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Capturing Human Naı̈ve Pluripotency
in the Embryo and in the Dish
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Although human embryonic stem cells (hESCs) were first derived almost 20 years ago, it was only recently
acknowledged that they share closer molecular and functional identity to postimplantation lineage-primed
murine epiblast stem cells than to naı̈ve preimplantation inner cell mass-derived mouse ESCs (mESCs). A
myriad of transcriptional, epigenetic, biochemical, and metabolic attributes have now been described that
distinguish naı̈ve and primed pluripotent states in both rodents and humans. Conventional hESCs and human
induced pluripotent stem cells (hiPSCs) appear to lack many of the defining hallmarks of naı̈ve mESCs. These
include important features of the naı̈ve ground state murine epiblast, such as an open epigenetic architecture,
reduced lineage-primed gene expression, and chimera and germline competence following injection into a
recipient blastocyst-stage embryo. Several transgenic and chemical methods were recently reported that appear
to revert conventional human PSCs to mESC-like ground states. However, it remains unclear if subtle devia-
tions in global transcription, cell signaling dependencies, and extent of epigenetic/metabolic shifts in these
various human naı̈ve-reverted pluripotent states represent true functional differences or alternatively the ex-
istence of distinct human pluripotent states along a spectrum. In this study, we review the current understanding
and developmental features of various human pluripotency-associated phenotypes and discuss potential bio-
logical mechanisms that may support stable maintenance of an authentic epiblast-like ground state of human
pluripotency.
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Developmental Capacities of the Murine
and Human Preimplantation Embryo

The concept of totipotency was first introduced by
Driesch in the 1890s to define the potency of the first two

cleavage cells in echinoderms [1] and refers to the capacity of
a (single) cell to develop into a complete organism. This
potency includes not only differentiation into all embryonic
lineages but also the developmental competence to form an
organized embryo [2]. Totipotency was first experimentally
demonstrated in 1942 in rats through full-term embryo de-
velopment of isolated single blastomeres (2-cell stage) or
fused zygotes following transfer into foster females [3].

In most mammals, totipotency sensu stricto is limited to
the zygote and to 2-cell blastomeres (although there have
been successful reports of functional totipotency from 4- or 8-
cell blastomeres) [2]. The cleavage and blastula stages of
development mark the loss of totipotency and the subsequent
specification of the epiblast, which is a transient embryo-

forming structure that undergoes species-specific morphoge-
netic reorganization before gastrulation [4] (Fig. 1).

Following zygotic activation, embryonic development
follows defined rapid successions of ontogenetic phases that
can be classified through standardized systems (eg, Carnegie
or Hamburger–Hamilton stages) (Fig. 1). The morulae and
early blastocyst stages of preimplantation development (up to
the fifth cleavage division in the mouse [5]) conserve plu-
ripotent capacity for differentiation into most, if not all, lin-
eages. However, their capacity to self-organize into an
integrated body plan is limited and has been accomplished
only through artificial methods such as multicellular aggre-
gation or tetraploid complementation [2]. The term plur-
ipotency was originally employed by Haecker in 1914 [6] as
the potential for several different developmental options [7].

The rodent preimplantation inner cell mass (ICM) (Fig. 1)
transiently embraces a naı̈ve ground state of pluripotency
phenotype that is captured in vitro by ICM-derived self-
renewing embryonic stem cells (ESCs) [8]. In contrast, the
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mouse postimplantation epiblast and its derivatives [eg,
epiblast-derived stem cells (EpiSCs)] adopt primed pluripotent
states with variable degrees of lineage commitment [9] and
defective chimeric contribution following injection into re-
cipient blastocysts, although limited contribution can be
achieved using postimplantation embryos [10].

Current consensus dictates that putative pluripotent
(pluripotential) cells should demonstrate, at a minimum, a
differentiation capacity in all three germ layers (although
this may extend to differentiation capacity in some or all
extraembryonic tissues); although without requirement for
competence of self-organization into a coherent embryo.
The most widely utilized assay to validate the functional
pluripotency of pluripotent stem cells (PSCs) remains tera-
toma formation, which is a method that was originally de-
veloped using single embryonal carcinoma cells [11].

This assay detects differentiation in all germ layers fol-
lowing the subcutaneous, intramuscular, intrarenal, or in-
tratesticular injection of putative pluripotent cells into mice.
However, pluripotency is more rigorously validated through

potency for chimera formation and germline incorporation
following morula aggregation or injection of PSC test cells
into a blastocyst-stage embryo. This assay was first described
following the injection of murine teratocarcinoma [12] or
murine ICM [13] into mouse blastocysts or interspecifically
between rat ICMs into mouse blastocysts [14]. Unlike tera-
toma formation, the capacity for functional chimeric incor-
poration into a murine blastocyst is lost by murine blastocyst
ICM cells following embryo implantation [15]. Thus, this
divergence in functional chimera-forming capacity broadly
represents a critical delineation of at least two functional
classes of pluripotent cells in early rodent embryos [16].

A critical distinction between mouse and human post-
implantation embryos is revealed by the progression of the
human ICM into an embryonic disc, which contrasts with the
developmental structure of the well-described mouse egg
cylinder (Fig. 1) [4]. However, the general nonaccessibility of
implanted human embryos restricts detailed in vivo studies of
this process. Recent descriptions of in vitro systems for ex utero
culture and development of human embryos may provide

FIG. 1. Embryonic pluripotency in early mouse and human embryonic development. Left: Pluripotent cells arise in the
murine embryo during the cleavage stage, following loss of totipotency. Functional capacity to form all three germ layer
lineages is retained up to the postimplantation egg cylinder epiblast. Two categories of PSCs have been isolated from
murine embryos: mESCs and mEpiSCs. mESC lines can be isolated from postcleavage preimplantation embryos and model
the ground state of pluripotency in the ICM of the blastocyst. In contrast, mEpiSC lines can be isolated from post-
implantation epiblasts and mimic the continuum of lineage-primed developmental states that proceed to gastrulation. Right:
Human embryonic pluripotency follows slower developmental kinetics than the mouse, but can be classified by analogous
morphogenetic changes. Similar to mESCs, hESCs have been isolated from postcleavage preimplantation embryonic ICMs,
but hESC lines share closer phenotypic and functional similarity with mEpiSCs than mESCs. hESCs may represent an
equivalent of the developmentally more advanced human embryonic disc rather than the preimplantation epiblast cells they
originate from. Red: pluripotent cells, green: trophectoderm, blue: primitive endoderm. hESCs, human embryonic stem
cells; ICM, inner cell mass; mESCs, mouse embryonic stem cells; mEpiSCs, mouse epiblast-derived stem cells; PSCs,
pluripotent stem cells.
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information about human-specific cues governing human epi-
blast development, epithelialization, and proamniotic cavity
formation throughout these poorly accessible early post-
implantation phases [17,18]. However, although determination
of human functional pluripotency in pre- and postimplantation
embryos is limited by ethical and availability constraints, it can
be extrapolated from nonhuman primate studies.

For example, using nonhuman primate embryonic cells as
surrogates for human PSCs, whole rhesus ICMs and rhesus
ESCs both failed to robustly chimerize with rhesus monkey
host embryos with the ease routinely observed with rodent
PSCs [19]. Interestingly, these studies revealed that rhesus
ICMs generated reproducible chimerism only in the extra-
embryonic compartment and a limited engraftment in fetal
liver and spleen that possibly reflected blood cell exchange
through placental perfusions [19]. In contrast, monkey chi-
meras were efficiently generated from totipotent cleavage-
stage 4-cell embryos [19], suggesting that preimplantation
epiblast pluripotency may follow different functional ki-
netics in primates and rodents.

Distinct Molecular and Functional
Pluripotencies of the Rodent Epiblast

Pre- and postimplantation epiblast cells both possess the
capacity to form all three germ layers in most species, and
rodent PSC lines can be successfully derived from both de-
velopmental stages. Mouse ESCs (mESCs) were originally
derived as ICM-derived explants that were expanded over
mitotically inactivated mouse embryonic fibroblast (MEF)
feeder cells in undefined culture systems (eg, employing
specific lots of fetal bovine serum (FBS) [20] or conditioned
media from teratocarcinoma cultures [21]). mESC lines were
subsequently revealed to exploit gp130/LIF/STAT3 [22–25],
WNT [26], and bone morphogenetic protein (BMP) [27]
signaling for their self-renewal. In contrast, EpiSCs derived
from the postimplantation epiblast of murine egg cylinders
were stably propagated through FGF2/MEK/ERK [28–30]
and WNT-b-catenin pathway [31] signals.

Serum-based cultures of mESCs produced heterogeneous
populations of lineage-primed subsets [32], and a more
stringent culture system was ultimately developed using
small-molecule inhibition to sustain a more primitive self-
renewal [33]. This system utilized two small molecules (2i)
that augmented WNT/b-catenin activation while simulta-
neously diminishing extracellular signal-regulated kinase
(ERK) signaling [via GSK3b and mitogen-activated protein
ERK (MEK) inhibition, respectively] [33]. This 2i culture
system proved sufficient for stably maintaining a naı̈ve
pluripotent state in mESCs [34,35] that was biologically
akin to the ground state of pluripotency of the murine pre-
implantation ICM [36,37].

mESCs and EpiSCs are both derived from embryonic
cells separated by only several cell divisions. However, they
reproduce distinct pluripotent states (ie, naı̈ve and primed)
representing major peri-implantation transcriptomic, epige-
nomic, and metabolic transitions of the pluripotent epiblast
(Figs. 2 and 3) [8,16]. Indeed, while both mESCs and EpiSCs
share a similar core pluripotency molecular network [38,39]
and can differentiate into derivatives of the three germ layers in
teratoma or directed differentiation assays [29,30], they retain
distinct molecular and functional characteristics.

For example, EpiSCs exhibited higher levels of epige-
netic repressive marks (eg, increased CpG promoter DNA
methylation [40,41] and bivalent/repressive histone marks
[41,42]) that were partially erased following reversion to
naı̈ve culture [34,35,41]. The reduced levels of classical
repressive chromatin marks in naı̈ve PSCs may potentiate a
distinct epigenetic regulation of transcriptional activities
[43,44] that includes seed enhancers [45], miRNA networks,
RNA-induced silencing complex-mediated control of chro-
matin [46], and post-transcriptional regulators (eg, PARsy-
lation by PARP1 and PARP7 [47], YAP/TAZ signaling [48–
50], and regulation of retrotransposon elements [51,52]).

The postimplantation epiblast (and thus EpiSCs [53–55])
is characterized by increased lineage-primed gene expres-
sion relative to the naı̈ve ground state [9,41,54] that also
correlates with a functional lineage differentiation bias
[9,54]. This functional discrepancy between primed and
naı̈ve pluripotencies in the mouse is revealed by their chi-
meric contribution capacity in pre- or postimplantation
embryos (Fig. 2a). ICM-derived mESCs show robust ca-
pacity for contribution to chimeric animals when aggregated
with morulae or injected into blastocysts, including efficient
contribution to germline lineages. This chimera-forming
capacity is further reinforced with LIF-2i-cultured mESCs
[56]. In contrast, mEpiSCs expanded under standard culture
conditions are not capable of significant chimeric contri-
bution when injected into preimplantation embryos [29,30].

However, this deficiency can be improved by injection
into stage-matched postimplantation epiblasts [10]. Even
though EpiSCs may be artificially conditioned for engraft-
ment into preimplantation ICM [57], their baseline ineffi-
ciency of contribution to the germline supports the notion
that naı̈ve reversion of EpiSCs is necessary for such con-
tribution. Thus, functional and molecular pluripotencies
may overlap between the two states and may not necessarily
be stringently compartmentalized. For example, specific
EpiSC subsets have been reported to retain naı̈ve-like phe-
notypes, including chimera contribution [58]. Additionally,
hybrid EpiSC culture systems using FGF2, Activin, and
leukemia inhibitory factor (LIF) [59] or alternatively FGF2,
Activin, and a GSK3b inhibitor [60] were shown to produce
pluripotent stem cells that retained capacity for chimeric
germline contribution.

Importantly, primed mEpiSCs can be successfully re-
verted into a naı̈ve-like pluripotent state by exposing them
to LIF/STAT3 signaling [61] or transgenic expression of
key naı̈ve inducers (eg, E-Cadherin [62], Esrrb [63], the
Krüppel-like factors Klf2 (in synergy with Prdm14) [64],
Klf4 [65,66] or Klf5 [67], Mbd3 [68], cMyc [66], Nanog
[69], or the nuclear receptors Nr5a1/Nr5a2 [70]). Dis-
crepancies in reversion efficiencies have been attributed to
either advanced developmental progression of the starting
primed state [9] or genetic background [66].

Interestingly, although LIF/STAT3 activation may be
sufficient to revert specific EpiSC lines [71,72], poor re-
version efficiencies or strain-specific requirements of other
lines may be circumvented by employing chemical WNT
modulation by the ATP-competitive cyclin and GSK3b in-
hibitor kenpaullone [66], the tankyrase inhibitor XAV939
[62], inhibition of the histone H3K4 methyltransferase
MLL1 using MM-401 [73], nonspecific histone deacetylase
(HDAC) inhibition with sodium butyrate [74], or a
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combination of WNT, MEK, FGFR, and TGFb pathway
inhibitions and epigenetic erasure involving inhibition of
histone demethylase LSD1 [75].

The multiplicity of mouse pluripotency states captured in
vitro appears to correspond to a spectrum of dynamic shifts
in molecular and cellular identities in vivo that naturally
progress within epiblast cells during the peri-implantation
period (Fig. 2a). Pluripotency briefly persists through the
developmental progression of the ICM by continuous ex-
pression of core pluripotency regulators. Thus, maintenance
of a stable naı̈ve pluripotent state in vitro may similarly
require sustained reinforcement of WNT, BMP4, and LIF/
STAT3 signaling [27,76–84]. Such reinforcement likely

requires a stable orchestration of events that incorporate
repressive and bivalent epigenetic marks and subsequent
downstream expression of epiblast lineage specifiers.

For example, this epigenetic transition is known to in-
volve dynamic reorganization of chromatin enhancer sig-
natures for regulating developmental factors [45,85–87],
most notably a shift of distal to proximal OCT4 enhancer
usage [29,88]. Furthermore, the ICM undergoes dramatic
metabolic transitions, including an interruption of its use of
oxidative phosphorylation, and exclusive alternate use of
glycolysis for sustaining its energy expenditures [89–91].
Additional developmental shifts include changes in activi-
ties responsible for DNA repair [92,93] and telomere

FIG. 2. Functional phenotypes of primed and naı̈ve pluripotent states. (a) Functional shifts in the peri-implantation mouse
embryo. The mouse pluripotent epiblast progresses from a naı̈ve ground state (red) to a primed lineage-biased state (blue)
following implantation. Naı̈ve and primed states exploit distinct signaling pathways and their transition is accompanied by
the sequential specification of trophectoderm (green) and primitive endoderm (violet) lineages. Known signaling pathways
directing trophectoderm and primitive endoderm are indicated. In the mouse embryo, naı̈ve and primed states can be
distinguished by differing telomere lengthening and DNA repair strategies, levels of global repressive epigenetic marks (eg,
DNA CpG methylation), and usage of metabolic pathways. Both states also display nonequivalent functional pluripotencies,
with only the naı̈ve state showing capacity for germline-competent chimera formation. In contrast, postimplantation epiblast
cells have a partially committed lineage bias. In vitro expansion of mouse naı̈ve epiblast cells generates mESC lines, while
the postimplantation epiblast can generate lineage-primed mEpiSC lines. Functional capacities that have been demonstrated
in vivo (embryo) or using in vitro surrogates (mESC, mEpiSC) are indicated. (b) Functional shifts in the human peri-
implantation embryo. Similarly to the mouse, the human pluripotent epiblast is believed to recapitulate a steady progression
from a naı̈ve preimplantation state (red) to postimplantation primed lineage-biased states (blue). The signaling pathways
that are essential for human naı̈ve and primed states remain a subject of debate and have been extrapolated from hESC or
single-cell RNA sequencing of preimplantation human embryos. The progression of human pluripotency is accompanied by
the specification of trophectoderm (green) and primitive endoderm (violet) lineages, although the kinetics for emergence of
extraembryonic lineages diverge between both species. The human naı̈ve and primed states can also be distinguished by
differing telomere lengthening and DNA repair mechanisms, global levels of repressive epigenetic marks, and metabolic
pathway usage. The chimeric contribution of the postimplantation epiblast of nonhuman primates remains undetermined.
However, nonhuman primate (NH-Primate) studies indicate that chimera formation may be restricted to early cleavage
embryos, with possible low engraftment capacity for later preimplantation stages demonstrated by whole ICM transfer
experiments. Functional capacities that have been demonstrated in vivo (embryo) or using in vitro surrogates (hESCs) are
indicated.

1144 ZIMMERLIN, PARK, AND ZAMBIDIS



maintenance [94,95]. For example, before implantation, the
embryo relied predominantly on homologous recombination
for DNA repair, whereas in the subsequent postimplantation
period, there is a transition toward increase of more error-
prone, but more efficacious, nonhomologous end joining for
double-stranded DNA repair [96].

Determinants of Human Molecular
and Functional Pluripotency

Human ESCs (hESCs) were originally derived from hu-
man blastocysts in FBS-containing medium on mitotically
inactive MEF feeders and human LIF [97] in conditions
similar to those sustaining mESC self-renewal. However,
unlike mESCs [24,25], LIF was found to not be essential for

sustenance of self-renewal of human ICM cells, including in
the absence of feeders [97]. Similarly, while BMP4 and LIF/
STAT3 pathways synergized to support clonal growth of
mESCs, supplementation of hESC cultures with BMP4 led
to trophoblast lineage differentiation [98]. Subsequent hESC
culture conditions adopted supplementation with FGF2,
serum replacer (ie, knockout serum replacer), and mitoti-
cally inactive MEF feeders or MEF-conditioned medium for
more uniform propagation and expansion of undifferentiated
hESCs [99]. These culture conditions were further opti-
mized using feeder-free and more defined medium formu-
lations (eg, mTESR [100] and E8 [101]).

Differences in morphology, gene expression, cell cycle
regulation, telomerase activity, and functional performance
between mouse and human PSCs were originally attributed to

FIG. 3. Summary of epigenetic and functional phenotypes that are detected in distinct human and mouse pluripotent
states. Select human and mouse PSC culture systems are presented with their downstream outcomes on WNT/b-catenin,
FGF2/MEK/ERK, LIF/STAT3, and BMP/SMAD circuitries. + and - indicate signaling activities that have been verified to
be, respectively, up- and downregulated using the aforementioned cocktails of small molecules, growth factors, and
cytokines. The figure lists a series of epigenomic and functional hallmarks that have been associated with and distinguish
between primed and naı̈ve pluripotent cell populations. *Non-nuclear b-catenin only, **unpublished data (MEK/ERK) or
subject to interline variability (BMP/SMAD), ***directly targeted by culture conditions, but nonverified, ****normal
chromosome preparations were only verified between 5 and 17 passages. n/a, not applicable; N.D., not determined. ecto.,
meso., endo., PGC, and TE indicate reported detections of neuroectoderm, mesoderm (ie, cardiac, hemato-vascular),
definitive endoderm, primordial germ cell, and trophectoderm lineages in directed differentiation assays. BMP, bone
morphogenetic protein; ERK, extracellular signal-regulated kinase; LIF, leukemia inhibitory factor; MEK, mitogen-
activated protein ERK.
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species-specific attributes [102–104]. However, subsequent
isolation of EpiSCs from postimplantation mouse epiblasts
[29,30] revealed that despite being a derivative of the human
preimplantation ICM, human PSCs shared greater molecular,
epigenetic, and functional pluripotency similarities with
mEpiSCs than with mESCs (Fig. 3) [29,30,105].

In the absence of an ethically conceivable human chimera
assay, the functional pluripotency of conventional (primed)
human PSCs was extrapolated from surrogate nonhuman
primate PSC experiments (Fig. 2b). Conventional (primed)
cultures of rhesus monkey ESCs failed to participate in
chimera formation when injected into rhesus blastocysts
[19]. Moreover, cross-species chimera studies using host
mouse blastocysts revealed that even though injected con-
ventional monkey ESCs could transiently associate with the
mouse ICM, they did not significantly contribute to devel-
oping murine fetal tissue [106]. Similar interspecies chimera
approaches with human cells confirmed that even though
conventional, primed hPSC cultures could not survive in-
jection into mouse preimplantation blastocysts [41,107],
limited, but measurable, integration occurred within injected
gastrula-stage mouse embryos [108].

Although functional pluripotency can be validated by
teratoma or directed differentiation across germ layers, in-
terline genetic variability between conventional hESC lines
[109] can result in differentiation lineage bias and skewing
in response to microenvironmental cues [110,111]. Indeed,
marked differentiation disparities have been documented
extensively between hESC lines [112–115]. Furthermore,
hESC lines comprise heterogeneous populations [116] with
epigenetically distinct coexisting subsets showing variable
differentiation capacities [117].

One study involving a cohort of 20 independent hESC
lines revealed that discrepancies in functional pluripotency
reflected variations in both epigenetic and transcriptional
profiles, including a high disparity in genes regulating de-
velopment and differentiation [118]. Our own studies re-
vealed disparities between conventional human PSCs based
on highly variable lineage-primed gene expression that di-
rectly impacted functional pluripotency [119]. These studies
supported the notion that conventional, primed human PSCs
embrace diverse states of primed pluripotency in a manner
similar to mEpiSCs [9].

Various factors among conventional human PSCs have
been hypothesized to contribute to this functional variability;
these include genetic background [120], acquisition of mu-
tations in key developmental genes, and differences in deri-
vation and culture methodologies [109]. For example,
derivation of hESCs under physiological oxygen concentra-
tion may result in acquisition of naı̈ve-like X chromosome
activation, which may reinforce ground state pluripotency by
suppressing spontaneous differentiation [121].

Yamanaka’s discovery of transcription factor-mediated
cellular reprogramming [122] for generating human induced
pluripotent stem cells (hiPSCs) [123,124] revolutionized the
study of pluripotency and regenerative medicine. However,
hiPSC reprogramming further accentuated the variability ob-
served in functional pluripotency between conventional PSC
lines. Most hiPSC lines were noted to display more augmented
lineage skewing [119,125–128] than standard hESC lines de-
spite their strong overlap of transcriptional and epigenetic
signatures with conventional hESCs [118,129,130]. While

optimization of differentiation methods partially erased these
functional discrepancies in directed differentiation [131–137],
epigenomic aberrations were identified in a number of hiPSC
lines that included retention of donor cell-specific somatic
memory and reprogramming errors [138–141] and were shown
to be transmitted to differentiated progenies [138].

Some studies argued that such reprogramming errors re-
sulted in differentiation bias toward their respective cell of
origin lineage in mouse [142–145], human [146–150], and
dog [151] iPSCs. It may be worth noting that most of these
studies involved genome-integrating methods that intro-
duced reprogramming factor transgenes through retroviral
[142,144–147,150,151] or lentiviral [148,149] vectors (in-
cluding a lentiviral doxycycline-inducible secondary system
[143]). Such viral reprogramming methods are now known
to promote transcriptional and epigenetic errors [141] that
were not detected using somatic cell nuclear transfer [141]
or nonintegrative episomal derivation methods [119,120].

Transgene-integrating reprogramming methods may also
have potentiated an increased frequency of genomic aber-
rations in established hiPSC clones [152–154], which likely
compromised functional pluripotency [155] through trans-
gene reactivation in differentiated cells [156–158].

Factors Determining the Quality of the
Pluripotent State in Reprogrammed hiPSCs

A series of nonintegrative reprogramming strategies have
been developed (eg, Sendai virus, episomal, and mRNA) to
avoid the risks associated with viral transgene integration, but
with notable disparities of their aneuploidy rates, repro-
gramming efficiency, reliability, and workload that have been
discussed by Schlaeger et al. elsewhere [159]. We previously
demonstrated that optimized episomal reprogramming was
uniquely superior in activated myeloid progenitors (MPs)
and could consistently achieve bulk reprogramming at high
efficiencies across variable donor genetic backgrounds.
Moreover, human MP-iPSC lines possessed hESC-like tran-
scriptomes closely with significantly fewer reprogramming
errors than hiPSC lines obtained from standard episomally
reprogrammed adult skin fibroblasts [119,160].

This myeloid reprogramming method exploited a stromal
priming activation step that delivered various signals (eg,
Toll receptor/NFkB, JAK/STAT3 signaling) responsible for
decreasing reprogramming efficiency barriers [119,160].
Analogous interactions with the mesenchyme may contrib-
ute to aberrant reprogramming of tumor cells toward inva-
sive cancer phenotypes [161,162] and have also been shown
to induce epigenetic changes that favor cellular repro-
gramming using retroviral vectors [163]. Such deterministic
reprogramming generated hiPSC clones with stable ge-
nomes and reduced lineage bias [119,160] that translated
into the generation of highly functional progenitors across
germ layers in independent studies (ie, hemato-vascular
[164], cardiac [132], and photoreceptors [165]).

Importantly, the specialized cell populations obtained from
such directed differentiation assays displayed enhanced
functional capacities with lower senescence, superior DNA
repair capacity, or improved long-term engraftment [164],
underlying a correlation between terminal differentiation and
the initial pluripotency state. As such, functional pluripotency
requires evaluation of terminally differentiated progenies, even
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though most studies limit their characterization to intermediate
progenitors. To this end, we and others have developed a bat-
tery of in vitro and in vivo directed differentiation assays that
were included for our group hematopoietic [131,166] (eg,
macrophages [167]), vascular [164], cardiac [132,168,169], or
retinal [165] lineages.

A number of comparative strategies were also employed
between isogenic hiPSC lines reprogrammed from distinct
cell types [170–173] or from isogenic donor hESCs/iPSCs
[120,174]. These studies have suggested that donor-specific
genetic background rather than cell of origin or repro-
gramming system plays a more dominant role on the dif-
ferentiation capacities of hiPSC lines [170,171,174]. These
studies employed both integrative and nonintegrative deri-
vation methods for cellular reprogramming (eg, Sendai virus
[120,170–172,174], episomal plasmids [171,173], lenti-
viruses [174], or retroviruses [171,172,174]).

A publication from the Progenitor Cell Biology Con-
sortium analyzed a large repertoire of 58 hiPSC lines from
10 independent laboratories and reported a segregation of
DNA methylation profile signatures based on their cell type
of origin, but these differences could not be directly attrib-
uted to somatic donor memory [130]. Taken together, these
studies have revealed that multiple complex determinants
collectively impact the differentiation potency of conven-
tional, primed human PSCs [119,120].

Conventional mEpiSC-Like Human PSCs
Can Be Chemically Reverted to Highly
Variable Naı̈ve Preimplantation Epiblast-Like
Pluripotent States

Several groups have developed various culture systems to
revert EpiSC-like conventional human PSCs [41,48,107,119,
175–183] or derive de novo hESCs [41,107,178,184] to
pluripotent states resembling the human preimplantation
epiblast (Fig. 3). These studies revealed that the classical
mESC 2i cocktail of inhibitors targeting MEK and GSK3b
[33] was insufficient for stable sustenance of a human ICM-
like state.

LIF/STAT3 signaling, a critical self-renewal signaling
pathway in mESCs [22–25], can promote naı̈ve reversion of
both mEpiSCs [61] and hESCs [181]. However, such reversion
of mEpiSCs in 2i was relatively inefficient even with trans-
genic STAT3 reinforcement (ie, *1%–2% efficiency) [61],
and a number of EpiSC lines required sustained transgenic
STAT3 expression in 2i culture [65]. Despite LIF supple-
mentation, forced transgenic expression of STAT3 was es-
sential for achieving naı̈ve reversion of both human and mouse
primed pluripotent states [61,181].

In mEpiSCs, several factors were shown to potentiate LIF-
dependent STAT3 responsiveness and naı̈ve reversion. These
variables included colony size [72], increased BMP/SMAD
signaling [185], and FGF/ERK inhibition [28,66], as well as
stimulated [66,186] or, alternatively, reduced [62,187–189]
WNT signaling. Interestingly, these determinants were previ-
ously reported to impact lineage priming and differentiation
[27,28,31,72,187,190–194]. These studies also exposed an
interline molecular and functional variability among mEpiSC
lines [28,66] that impacted naı̈ve reversion efficiencies in LIF-
2i [9,186]. Our studies similarly observed a similar pattern
when reverting a cohort of variably lineage-primed human PSC

lines to an LIF/STAT3-dependent naı̈ve pluripotent state in
LIF-3i [119].

Four Main Molecular Axes Intersect
to Balance the Maintenance and Exit
of Molecular Pluripotency

The BMP/SMAD, LIF/STAT3, FGF2/MEK/ERK, and
WNT/b-catenin pathways have all been recognized to reg-
ulate the self-renewal of pluripotent stem cells (Fig. 4).
These molecular axes are strongly intermingled and not only
control the pluripotency states but also initiate differentia-
tion if their balanced circuitry is altered. Even though these
signaling pathways regulate multiple independent down-
stream transcriptional targets, they also converge to a few
shared effectors (Fig. 4).

For instance, the LIF/STAT3 and MEK/ERK pathways
antagonistically regulate TBX3 [76], a known transcrip-
tional activator of the pluripotency-associated genes Nanog
and DPPA3/Stella [195,196]. The LIF/STAT3 and WNT/b-
catenin pathways also synergistically converge onto the
trans-acting protein 5 (Sp5), a transcription factor that clo-
sely relates to the Klf gene family and can reprogram mE-
piSCs to the naı̈ve state [197]. Another transcription factor
named Tfcp2l1 is also similarly and independently re-
inforced by STAT3 and WNT signaling [77,198] and fa-
cilitates EpiSC reprogramming to naı̈ve pluripotency by
interacting with KLFs and Nanog [198] (Fig. 4).

The BMP/SMAD pathway stimulates ESC self-renewal
by endogenously inhibiting MEK/ERK signaling [82], re-
cruiting multiple Kruppel-like factors [83], or suppressing
differentiation by stimulating expression of the inhibitor of
differentiation (Id) genes [27] (Fig. 4). While BMP4 signals
cooperate with the LIF/STAT3 axis to stabilize the naı̈ve
state [27], they can also promote differentiation of primed
pluripotent stem cells under control of WNT signaling
[191].

LIF/STAT3 activity is essential for maintenance of the
mouse naı̈ve state [22–25] and promotes transition from
primed to naı̈ve pluripotency [61,181]. STAT3 signaling
regulates multiple pluripotency-associated targets (Fig. 4),
including reinforcement of the core pluripotency factors
Nanog and SOX2 through activation of Tbx3 and Klf4 in
two parallel circuitries [76], or augmented transcriptional
expression of Rex1, Stat3 itself, and the epigenetic modifi-
ers, Lin28, Ezh2, and Mbd3 [84]. Nanog expression has been
shown in return to amplify STAT3 and KLF4 activities to
reinforce naı̈ve pluripotency [199]; conversely, STAT3 ac-
tivity may suppress mesoendodermal differentiation in co-
operation with Nanog [200].

Forced chemical rewiring of MEK/ERK and WNT/b-
catenin has been shown to bypass at least partially LIF/
STAT3 and BMP/SMAD signaling and sustain the naı̈ve
ground state in mESCs [33]. MEK inhibition promotes naı̈ve
ESC self-renewal by blocking lineage priming toward
primitive endoderm and differentiation in naı̈ve cells [201]
through dynamic remodeling of polycomb repressors and
H3K27me3 repressive marks [202]. While suppression of the
ERK1/2 pathway stabilizes mESCs [203], it will promote
differentiation of mEpiSCs and hESCs [8,16]. Moreover,
MEK/ERK signaling may be indispensable for self-renewal
of primed pluripotent cells [28,204].
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Unlike the pivotal role of ERK signaling in naı̈ve-to-
primed transition, the role of WNT/b-catenin is more am-
biguous since either reinforcement [66,186] or inhibition
[62,187–189] of WNT signals can augment naı̈ve reversion
of mEpiSCs. In addition, b-catenin targets have been in-
volved in promoting both self-renewal [26,78,194,205–
207] and differentiation [187,188,191,208,209] of primed
and naı̈ve PSCs. This ambiguity may reflect the importance
for a synergetic balance between the different pathways and
is highly context specific. For example, in the absence of
LIF and without ERK inhibition, WNT stimulation will
prime mESCs toward the primitive endoderm [210].

In addition, the availability of b-catenin for interaction
with distinct factors directly affects the balance between
propluripotency or differentiation cues. As such, the acces-
sibility of b-catenin to the transcription factor TCF1 in the
nucleus antagonizes long-term self-renewal and functional
pluripotency of mESCs [211].

MEK/ERK Inhibition Suppresses Differentiation
and Reinforces Naı̈ve Pluripotency

In mouse cells, ERK inhibition potentiates naı̈ve rever-
sion in cooperation with WNT and LIF/STAT3 signaling
(Fig. 4) [28]. MEK/ERK inhibition also antagonizes primi-
tive endoderm differentiation of naı̈ve cells [201], while
FGF stimulation promotes differentiation [191]. In contrast,
FGF promotes pluripotency in primed cells, partially by
inhibiting neuroectodermal commitment [28]. The involve-
ment of ERK inhibition in suppressing neural commitment
is not clear since ERK-mediated effects have also been
shown to direct differentiation toward primitive endoderm,
but not neural, lineages [201]. In this study, ERK inhibition
was actually reported to reinstate neural capacity of a
differentiation-compromised EpiSC line [201].

Direct isolation and expansion of mouse naı̈ve ICM using
MEK/ERK inhibition support the idea that MEK signaling

FIG. 4. Schematic summary of four main
signaling pathways that regulate the naı̈ve
pluripotent state. (a) The BMP/SMAD, LIF/
STAT3, FGF2/ERK, and WNT/b-catenin
pathways are the four main molecular axes
regulating naı̈ve pluripotency. These circuits
not only share a few common transcriptional
effectors but also act separately to reinforce
the core pluripotency network through
mechanisms that can involve the KLF cir-
cuitry. Fluctuating subcellular distribution of
the WNT pathway effector b-catenin may
regulate accessibility of the core factors,
OCT4 and Nanog, by facilitating their func-
tions in either the nucleus or at the cell
membrane (eg, to reinforce E-Cadherin
strengthening of STAT3 signaling). (b)
Downstream signaling of BMP/SMAD,
WNT/b-catenin, LIF/STAT3, or MEK/ERK
suppression results in marked reductions of
genome-wide chromatin repressive marks (ie,
reduced DNMT3a/DNMT3b levels and im-
paired DNMT1 recruitment following
UHRF1 downregulation) as well as down-
regulation of lineage priming at develop-
mental promoters by mechanisms that
involve RNA-pol II pausing and accessibility
to the PRC2. Green arrows: activation. Red
blunt line: inhibition. Proteins known to re-
inforce (green) or destabilize (red) naı̈ve
pluripotency are shown. KLF, Krüppel-like
factor; PRC2, polycomb repressor complex 2.
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blockade replicates the signaling circuitry in the mouse
preimplantation epiblast [37]. Furthermore, ERK-mediated
phosphorylation of Nanog was shown to promote differentia-
tion by inhibiting Nanog transactivation and compromising
Nanog stability [212]. ERK also negatively regulates the
Kruppel-like factors, including KLF2 [213] and KLF4 [214],
which regulate maintenance of ground state pluripotency by
reinforcing core pluripotency signaling [215,216] (Fig. 4).
MEK inhibition protects KLF2 phospho-degradation in mouse
naı̈ve cells and cooperates with the GSK3/TCF3 cascade to
establish ground state pluripotency [213].

MEK/ERK inhibition also cooperates with GSK3b inhibition
in establishing global DNA hypomethylation in mESCs to
reach levels that are similar to early embryos [217]. Main-
tenance of a hypomethylated epigenome in mESCs due to
forced MEK blockade has been shown to rely on molecular
mechanisms that are redundant to those exploited by primordial
germ cells and early embryos: transcriptional repression of
Dnmt3A and Dnmt3B [34,217], recruitment of the polycomb
repressive complex 2 (PRC2) complex [218] and the ten-eleven
translocation (TET)-mediated base excision repair pathway
[219], and impaired recruitment of DNMT1 due to low levels of
the E3 ubiquitin-protein ligase UHRF1 [220] (Fig. 4).

ERK1/2 also contributes to establishing lineage priming
in mESCs by binding to DNA sequence motifs at develop-
mental genes that are typically accessed by polycomb re-
pressors [221]. ERK inhibition directly interferes with PRC2
promoter occupancy and contributes to decreased phos-
phorylation of RNA polymerase II (RNApol II) at lineage
commitment genes [221]. These ERK-mediated activities
mirror epigenomic features that were previously detected in
2i cultures (ie, reduced H3K27Me3 repressive marks, fewer
bivalent domains and RNApol II pausing at developmental
genes, and reduced lineage priming in mouse naı̈ve ESCs)
[35]. ERK1/2 activity also regulates access of the PRC2 re-
pressor JARID2 to developmental promoters [221]. Overall,
these studies support that ERK signaling inhibition may di-
rectly or indirectly play an essential role in repression of de-
velopmental genes within a naı̈ve epigenome to maintain
pluripotency.

Subcellular WNT/b-Catenin Fluctuations
May Orchestrate the Naı̈ve Pluripotency
Molecular Network

The WNT/b-catenin pathway has been linked to multiple
mechanisms that ensure the maintenance of naı̈ve plur-
ipotency in mESCs (Fig. 4). These mechanisms include
upregulation of Stat3 mRNA levels [205], augmented ex-
pression of Klf2 and Tfcp2l1 [222], and downregulation of
Tcf3 to suppress neuroectodermal differentiation [223]. The
canonical WNT pathway also directly affects DNA methylation
by regulating TET proteins through the TET-negative regulator
IDAX/CXXC4 [224]. This activity is regulated in a feedback
loop inhibition since IDAX can also repress WNT by binding
to DVL [225].

The involvement of WNT signaling in mediating plur-
ipotency states is complex and may depend on its synergy with
other pathways, including TGFb/Activin [186], BMP/SMAD
[191], and FGF/ERK [28]. Alternatively, intrinsic regulation of
the WNT pathway itself by altering b-catenin subcellular dis-
tribution may regulate pluripotent states [31,119]. Reinforce-

ment of WNT signaling by inhibition of GSK3b not only
reinforces naı̈ve pluripotency in mESCs [192] but also pro-
motes acquisition of naı̈ve features in some EpiSC lines
[60,66]. Conversely, the use of inhibitors of the WNT pathway
facilitates derivation of EpiSCs [188,226] and reinforces
primed pluripotency in EpiSCs with [31] or without [187,226]
the presence of a GSK3b inhibitor (Fig. 3). GSK3b is the kinase
that initiates the cascade of phosphorylation targeting b-
catenin that will ultimately lead to b-catenin proteolysis.

Stabilization of members of the destruction complex of b-
catenin, while preventing b-catenin phosphorylation, can
alter subcellular localization of b-catenin [227–230], but not
impede its expression [31], and will particularly reinforce b-
catenin levels in the cytoplasm [230,231]. As a result, di-
verse WNT signal responses will be determined by the
cellular distribution of b-catenin and the Axin/APC/GSK3b
complex [230]. For instance, at a high nuclear b-catenin
concentration in the on-state of the pathway, Axin/APC/
GSK3b shuttling can maximize the response to WNT sig-
naling by reducing fluctuations [230].

Interestingly, a membrane-associated b-catenin/OCT4
complex marks the mouse ground state of pluripotency [232]
and supports the notion that a subcellular reorganization of b-
catenin may participate in stabilizing the naı̈ve state in
EpiSCs. Further investigation will be needed to clarify the
role of subcellular b-catenin levels in modulating naı̈ve ver-
sus primed pluripotencies.

b-Catenin fluctuations were also observed to tightly cor-
relate with Nanog expression levels in LIF/serum mESC
cultures [233]. These fluctuations were retained in LIF-2i
naı̈ve conditions [233], presumably in a Nanog-independent
manner since Nanog expression is homogenized in the latter
system [35]. WNT stimulation was also shown to mitigate
Nanog expression variability in mESCs [232], and b-catenin
upregulated Nanog expression through its interaction with
OCT4 [78]. Since shuttling of b-catenin participates in re-
inforcing the WNT response, continuous b-catenin fluctua-
tions may be inherent to the naı̈ve pluripotency state and
may dynamically orchestrate the stabilization of the core
pluripotency factors, OCT4 and Nanog. OCT4 participates
in a shuttling complex with b-catenin and Axin that typi-
cally potentiates b-catenin degradation in the absence of
GSK3b inhibition [234].

The detection of small amounts of both Nanog and OCT4
in mESC membrane containing fractions supports a possible
regulation of these pluripotency factors through complexes
with b-catenin [232], although further studies are still re-
quired to elucidate the role of these intricate interactions
across subcellular compartments. These complexes at the
membrane involve E-cadherin, b-catenin, Nanog, and OCT4
and are believed to be specific to the ground state [232].
Several other protein complexes comprising OCT4, Nanog,
b-catenin, and TCF3 were also detected in the nucleus and
were proposed to stabilize the mouse naı̈ve ground state
mainly by regulating the amount of free OCT4 [235]. Dy-
namic rearrangements of these complexes between b-
catenin and core pluripotency factors may be induced by
fluctuations of b-catenin shuttling and were reported to be
augmented when mESCs were cultured in LIF-2i [235].

The subcellular distribution of the mESC proteome is
complex, and even though the interactome of the three core
pluripotency factors concentrates onto chromatin-bound
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factors, it also extends to a variety of non-nuclear targets,
suggesting regulatory mechanisms involving rearrange-
ments between compartments [236]. For example, subcel-
lular relocalization of proteins between naı̈ve and primed
pluripotent states has been described for Tfe3, an important
bHLH transcription factor that regulates Esrrb expression in
mESCs and that relocates to the cytoplasmic compartment
upon exit from ground state pluripotency [237].

Interestingly, by using a cocktail of small inhibitors tar-
geting MEK, GSK3b, and tankyrase, our group (Zimmerlin
et al.) achieved a rearrangement of activated b-catenin in
human primed PSC lines [119]. The tankyrase inhibitor
XAV939 stabilizes Axin, the presumptive limiting factor
of the b-catenin destruction complex [238]. In the LIF-3i
culture system, simultaneous exposure to GSK3b and
tankyrase inhibitors permitted simultaneous stabilization
of b-catenin and Axin and paradoxically reinforced ac-
tive b-catenin levels in both nuclear and cytosolic com-
partments [119].

A similar approach involving GSK3b and tankyrase in-
hibition (but without concomitant MEK inhibition) was
employed to stabilize hESC and mEpiSC lines in a primed
pluripotent state [31] and also augmented cytoplasmic (at
the expense of nuclear) levels of b-catenin. Simultaneous
exposure to CHIR99021 and XAV939 permitted clonal
propagation of mouse and human primed cells, although
without any detectable acquisition of a naı̈ve phenotype (ie,
no upregulation of naı̈ve pluripotency genes, switch of OCT4
enhancer usage, or blastocyst chimera potential) [31]. Inter-
estingly, the effects of the CHIR99021/XAV939 inhibition
combination in this study appeared to be independent of E-
Cadherin since an E-cadherin-depleted EpiSC line could still
be propagated in culture [31].

The CHIR99021/XAV939-induced primed state may
primarily benefit from nuclear exclusion of b-catenin. In-
deed, while promoting self-renewal [26,239] or derivation
[240] of mESCs, transcriptional activity of b-catenin pro-
motes emergence of lineage-specified progenitors in EpiSCs
and hESCs [187,191,241,242].

Thus, although molecular rewiring in the 2i condition has
been shown to be sufficient for maintaining the naı̈ve ground
state in mESCs [33], a customized tuning of the WNT/b-
catenin signaling output may be required to sustain naı̈ve
molecular pluripotency in human PSCs. Such WNT regu-
lation has been achieved in distinct mouse genetic back-
grounds by further reinforcing [66,186] or attenuating
[62,187–189] WNT signals. This may potentially be ac-
complished through marked reduction (eg, 3–10-fold) of the
standard 3 mM concentration of the GSK3b inhibitor
CHIR99021 in 2i-based cultures, which may prevent the
spontaneous differentiation of rat ESCs [243,244] or human
PSCs [107,176,178,184] possibly resulting from excessive
amounts of nuclear b-catenin.

E-Cadherin May Regulate Naı̈ve Pluripotency by
Regulating the Intracellular Levels of b-Catenin

As outlined above, the balance between self-renewal and
differentiation may be regulated through subcellular levels of
b-catenin, and this shuttling between cytoplasmic and nuclear
compartments may be controlled at the level of the actin cy-
toskeleton (Fig. 4). At the membrane, b-catenin promotes in-

tercellular adhesion by complexing with E-cadherin and
facilitating the binding of cadherins to the actin cytoskeleton. In
contrast, in the nucleus, b-catenin serves as a transcriptional
cofactor to activate target genes of the canonical WNT signaling
pathway either through repression of members of the TCF
protein family [192,245,246] or through TCF-independent
mechanisms that involve direct targeting of pluripotency factors
such as Nanog [78], OCT4 [81], and KLF4 [247].

At the membrane, b-catenin promotes cadherin-mediated
intercellular adhesions by binding the cytoplasmic domain
of E-cadherin and linking the adherens junction to actin
filaments through interaction with a-catenin. b-Catenin may
first bind E-cadherin within the endoplasmic reticulum (ER)
membrane, which initially protects it from proteolytic deg-
radation [248] and subsequently facilitates its exit from the
ER before its transport toward the cell membrane [245].
Maternal E-cadherin and b-catenin are present until early
morula stages in mouse embryos and promote blastomere
adhesion and morula compaction [249].

The observation that the absence of maternal E-cadherin
can restore the developmental deficit induced by a truncat-
ing b-catenin mutant suggests that the interactions between
E-cadherin and b-catenin at the membrane may directly
regulate the availability of nuclear b-catenin during em-
bryonic genome activation [249]. A similar interdependence
between adhesive and cotranscriptional roles of b-catenin
has also been implied in cancer cells [250]. Moreover, E-
cadherin is required for proper activation of LIF receptor/
gp130 signaling and STAT3 phosphorylation in mESCs
[251]. This E-Cadherin-mediated STAT3 signaling has been
shown to contribute to elevated Nanog expression [80] and
stabilizes naı̈ve pluripotency.

The importance of b-catenin-induced E-Cadherin rein-
forcement at the membrane in safeguarding functional plur-
ipotency was highlighted in studies exploiting a TCF/LEF
signaling defective b-catenin variant that independently re-
stored b-catenin-mediated adhesion [252]. These b-catenin-
deficient mESCs exhibited impaired mesendoderm formation
and neuronal differentiation, and introduction of a b-catenin
variant without TCF-mediated nuclear activities partially
rescued adhesion and endoderm (although not mesoderm)
formation as well as neuronal differentiation [252].

Other functional data substantiating the importance of E-
cadherin levels to support naı̈ve pluripotency have been
obtained from genetic manipulation of primed EpiSCs. For
example, ectopic E-cadherin expression in mEpiSC lines
enhanced chimerism efficiency in blastocyst injection ex-
periments [253], although without germline contribution. In
contrast, disruption of E-cadherin at the membrane follow-
ing either genetic loss of b-catenin or through tankyrase
inhibition (XAV939) augmented a biased integration of
primed EpiSCs into postimplantation embryos [187].

Functional Validation of Human and Nonhuman
Primate Naı̈ve Pluripotent States: A Work
in Progress

Conventional human PSCs were recently reverted to a
highly variable spectrum of naı̈ve-like pluripotent states that
partially replicated the molecular circuitry of mESCs and
human preimplantation embryos (Fig. 3). These culture
systems generally not only relied on utilization of classical
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mouse naı̈ve 2i conditions (GSK3b and MEK inhibition), but
also required additional chemical modulation for stabilizing
inherently unstable or metastable human naı̈ve states.

These methods included (1) hybrid culture systems that
costimulate primed pluripotency circuitry with exogenous
FGF2 [41,107,177,178,182,254], Activin/TGFb [41,107,177,
254], or the BMP inhibitor dorsomorphin [177]; (2) forced
transgene expression of OCT4, SOX2, and KLF4 [175], OCT4
and KLF4 [175], KLF2 and KLF4 [175], NANOG and KLF2
[107,176], YAP [48], or STAT3 [181]; (3) global epigenetic
erasure using HDAC inhibitors [178]; (4) chemical rewiring
of antiapoptotic signaling pathways (eg, activation of
adenylyl-cyclase [48,175] and/or YAP [48] or inhibition of B-
RAF [107], JNK [41,107], p38 [41] PKC [41,176], ROCK
[41,107,176,177,180,181], and SRC [107]); and (5) multipath-
way biochemical and epigenomic rewiring of uncharacterized
naı̈ve stabilizing pathways through tankyrase [119] or PARP1
[255] signal inhibition.

Many of these strategies stemmed from previous efforts of
mEpiSC naı̈ve reversion or potentiation of mESC derivation
conditions. For example, (1) hybrid EpiSC culture systems
(eg, FGF2, Activin and LIF [59], FGF2, Activin, and inhi-
bition of GSK3b [60]); (2) forced transgenic expression of E-
Cadherin [62], Esrrb [63], Klf2 [64], Klf4 [65,66], Klf5 [67],
Mbd3 [68], cMyc [66], Nanog [69], Nr5a1 [70], Nr5a2 [70],
or Stat3 [61]; (3) global epigenetic remodeling using the
H3K4 methyltransferase MLL1 inhibitor MM-401 [73], the
HDAC inhibitor sodium butyrate [74], or the histone de-
methylase LSD1 [75]; and (4) reinforcement of naı̈ve plur-
ipotency molecular circuitry by augmentation of LIF/STAT3
[61], BMP/SMAD [185], WNT/b-catenin [66,186], or in-
hibiting FGF/ERK [28,66] signaling.

Similar to mEpiSCs, conventional human PSCs have dem-
onstrated measurable, but limited, capacity for engraftment into
postimplantation mouse developing embryos [108], yet only
limited chimerization in mouse blastocysts [256]. The chimeric
contribution of human and nonhuman primate cells into pre-
implantation embryos was assessed for naı̈ve-reverted cells
obtained using the naı̈ve human stem cell medium (NHSM)
method developed by Hanna’s team [41,254,257–259], vari-
ants of the 5i/L/A cocktail from the Jaenisch’s group [107,259]
and the t2iL technique [254,259] developed in Austin Smith’s
laboratory [176], and more recently the FGF2, Activin,
CHIR990211 (FAC) [254] and LIF, CHIR99021, DiM, MiH
(LCDM) [255] methods, which produce less clearly defined
pluripotent states. These studies reported that injection of
variably derived naı̈ve-like PSC populations into mouse
[41,107,255,257,259] or monkey [258] morulae or ungulate
blastocysts [254] resulted in extremely limited human and
monkey cell chimerism in developing embryos.

Reliable detection of transgenic green fluorescent protein
(GFP) within murine embryos was technically challenging
with such reduced levels of chimerism [107,254,259], and
several groups employed sensitive polymerase chain reaction
(PCR)-based methods (ie, human mitochondrial DNA, hu-
man Alu sequence) [254,255,259] to determine chimerism for
NHSM [41], t2iL [176], 5i/L/A [107], FAC [60,254], and
LCDM [255] human naı̈ve or intermediate culture methods.

Using a mitochondrial DNA PCR detection assay, Theu-
nissen et al. reported rare and sporadic chimerism in less than
1% of E10.5 embryos following injection of NHSM, t2iL, or
variants of 5i/L/A human naı̈ve cells into murine morulae and

blastocysts [259]. A similar approach was employed by Yang
et al. for the LCDM culture system and the authors similarly
measured limited (£1%) human chimeric integration in E10.5
embryos, but with significantly higher frequencies of human
cell contribution within the murine trophectoderm [255].

Interestingly, the authors of the LCDM method recom-
mend the addition of the tankyrase inhibitor IWR-1-endo to
their chemical cocktail when culturing human cells [255], and
as such, their results further corroborate our own studies es-
tablishing that tankyrase inhibition stabilizes a human naı̈ve-
like state with improved functional pluripotency [119].

Belmonte’s group similarly reported extremely low levels
of human–animal chimerism using a PCR-based genomic
assay of human-specific Alu sequences that detected human
cells in the chimeric offspring of human–pig blastocyst in-
jection experiments. Collectively, these experiments dem-
onstrated that robust levels of interspecies chimerism with
human naı̈ve PSCs have not yet been achieved [254].

However, it remains unclear whether limited chimerism of
human naı̈ve PSCs in mouse blastocysts [41,107,257,259] rep-
resents a poorly obtained human naı̈ve functional pluripotency
or alternatively reflects obstacles of genetic distance, phenotypic
differences, and/or developmental divergences of human and
mouse embryos (eg, early postimplantation epiblast mor-
phogenesis and ontogenesis variations in size, shape, and
speed). Efforts to improve host compatibility in chimera
assays have included allogeneic (monkey-to-monkey)
transfer [258] and injection of human naı̈ve PSCs into un-
gulate (ie, pig and cattle) blastocysts [254]. Unfortunately,
both strategies have still yielded particularly low levels of
chimerism that did not match the successes of rat–mouse
interspecies [254,260,261] or large animal (ie, pig) alloge-
neic [262] blastocyst complementation.

Strategies that provide a selective advantage for donor
PSCs may augment the incorporation of human cells into host
embryos. Future studies will test candidate naı̈ve PSCs with
such improved methodologies for assaying the functional
pluripotency of putative bona fide naı̈ve human PSCs.

Several reports have now demonstrated impaired func-
tional pluripotency from selected human naı̈ve-reverted plu-
ripotent states [263,264], including the NHSM [41,263], 5i/L/
A [259,264,265], reverse toggle [178,263], and naı̈ve con-
version medium (NCM) [182,263] systems. Moreover, the 5i/
L/A method produced hPSCs in a naı̈ve-like state that either
required prolonged repriming for proper differentiation
[259,265] or displayed pronounced neuroectodermal bias and
impaired terminal differentiation [264]. Other human naı̈ve
reversion methods similarly displayed limited capacity to
undergo terminal differentiation toward functional pheno-
types when compared with primed isogenic cultures [263].

Notwithstanding the hypothesis that these states may em-
brace a more primitive and paradoxically less competent
pluripotent state [266], the impaired functional pluripotency
that has been detected using these human naı̈ve states is in
clear contradiction with results obtained from mouse
[9,35,267,268] and rabbit [269,270] PSCs, especially in re-
gard to neural differentiation. Primed mEpiSC lines display
disparate lineage priming and differentiation capacity [9,54],
while naı̈ve cultures not only exhibit restored or augmented
neuroectodermal capacity [9,35,267] but also generate ter-
minally differentiated neural populations that resemble more
closely the mouse adult brain [267].
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Unlike the aforementioned variable human naı̈ve-like
states described above, chemical naı̈ve reversion that sup-
plements classical MEK/ERK and GSK3b inhibition with a
tankyrase inhibiter (LIF-3i) is the only method described thus
far that improves functional pluripotency across germ layers
of a large repertoire of hESC and hiPSC lines [119]. Im-
portantly, karyotypic and epigenomic imprinting aberrations
were not detected in LIF-3i-reverted naı̈ve-like hPSCs [119].

In contrast, the impaired functional pluripotency in other
naı̈ve reversion methods described thus far may derive from
either the reported chromosomal instability or aberrant
erasure of genomic imprints following chemical manipula-
tion from these systems. For example, abnormal karyotypes
were reported in 5i/L/A [259,264,265], NHSM [263], and
reverse toggle [263] methods, while aberrant parental im-
printing was inherent to the 5i/L/A [259,271] and t2iL [271]
methods. The further optimization of tankyrase inhibitor-
utilizing LIF-3i methods in defined feeder-free, xeno-free
culture conditions may allow efficient and clinically useful
generation of functional and engraftable adult-like cell types
for therapeutic use, including for hemato-vascular regener-
ation [272].
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