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Telomeres are capping structures at the ends of eukaryotic

chromosomes, which consist of repetitive DNA bound

to an array of specialized proteins. Telomeres are part

of the constitutive heterochromatin and are subjected to

epigenetic modifications. The function of telomeres is to

prevent chromosome ends from being detected as

damaged DNA. Both the length of telomere repeats and

the integrity of the telomere-binding proteins are impor-

tant for telomere protection. Telomere length is regulated

by telomerase, by the telomere-binding proteins, as well as

by activities that modify the state of the chromatin.

Various mouse models with altered levels of telomerase

activity, or mutant for different telomere-binding proteins,

have been recently generated. Here, I will discuss how

these different mouse models have contributed to our

understanding on the role of telomeres and telomerase

in cancer and aging.
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The making of a telomerase scientist

The discovery of telomerase has fascinated me since my early

days as a PhD student with Margarita Salas at the ‘Severo

Ochoa’ Molecular Biology Center in Madrid. It was exactly 20

years ago that telomerase activity was first discovered in the

ciliate Tetrahymena by Greider and Blackburn (1985). They

first named this activity ‘telomere terminal transferase’ for its

capacity to elongate telomeric primers in the absence of a

DNA template. Soon after they discovered that telomerase

was a ribonucleoprotein that used an essential RNA compo-

nent as a template, and therefore had reverse transcriptase

activity (Greider and Blackburn, 1987, 1989). The discovery

of telomerase was not simply down to mere chance—its

existence was predicted on the basis of DNA duplication,

and its importance for cancer and aging soon became clear.

Polymerases that replicate ends were not, however, entirely

unfamiliar to me. During my PhD studies, I had already

studied a DNA polymerase implicated in maintaining the

ends of the linear genome of ^29 bacteriophage, through its

ability to use a terminal protein as primer. As Margarita

probably still recalls from my very first interview, I expressed

an early interest in cancer and aging. How could I ever have

predicted at that time though that chromosome ends and

human diseases were indeed related?

Completion of my PhD studies thankfully coincided with

Carol Greider setting up her own research group at the Cold

Spring Harbor Laboratory in Long Island, NY (CSHL). The

CSHL, as it turned out, had two special connections with

telomere biology. Not only was it the home to the majority of

McClintock’s (1941) research work, during which time she

had described the existence of a special structure at the ends

of chromosomes that prevented them from being ‘sticky’, but

its then Director, Watson (1972), had predicted that material

from the ends of chromosomes was lost every time that

a cell divides due to the so-called end-replication problem.

Consequently, when Carol accepted my application to work

in her group, I was truly confident that I was making the right

career choice. I can still recall that my project was ‘to identify

the mouse telomerase RNA and to generate a knockout

mouse’. Upon reflection, I am still astonished that we actually

managed to achieve both objectives in less than 3 years. This

of course was only possible thanks to the essential collabora-

tion of many other scientists, especially those working at

Carol’s lab, at the Geron Corporation, as well as thanks to

Han-Wong Lee who was involved in generating the mice.

Without a doubt, the most exhilarating point of my scientific

career to date is the discovery that the knockout mouse for

the telomerase RNA did not show any detectable telomerase

activity. Just as Titia de Lange had pointed out so poignantly,

telomerase ‘was not essential for life, nor for sex’, since the

mice were viable and fertile as long as their telomeres were

long enough. These mice have been the basis of a major part

of my scientific contribution and, I hope, of interpreting the

role of telomeres and telomerase in cancer and aging.

You can imagine my euphoria when last summer, Frank

Gannon, Director of EMBO, called me up to announce that

I had been awarded the 2004 EMBO Gold Medal. This

award represents a two-fold triumph: not only was my

work being consequently acknowledged by a large commu-

nity of European scientists, but also telomerase was being

recognized by EMBO as an interesting and important research

subject. Back in 1993, however, when I was applying for

fellowships to work with Carol, three main European agen-

cies rejected my applications on the basis that the research

subject was ‘still very new and uncertain’, and ‘the mamma-

lian genes were not even cloned’. It is to my great satisfaction
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to think that I, along with many other researchers, may have

contributed to this complete turn-around in perception.

Telomeric chromatin

Vertebrate telomeres are composed of tandem repeats of the

TTAGGG sequence, as well as of a number of associated

proteins (Blackburn, 2001; Chan and Blackburn, 2002; de

Lange, 2002). Telomeres are also characterized by having

a 150–200 nucleotide-long 30-overhang of the G-rich strand,

the so-called G-strand overhang (de Lange, 2002). The length

of the double-stranded TTAGGG track varies from B10 kb

at human telomeres to 440 kb in mouse inbreed strains

(Zijlmans et al, 1997). The current model is that telomeres

can form a structure that physically hides the 30-overhang

from cellular activities that may be hazardous for its integrity,

such as DNA repair activities and nucleases. The most

accepted telomere structure model is based on electron

microscopy studies, which suggest that the 30-overhang can

fold back and invade the double-stranded region of the

telomere forming the so-called T-loop and generating a dis-

placement loop, or D-loop (Griffith et al, 1999; Nikitina and

Woodcock, 2004). T-loops have been recently proposed to

represent a primordial mechanism for chromosome end

protection (de Lange, 2004).

Proteins that bind to the double-stranded TTAGGG region,

such as TRF1 and TRF2, or that bind to the single-stranded G-

strand overhang, such as Pot 1, have been shown to influence

both telomere capping and telomere length (Chong et al,

1995; Bilaud et al, 1997; Broccoli et al, 1997; van Steensel

et al, 1998; Baumann and Cech, 2001; Loayza and De Lange,

2003). TRF1 and TRF2 have been also visualized at telomeric

T-loops (Griffith et al, 1999), and demonstrated to be negative

regulators of telomere length (Smogorzewska et al, 2000).

TRF1 function is regulated by TIN2 (Kim et al, 1999), and by

the poly(ADP-ribose) polymerases TANK1 (also known as

tankyrase) and TANK2 (Smith et al, 1998; Kaminker et al,

2001). In particular, TIN2 is a TANK1 modulator and controls

telomere length via the TRF1 protein complex; furthermore,

TIN2 can also bind to the TRF2 complex (Kim et al, 2004; Ye

and de Lange, 2004a; Ye et al, 2004b). In addition to its role at

telomeres, TANK1 has been recently demonstrated to be

essential for separation of sister chromatid telomeres during

mitosis, suggesting the existence of a new telomere-specific

cohesion which is regulated by poly(ADP-ribosylation)

(Dynek and Smith, 2004). Finally, TRF1 interacts with Pot

1, and this interaction has been proposed to convey informa-

tion from the double-stranded telomere region to the

single-stranded 30-overhang (Loayza and De Lange, 2003).

Recently, a new Pot-1 interacting protein (PTOP/PIP1) has

been identified and shown to be important for telomere

length regulation by the TRF1 complex (Liu et al, 2004; Ye

et al, 2004c). All these findings suggest that TRF1 forms a

multi-protein complex, which is involved in telomere length

control and that contains at least TRF1, TIN2, the TANK1 and

TANK2 tankyrases, Pot-1 and PTOP/PIP1, and may also

contain TRF2 through its interaction with TIN2 (Figure 1).

Interestingly, the role of TRF1 in the context of the organism

seems to go beyond telomeres, since mice with targeted

deletion of TRF1 are embryonic lethal in the absence of

loss of telomere capping or telomere shortening (Karlseder

et al, 2003).

TRF2 has been proposed to have a fundamental role in

protecting the G-strand overhang from degradation, as well as
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Figure 1 Telomere-binding proteins. Scheme showing the telomere in a T-loop conformation, as well as with different protein complexes found
at mammalian telomeres. The TRF1 complex has been shown to influence telomere length, while the TRF2 complex has been shown to
influence both telomere length and telomere capping.
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in preventing telomeric fusions (van Steensel et al, 1998).

TRF2 also recruits a number of proteins to the telomeres,

many of which are involved in different DNA repair processes

(Figure 1). In particular, TRF2 recruits the MRE11 complex to

telomeres (Zhu et al, 2000). The MRE11 complex is composed

of RAD50, MRE11 and NBS1 and is a key component of the

homologous recombination (HR) and non-homologous end-

joining pathways (NHEJ) involved in DNA double-strand

break (DSB) repair. TRF2 also interacts with other DNA repair

proteins such as PARP-2 (Dantzer et al, 2004), Ku proteins

(Song et al, 2000), Werner (Opresko et al, 2004), and the

nucleotide excision repair complex XPF/ERCC1 (Zhu et al,

2003) among others. Interestingly, XPF/ERCC1 has been

identified as the exonuclease that resects the 30-overhang in

the absence of functional TRF2 (Zhu et al, 2003). In addition,

TRF2 has been recently shown to specifically bind to ATM

and to block the ATM-dependent DNA damage response,

suggesting that TRF2 could be specifically inhibiting ATM

activation at telomeres (Karlseder et al, 2004). Finally, TRF2

recruits hRAP1 to human telomeres. hRAP1 is the homologue

of yeast RAP1 protein and its overexpression causes telomere

elongation (Li et al, 2000; Li and de Lange, 2003). No mouse

models for TRF2 are available to date.

Besides their known role in DNA repair, the different repair

proteins present at telomeres also have a fundamental role in

telomere metabolism. In particular, the study of Ku86- and

DNA-PKcs-deficient mice has indicated that these proteins are

also required for telomere protection (reviewed in Smith and

Jackson, 1999; Goytisolo and Blasco, 2002). In particular,

abrogation of either Ku86 or DNA-PKcs results in telomeric

fusions characterized by showing TTAGGG repeats at the

fusion point (Bailey et al, 1999, 2001; Hsu et al, 2000;

Samper et al, 2000; Gilley et al, 2001; Goytisolo et al, 2001;

Espejel et al, 2002a, b). These end-to-end chromosome fu-

sions are not the result of telomere shortening below a

minimum length, but rather they are due to loss of telomere

capping. In addition, these fusions have been shown to

preferentially involve telomeres produced by leading strand

synthesis, thus suggesting a role for these proteins in the

post-replicative processing of the leading strand telomere,

that is, to generate the 30G-strand overhang (Bailey et al,

2001; Jaco et al, 2004).

Deficiency in either Ku86 or DNA-PKcs also influences

telomere length, in accordance with a role for these proteins

in generating or maintaining a proper telomere structure. In

particular, both in plants and mice Ku86 acts as a negative

regulator of telomerase (Espejel et al, 2002a; Riha et al, 2002).

In contrast, human cells deficient for Ku86 show shorter

telomeres and a dramatic loss of viability, suggesting impor-

tant differences in the role of Ku86 at both human and mouse

telomeres (Jaco et al, 2004; Myung et al, 2004). DNA-PKcs

has been shown to cooperate with telomerase in telomere

length maintenance, and mice doubly deficient for both

activities show an accelerated rate of telomere loss (Espejel

et al, 2002b). Also in agreement with this notion, single

mutant DNA-PKcs mice show decreased telomere length

with age, as well as with increasing mouse generations

compared to the wild-type controls (Espejel et al, 2004).

Besides their roles in telomere capping and telomere length

regulation, Ku86 and DNA-PKcs have also been shown to be

essential in signalling and processing critically short telo-

meres as damaged DNA (Espejel et al, 2002a, b).

In addition to NHEJ, HR also plays a role in telomere

biology. In particular, proteins involved in HR-mediated DNA

repair, such as Rad54 and Rad51D, are important for telomere

capping and telomere length regulation, suggesting that HR

has an important role at mammalian telomeres (Jaco et al,

2003; Tarsounas et al, 2004). Since T-loop structures resemble

in part an intermediate of HR, it has been proposed that HR

activities may have an important role in the regulation of

T-loops at telomeres (de Lange, 2004; Wang et al, 2004).

Epigenetic regulation of telomeric
chromatin

Human and mouse telomeres show nucleosome arrays, sug-

gesting that they may be subjected to histone modifications

(Tommerup et al, 1994). Histone modifications include

acetylation, methylation and phosphorylation, which in

turn generate a repertoire of chromatin structures that can

regulate various cellular responses (Jenuwein and Allis, 2001;

Lachner et al, 2001). In particular, constitutive heterochro-

matin is found at transcriptionally inactive (‘silenced’), re-

petitive genomic regions, such those of pericentric chromatin,

and it is characterized by hypermethylation of DNA, hypo-

acetylation of histones, and hypermethylation of histones H3

and H4. In particular, H3-K9 trimethylation by the Suv39h

histone methyltransferases (HMTases) as well as H4-K20

trimethylation by the Suv4-20h HMTases are two main hall-

marks of pericentric heterochromatin (Peters et al, 2001,

2003; Schotta et al, 2004). First, H3-K9 trimethylation creates

a binding site for the heterochromatin protein 1 (HP1) family

of proteins (Lachner et al, 2001), which mediate heterochro-

matin formation by recruiting the Suv4-20 HMTases (Schotta

et al, 2004).

Telomeres have also been shown to be part of the consti-

tutive heterochromatin in yeast and flies (Hecht et al, 1995;

Savitsky et al, 2002; Cenci et al, 2003; Perrod and Gasser,

2003). Furthermore, yeast and flies defective for activities

that modify the state of chromatin also have abnormal

telomere function and telomere length regulation (Savitsky

et al, 2002; Cenci et al, 2003; reviewed in Perrod and Gasser,

2003). In particular case of flies, HP1 mutations show defec-

tive telomere capping, as well as increased recombination at

telomeres, suggesting that telomere function can be regulated

by epigenetic modifications (Fanti et al, 1998; Cenci et al,

2003). In mice, it has been recently described that telomeres

are enriched for trimethylated H3-K9 and for HP1, similar to

pericentric chromatin (Garcia-Cao et al, 2004). Furthermore,

it has been established that the activity of the Suv39h1 and

Suv39h2 HMTases is required to maintain both H3-K9 tri-

methylation and HP1 binding at telomeres (Garcia-Cao et al,

2004). These findings suggest that telomeres have the hall-

marks of constitutive heterochromatin, and predict that epi-

genetic errors at telomeres may also alter telomere function.

In fact, mice doubly deficient for the Suv39h1 and Suv39h2

HMTases show abnormally elongated telomeres, suggesting

that loss of heterochromatic features at telomeres results in a

more ‘open’ chromatin state, which in turn could facilitate

the access of telomerase or other telomere-elongating activ-

ities to the chromosome end (Garcia-Cao et al, 2004)

(Figure 2 for model of telomere heterochromatin assembly).

Alternatively, loss of heterochromatic features at telomeres

may alter the expression of telomere-length regulator genes,
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a phenomenon known as ‘telomere position effect’ (TPE),

which in turn is related to the property of telomeric chroma-

tin to repress or silence neighboring genes. This phenomenon

has been extensively studied in budding yeast (reviewed in

Perrod and Gasser, 2003), but is less well understood in

mammals (Baur et al, 2001; Koering et al, 2002). Similarly,

epigenetic modifications could also regulate the binding of

specific proteins, such as TRF1 and TRF2, to telomeres.

Indeed, a reproducible increase in TRF1 binding per amount

of TTAGGG repeats was detected in Suv39h double null

telomeres, reflecting on a change in telomere architecture

(Garcia-Cao et al, 2004).

Finally, these results predict that, besides the Suv39h

HMTases, other activities that modify the state of the chro-

matin may also regulate telomere function (Jenuwein, 2001).

In addition, the fact that epigenetic errors can alter telomere

length in mammals may explain abnormal re-setting of

telomere length in cloned animals (Shiels et al, 1999; Lanza

et al, 2000).

The telomerase enzyme

Telomerase, the cellular reverse transcriptase that adds

TTAGGG repeats onto pre-existent telomeres, is the main

regulator of telomere length in mammalian cells (Collins

and Mitchell, 2002). Telomerase consists of two essential

components, a reverse transcriptase subunit known as

Telomerase Reverse Transcriptase (Tert) and an RNA mole-

cule or Telomerase RNA component (Terc), which contains

the template for the synthesis of new telomeric repeats

(Collins, 2000). Most human normal somatic cells do not

have sufficient telomerase and undergo telomere attrition

coupled to cell division (Harley et al, 1990). Telomere loss

in the absence of telomerase activity in telomerase-deficient

mice eventually results TTAGGG-exhausted chromosome

ends, end-to-end chromosome fusions and loss of cell viabi-

lity (Blasco et al, 1997; Lee et al, 1998; Herrera et al, 1999a).

Re-introduction of telomerase prevents critical shortening of

telomeres and allows viability both in cultured cells and in

Figure 2 Assembly of telomeric heterochromatin. Mammalian telomeres contain features of the constitutive heterochromatin such as
enrichment for H3-K9 di- and trimethylation, as well as binding of the HP1 family of proteins, similar to that previously described for
pericentric hetochromatin. The Suv39h1 and Suv39h2 HMTases are required for the di-and trimethylation of H3-K9 at telomeres, which in turn
recruits the HP1 proteins. Telomeric chromatin in SUV39DN cells also shows decreased binding of the HP1 proteins. These epigenetic
modifications contribute to a ‘closed’ chromatin state, which may regulate the access of telomerase to the telomeres.
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the context of the telomerase-deficient mouse (Bodnar et al,

1998; Hemann et al, 2001b; Samper et al, 2001), demonstrat-

ing that short telomeres trigger rapid loss of cell viability

unless they are rescued by telomerase. In this regard, telo-

merase may also prevent critical telomere shortening in more

than 90% of all human tumors, which reactivate telomerase

at some point during their formation (Hiyama and Hiyama,

2002). It has been proposed that telomerase inhibition could

be an effective way to abolish tumor growth by provoking

telomere shortening to a critical length (Blasco, 2002). In

addition, there is evidence that telomerase might enhance

survival and promote proliferation independently of telomere

length, favoring tumor growth even at stages when telomeres

are sufficiently long (Mattson et al, 2001; Blasco, 2002) (see

below).

Alternative mechanisms of telomere length
maintenance

Some human cell lines and tumors that lack telomerase

activity, however, are still able to maintain or elongate their

telomeres by alternative mechanisms to telomerase, which

have been termed alternative lengthening of telomeres (ALT)

(Henson et al, 2002). ALT-positive cells are characterized by

the simultaneous presence of long and short telomeres in the

same nucleus, as well as by the co-localization of telomere-

binding proteins and PML in the so-called ALT-associated

PML bodies (APB) (Bryan et al, 1997; Dunham et al, 2000).

Very little is known, however, on the mechanisms underlying

ALT in mammalian cells. In yeast, HR and mismatch repair

(MMR) pathways have been involved in telomerase-indepen-

dent telomere elongation (Lundblad, 2002), suggesting that

HR is one of the mechanisms for ALT-mediated rescue of

short telomeres.

In the case of mammalian cells, there is increasing evi-

dence that a number of factors can influence telomere length

in the absence of significant changes in telomerase activity.

Some of these factors are proteins with known roles in HR,

such as Rad54, which is central to the HR DNA repair

pathway. In particular, mice deficient for Rad54 show a

significant loss of telomeric sequences in the absence of

changes in telomerase activity (Jaco et al, 2003). These

mice also show a higher frequency of end-to-end chromo-

some fusions, indicating a role for Rad54 in telomere capping

(Jaco et al, 2003). More recently, Rad51D, a Rad51 paralog

required for normal levels of genetic recombination, has

been also shown to be required for telomere length main-

tenance and telomere capping (Tarsounas et al, 2004). The

role of Rad54 and Rad51D in telomere length maintenance

may also suggest that HR could be at the basis of the

telomerase-independent telomere maintenance mechanisms

in mammals.

In addition, activities that modify the state of the telomeric

heterochromatin (i.e., Suv39h HMTases) are also likely to

influence both telomerase action at telomeres as well as the

ALT pathway (Garcia-Cao et al, 2004). Similarly, a connection

between cell cycle regulators and telomere length has been

recently established. In particular, abrogation of p107 and

p130, two Rb-family members, results in a massive elonga-

tion of telomeres in the absence of changes in telomerase

activity, suggesting a connection between cell cycle regula-

tion and telomere length control (Garcı́a-Cao et al, 2002).

The telomerase-deficient mouse model

A telomerase-deficient mouse model has been generated by

the elimination of the gene encoding for the murine Terc gene,

Terc�/� mice (Blasco et al, 1995, 1997). These mice are

viable, but only a limited number of generations can be

derived before loss of viability is observed due to telomere

loss and increased end-to-end fusions (Blasco et al, 1997; Lee

et al, 1998). The phenotypes associated to telomere dysfunc-

tion in these mice include (i) male and female infertility (Lee

et al, 1998; Herrera et al, 1999a; Hemann et al, 2001a);

embryonic mortality due to a defective closure of the neural

tube (Herrera et al, 1999b); (ii) small size and severe intest-

inal atrophy (Herrera et al, 1999a; Rudolph et al, 1999); (iii)

spleen atrophy and reduced proliferation of B and T lympho-

cytes (Lee et al, 1998; Herrera et al, 1999a); (iv) impaired

germinal centre function (Herrera et al, 2000); (v) reduced

angiogenic potential (Franco et al, 2002); (vi) reduced pro-

liferative potential of the bone marrow stem cells (Samper

et al, 2002); (vii) heart dysfunction (Leri et al, 2003); (viii)

reduced proliferative capacity of adult neural stem cells

(Ferron et al, 2004). These findings indicate that a minimal

telomere length is necessary to maintain tissue homeostasis

in the mouse, and predict that telomere shortening with age

in humans may also lead to similar disease states, thus

contributing to the pathobiology of aging. In this regard, a

number of human premature aging syndromes, such as

Werner’s syndrome and Ataxia telangiectasia, have been

modelled in mice only when in combination with telomerase

deficiency and short telomeres in the context of the

telomerase-deficient mouse model (Wong et al, 2003;

Chang et al, 2004), suggesting that short telomeres are an

important component in the pathobiology of these prema-

ture-aging diseases as well as possibly in diseases that are

aging-related.

Importantly, it has been demonstrated that telomerase can

re-elongate critically short telomeres in the context of the

late-generation telomerase-deficient mice and prevent their

premature aging phenotypes (Samper et al, 2001). In parti-

cular, telomerase is able to recognize short telomeres and to

extend them, preventing the occurrence of end-to-end fusions

and the appearance of phenotypes in these mice (Hemann

et al, 2001b; Samper et al, 2001). These findings open the

possibility of using telomerase re-introduction as a putative

gene therapy for human premature aging syndromes that are

characterized by a faster rate of telomere loss such as

Dyskeratosis congenita (Collins and Mitchell, 2002), as well

as for age-associated pathologies.

Finally, the telomerase-deficient mouse model has pro-

vided strong evidence that short telomeres suppress tumor

progression, in agreement with the fact that telomerase

activity is upregulated in most human tumors (González-

Suárez et al, 2000). This tumor suppressor phenotype coin-

cides with p53 upregulation in Terc�/� mice (González-

Suárez et al, 2000). In fact, p53 has been proposed to be

sensing short telomeres and contributing to cessation of

growth (González-Suárez et al, 2000; Leri et al, 2003).

Telomerase deficiency in combination with deficiencies in

tumor suppressor genes other than p53 significantly

reduce carcinogenesis (Chin et al, 1999; Greenberg et al,

1999; Artandi et al, 2000; Rudolph et al, 2001; Wong

et al, 2003), suggesting that a telomerase inhibitor may be
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effective in cessation of tumor growth. Importantly, the

antitumor effect of telomerase inhibitors may be enhanced

in combination with genotoxic agents, as short telomeres

also result in a higher sensitivity to these agents (Goytisolo

et al, 2000; Wong et al, 2000). In particular, critically short

telomeres and dysfunctional telomeres have been recently

shown to interfere with the proper repair of DSB in the

genome, thus increasing chromosomal instability and the

sensitivity to genotoxic agents (Latre et al, 2003; Bailey

et al, 2004).

A role for telomerase-promoting growth
independent of telomere length

Telomerase activation during human tumor progression is

though to be required to rescue critically short telomeres,

thus allowing cell viability and tumor growth (Figure 3).

Intriguingly, telomerase activity is also upregulated during

mouse tumorigenesis, even though mice have much longer

telomeres than humans (Blasco et al, 1996; Broccoli et al,

1996). This fact suggests that telomerase might have addi-

tional roles in promoting tumorigenesis, which are not solely

mediated by telomere elongation. In support of this notion,

first-generation (G1) telomerase-deficient mice, Terc–/– mice,

which lack telomerase activity but still have long telomeres,

were shown to have less skin tumors than wild-type mice

following skin chemical carcinogenesis, indicating a negative

impact of telomerase deficiency on tumor growth even in the

presence of sufficiently long telomeres (González-Suárez

et al, 2000).

Additional evidence for a role of telomerase in promoting

tumorigenesis independently of telomere length comes from

the study of mice that overexpress the catalytic component of

mouse telomerase (Martı́n-Rivera et al, 1998) in basal kera-

tinocytes, the so-called K5-Tert mice (González-Suárez et al,

2001). K5-Tert mice show high levels of telomerase activity

and long telomeres in the skin (González-Suárez et al, 2001).

K5-Tert mice were found to be more susceptible to developing

tumors than wild-type mice upon chemical carcinogenesis of

the skin (González-Suárez et al, 2001). In addition, when

these mice were left to age, they showed a decreased viability

during the first year of life compared to the corresponding

wild-type controls due to a significant increase in sponta-

neous tumors (González-Suárez et al, 2001, 2002). Mice with

transgenic telomerase expression under a b-actin constitutive

promoter, or under a thymus-specific promoter (Lck-Tert

mice), also showed an increased incidence of spontaneous

tumors (Artandi et al, 2002; Canela et al, 2004). Interestingly,

K5-Tert mice that do not die from tumors during the first year

of age show an increased survival at older ages, as well

as a maximum lifespan extension compared to the wild-type

littermates, which is coincidental with increased tissue fitness

of the germ line and the kidney (González-Suárez et al,

2005). These findings suggest antagonistic roles of Tert in

cancer and aging (González-Suárez et al, 2005). These find-

ings are in line with data obtained from cultured cells, which

also suggest a role for telomerase in enhancing survival

and proliferation in the presence of very long telomeres.

In particular, the epidermal growth factor receptor (EGFR) is

upregulated in cells overexpressing Tert and this upregulation

is required to mediate the telomere-length-independent ef-

fects of Tert overexpression on cell proliferation (Smith et al,

2003).

All together, these findings suggest that telomerase activa-

tion at early stages of tumor growth may actively promote

tumor growth and survival even if telomeres are still suffi-

ciently long, and that telomerase activation could favor

tumorigenesis by at least two different mechanisms: by

signaling proliferation and promoting growth independently

of telomere length, and by rescuing tumor cells with critically

short telomeres (Figure 3).
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González-Suárez E, Geserick C, Flores JM, Blasco MA (2005)
Antagonistic effects of telomerase on cancer and aging in K5-
mTert transgenic mice. Oncogene [E-pub ahead of print: 31
January 2005]
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