supplies and genetic engineering of 

terpene synthases [118, 119]. The use of promiscuous tailoring enzymes for the 

derivatization (e.g. alkylation, acylation, oxidation, glycosylation) of natural product 

scaffolds allows exploration of a defined chemical structure-function space. Naturally 

occurring and engineered P450s and glycosyltransferases exhibiting broad substrate 

specificities have been successfully employed for late-stage derivatization of terpenes, PKs 

and NRPs [115]. New sulfated glycopeptide congeners were obtained in vitro and in vivo by 

exploiting eDNA-derived sulfotransferases frequently associated with glycopeptide BGCs 

[120].
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The “assembly line” biosynthetic logic of modular PKS/NRPS megaenzymes makes them 

attractive targets for rational engineering of complex PK/NRP scaffolds [121, 122, 123]. 

Engineering strategies include mutagenesis, insertion/swapping of domains, modules or 

subunits to alter 1) type of starter and extender units, 2) extent and stereochemistry of 

scaffold processing, 3) chain length and release mechanism, and 4) post-PKS/NRPS 

modifications (Figure 3). By deleting and swapping domains, Sugimoto and colleagues 

reprogrammed an aureothin BGC into one that produces luteoreticulin, a related compound 

with distinct biological activities, and other novel derivatives [124]. Advances in synthetic 

biology strategies such as DNA assembler and other approaches described in section 3.2.1 

greatly accelerate genetic manipulation of biosynthetic pathways [125]. Despite early 

promise [126, 127], the generation of large libraries of PK/NRP analogs by combinatorial 

biosynthesis is generally hindered by low yielding or non-functional constructs and the 

paucity of high throughput screens/selections for active pathways. Recently, leveraging on 

efficient yeast homologous recombination and short homology stretches between 

pikromycin and erythromycin PKS genes, Chemler et al. created a hybrid PKS library and 

identified active chimeric enzymes that were capable of producing novel macrolactone 

analogs [128]. Future application of this approach should shed light on the structure-activity 

relationship for these megaenzymes and inform genetic engineering efforts. With increasing 

structural information [121, 122] as well as the availability of algorithms to guide 

combinatorial library design [129] and capture beneficial variants [130], directed evolution 

strategies will likely be useful in generating libraries of active PKS/NRPS hybrids for 

PK/NRP diversification [131, 132].

While this section focuses on the concept of derivatization and diversification of natural 

product scaffolds by genetic engineering strategies guided by comparative genomics, genetic 

engineering of BGCs can also be used in combination with other established strategies to 

diversify natural product scaffolds. In mutasynthesis, strains are engineered to uptake and 

incorporate unusual biosynthetic precursors to generate natural product analogs with 

potentially improved phamacoproperties [133, 134]. Semi-synthesis melds biological and 

chemical synthetic routes to produce complex natural products such biomedically relevant 

terpenoids and FDA approved anti-cancer drug ET-743 [135, 136, 137, 138]. Notably, PKSs 

and NRPSs have been engineered to incorporate alternative starter/extension units harboring 

fluorine atoms known to improve drug pharmacoproperties [139], or orthogonally reactive 

handles such as terminal alkynes for combinatorial late-stage derivatization [140, 141].

7. Conclusion

Natural products are still a major source of inspiration for clinical drugs despite the scaling 

down of natural product discovery efforts by pharmaceutical companies in the mid-1990s 

due to high rediscovery rates and challenging product synthesis. Rejuvenation of natural 

product research in recent years can be largely attributed to advances in DNA sequencing, 

genomics/metagenomics, synthetic biology and genome editing technologies. Analyses of 

microbial genomes and metagenomes reveal that we have barely explored the chemical and 

functional diversity of microorganisms. Even in actinobacteria that have been the research 

focus for decades, majority of the BGCs has not been linked to their secondary metabolites 

[8], underscoring the potential for new discoveries even in the most extensively screened 
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species. Bioinformatic tools have been developed to prioritize and identify relevant BGCs 

from genomes/metagenomes, predict the structures of their chemical products, integrate 

genomic with metabolomic and biological information to identify genotype-chemotype 

relationships, as well as prioritize downstream characterization efforts. New DNA capture 

and assembly methods as well as multiplexed genome engineering technologies facilitate the 

optimization of heterologous expression systems and biosynthetic pathways for the 

production of secondary metabolites. These developments pave a way towards more 

systematic and targeted discovery of novel natural products starting from genomic 

information.

8. Expert opinion

With the rapidly increasing amount of DNA sequence information, the promise of better 

quality genomes/metagenomes using third-generation and single-cell genome sequencing 

platforms, as well as the significant headway made in classification of BGCs and their 

chemical outputs, it is clear that the major bottleneck in natural product discovery lies in our 

ability to link BGCs with their cognate secondary metabolites [34]. Activation of silent 

BGCs in native producing hosts will require the development of separate sets of genetic 

tools for non-model organisms. Advances have been made in the development of alternative 

heterologous expression hosts for BGCs from unknown or inaccessible sources but success 

hinges upon host-BGC compatibility and often involves time-consuming capture or cloning, 

assembly and refactoring and/or optimization of large and unwieldy clusters. Until we better 

understand the determinants governing host-BGC compatibility, a diverse collection of 

robust, orthogonal heterologous hosts maximizes the probability of finding a host-BGC 

combination for successful expression. The development of new host systems will require 

identification and engineering of gifted strains that are genetically and metabolically 

predisposed to express and produce the encoded molecules from a diverse set of BGCs [112, 

113, 114]. With many bacteria phyla lacking cultured representatives [14, 110], advanced 

culture methods and separate sets of genetic tools may be needed to obtain compatible 

expression hosts to more readily access the biosynthetic potential of these underexplored 

groups of microorganisms [45]. Significant progress has been made in the development of 

molecular parts and tools for the genetic manipulation of Streptomyces spp., a prolific group 

of bacteria known to produce bioactive metabolites, but there is still much room for 

improvement before “plug-and-play” natural product discovery becomes a reality, and one 

can expect the same for other emerging host systems. Combinatorial genome-scale 

engineering tools, while currently limited to model organisms like E. coli, will be invaluable 

towards the engineering of more robust production systems for different BGC families when 

transferred to natural product-relevant hosts [34]. Last but not least, entire biosynthetic gene 

clusters can be codon-optimized/-randomized, refactored, synthesized de novo and 

assembled for optimal expression in designated heterologous hosts [69, 142], although 

current gene synthesis costs precludes routine adoption of this approach.

One of the main underlying assumptions in genomics- and metagenomics-driven natural 

product discovery is that BGC sequence diversity reflects biosynthetic and chemical 

diversity, and by extension the pharmacological activity profiles of the metabolites. 

Homology to characterized clusters has been used as a proxy for “chemical dereplication” 
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and to prioritize BGCs of interest for characterization [143, 144]. Based on phylogenetic 

similarity between amplicon sequences of key biosynthetic features within BGCs, the 

sequence-tag strategy for targeted metagenomics has been successful in identifying new 

congeners and subclasses of biomedically relevant natural products (Section 5). Nonetheless, 

there are indications that cluster sequence or architecture divergence does not always 

translate into chemical structure variation. For example, biosynthetic genes may not be 

physically clustered [145, 146]. From an evolution perspective, enzymes may already be 

engaged in a biosynthetic pathway before the respective genes are physically recruited into 

the BGC through a mechanism that is yet to be determined [116]. Acyl carrier protein 

(ACP)-less PKS clusters suggest an alternative biosynthetic route or the possible recruitment 

of ACPs from outside the cluster [117]. Additionally, highly divergent BGCs in terms of 

both cluster architecture and gene sequence can have similar chemical outputs. Global 

analysis of prokaryotic BGCs revealed that two distinct clades of BGCs with limited 

homology actually produce highly similar and conserved aryl polyenes [143]. On the 

contrary, PKS clusters containing phylogenetically related sets of AT and KS protein 

domains can give rise to polyketides with distinct core structures [116]. With individual 

BGC families evolving differently [116], the choice of biosynthetic features for phylogenetic 

profiling and inference of chemical output, especially for sequence-tag metagenomics, is 

crucial but may not be obvious without sufficient empirical information. Comparing larger 

regions or entire BGCs, though not always possible, will facilitate the classification of BGCs 

that can be linked to secondary metabolites groups and their associated pharmacological 

activities [143].

While this review focuses on harnessing genomic and metagenomic data to prioritize and 

facilitate the discovery of new chemical entities, chemical (e.g. compound isolation, 

structure identification) and biological characterization of natural products are just as critical 

to the drug discovery process. In fact, structure elucidation and determination of compound 

mode-of-action represent some of major bottlenecks in the natural product discovery 

process. Liquid chromatography-, mass spectrometry-, nuclear magnetic resonance-based 

technologies have progressed significantly for general chemical profiling of complex natural 

product samples as well as structure determination of large complex molecules [147, 148, 

149, 150]. Given the inherent low-throughput nature of structure elucidation, especially of 

large complex molecules with unknown chemical scaffolds, it is critical that such efforts are 

channeled towards compounds with desired bioactivity and modes-of-action. Conceptually 

distinct from the conventional high throughput bioassays, multiparametric screening cell-, 

image- and sequencing-based strategies generate information-rich bioactivity fingerprints 

have been successfully used to prioritize and classify natural products based on their modes 

of action [150]. For effective classification, however, many of these multiparametric 

screening platforms require a sizable reference set of bioactivity profiles that may not be 

readily accessible to everyone. There are recent community-wide efforts to integrate 

multiple sequence databases and relevant web services, as well as standardize BGC 

annotation and their chemical outputs to facilitate comparative analyses of large datasets [12, 

24, 151]. These repositories are publicly shared and curated to improve chemical 

characterization as well as foster collaboration, emphasizing the need to tackle existing 

challenges (e.g. high rediscovery rates, genes-to-chemical bottleneck, low production titers) 
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in natural product discovery as a community. Similar repositories for standardized biological 

characterization data, integrated with genomic and chemical information data, will be 

invaluable towards uncovering chemical feature(s) with desired bioactivities from nature. It 

is possible that we will be able to reliably deduce compound pharmacological profiles from 

analysis of BGCs as the list and diversity of experimentally validated BGCs linked to their 

secondary metabolites with known bioactivity expand.

Overall, this is an exciting time for natural product discovery, which was mostly a random 

“hit-or-miss” endeavor in the pregenomics era. Genomics and metagenomics have given us a 

glimpse of the remarkable biosynthetic potential and vast chemical inventory in nature that 

we can prioritize and systematically mine for target natural products. As various 

technologies mature to clone and functionally express target BGCs in heterologous systems 

or activate silent BGCs in their native hosts, we will be able to more rapidly and cost 

effectively translate genome information into chemical compounds for drug screens. Public 

repositories with integrated web services establish the framework for genome-driven natural 

product discovery efforts and our predictive ability for the chemical output of BGCs will 

continue to improve as the list and diversity of experimentally characterized clusters and 

their encoded metabolites expand. These advances open up opportunities to understand the 

intricacies of natural product biosynthesis and reengineering of BGCs for the diversification 

and derivatization of natural products during drug discovery.
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Article highlights

• A substantial proportion of pharmaceuticals are derived from or inspired by 

natural products.

• Advances in DNA sequencing reveal silent biosynthetic gene clusters and 

uncultured microorganisms as vast untapped resources for novel bioactive 

chemical scaffolds.

• A collection of in silico tools supports mining of genomes and metagenomes 

for biosynthetic pathways that potentially encode novel pharmaceutically 

relevant molecules.

• Driven by advances in synthetic biology and genome engineering tools, 

pathway and host engineering strategies facilitate the functional expression 

and characterization of biosynthetic gene clusters.

• Understanding the chemical logic of biosynthetic pathways enables rational 

biosynthetic pathway engineering for the diversification and derivatization of 

privileged natural product scaffolds.

• Genomics- and metagenomics-driven natural product discovery continues to 

uncover new bioactive chemical entities and promises to revitalize waning 

drug pipelines in the near future.

Zhang et al. Page 23

Expert Opin Drug Discov. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Workflow of genome-mining for natural product drug discovery
Genome-mining software such as antiSMASH is able to analyze the sequenced genome in 
silico, identify potential biosynthetic gene clusters and predict core structures of encoded 

metabolites. The predicted BGCs are starting points for downstream experimental activation 

and validation.
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Figure 2. Metagenome-driven drug discovery with an alternative targeted sequence-based 
pipeline
(a) Environmental DNA (eDNA) is extracted, cloned and ligated into a shuttle vector, and 

then transformed into a host cell to create a metagenomic library. Conventional function- 

and sequence-based methods involve screening metagenomic libraries for easily observable 

phenotypes or the presence of target DNA sequences, respectively. Target biosynthetic 

pathways are identified, assembled and functionally expressed through a variety of methods 

to obtain the encoded natural product for characterization. (b) Alternatively, PCR is used to 

profile the biosynthetic pathways present in crude eDNA samples. The PCR amplicons are 

phylogenetically organized to predict the chemical output of the biosynthetic pathways. 

Samples predicted to harbor novel or target biosynthetic gene clusters are prioritized for 

library construction, clone recovery, and heterologous production. Reproduced and adapted 

from [84] with permissions from Springer.
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Figure 3. Diversification of polyketide scaffolds by genetic engineering of PKS clusters
Possible modifications to polyketide structures are colored according to the responsible PKS 

domains or stand-alone (post-PKS) enzymes. The changes are not mutually exclusive and 

can be made in combination. Reproduced and adapted from [121] with permissions from 

The Royal Society of Chemistry.
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