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The näıve Bayes classifier (NBC) is one of the most popular classifiers for class prediction or pattern recognition from microarray
gene expression data (MGED). However, it is very much sensitive to outliers with the classical estimates of the location and scale
parameters. It is one of the most important drawbacks for gene expression data analysis by the classical NBC.The gene expression
dataset is often contaminated by outliers due to several steps involved in the data generating process from hybridization of DNA
samples to image analysis.Therefore, in this paper, an attempt ismade to robustify theGaussianNBCby theminimum𝛽-divergence
method. The role of minimum 𝛽-divergence method in this article is to produce the robust estimators for the location and scale
parameters based on the training dataset and outlier detection and modification in test dataset. The performance of the proposed
method depends on the tuning parameter 𝛽. It reduces to the traditional näıve Bayes classifier when 𝛽 → 0. We investigated the
performance of the proposed beta näıve Bayes classifier (𝛽-NBC) in a comparison with some popular existing classifiers (NBC,
KNN, SVM, and AdaBoost) using both simulated and real gene expression datasets. We observed that the proposed method
improved the performance over the others in presence of outliers. Otherwise, it keeps almost equal performance.

1. Introduction

Classification is a supervised learning approach for separa-
tion of multivariate data into various sources of populations.
It has been playing significant roles in bioinformatics by class
prediction or pattern recognition from molecular OMICS
datasets. Microarray gene expression data analysis is one
of the most important OMICS research wings for bioin-
formatics [1]. There are several classification and clustering
approaches that have been addressed previously for analyzing
MGED [2–11]. The Gaussian linear Bayes classifier (LBC)
is one of the most popular classifiers for class prediction
or pattern recognition. However, it is not so popular for
microarray gene expression data analysis, since it suffers
from the inverse problem of its covariance matrix in pres-
ence of large number of genes (p) with small number of
patients/samples (n) in the training dataset. The Gaussian
naı̈ve Bayes classifier (NBC) overcomes this difficulty of

Gaussian LBC by taking the normality and independence
assumptions on the variables. If these two assumptions are
violated, then the nonparametric version of NBC is suggested
in [12]. In this case the nonparametric classification methods
work well but they produce poor performance for small
sample sizes or in presence of outliers. In MGED the small
samples are conducted because of cost and limited specimen
availability [13]. There are some other versions of NBC also
[14, 15]. However, none of them are so robust against outliers.
It is one of themost important drawbacks for gene expression
data analysis by the existing NBC. The gene expression
dataset is often contaminated by outliers due to several steps
involved in the data generating process from hybridization
of DNA samples to image analysis. Therefore, in this paper,
an attempt is made to robustify the Gaussian NBC by the
minimum 𝛽-divergence method within two steps. At step-
1, the minimum 𝛽-divergence method [16–18] attempts to
estimate the parameters for the Gaussian NBC based on the
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training dataset. At step-2, an attempt is made to detect the
outlying data vector from the test dataset using the 𝛽-weight
function. Then an attempt is made to propose criteria to
detect the outlying components in the test data vector and
the modification of outlying components by the reasonable
values. It will be observed that the performance of the
proposed method depends on the tuning parameter 𝛽 and
it reduces to the traditional Gaussian NBC when 𝛽 → 0.
Therefore, we call the proposed classifier as 𝛽-NBC.

An attempt is made to investigate the robustness perfor-
mance of the proposed 𝛽-NBC in a comparison with several
versions of robust linear classifiers based on M-estimator
[19, 20], MCD (Minimum Covariance Determinant), and
MVE (Minimum Volume Ellipsoid) estimators [21, 22],
Orthogonalized Gnanadesikan-Kettenring (OGK) estimator
including MCD-A, MCD-B, and MCD-C [23], and Feasible
Solution Algorithm (FSA) classifiers [24–26]. We observed
that the proposed 𝛽-NBC outperforms existing robust linear
classifiers as mentioned earlier. Then we investigate the per-
formance of the proposedmethod in a comparisonwith some
popular classifiers including Support VectorMachine (SVM),
k-nearest neighbors (KNN), and AdaBoost; those are widely
used in gene expression data analysis [27–29]. We observed
that the proposed method improves the performance over
the others in presence of outliers. Otherwise, it keeps almost
equal performance.

2. Methodology

2.1. Naı̈ve Bayes Classifier. Thenaı̈ve Bayes classifiers (NBCs)
[30] are a family of probabilistic classifiers depending on the
Bayes’ theorem with independence and normality assump-
tions among the variables. The common rule of NBCs is
to pick the hypothesis that is most probable; this is
known as the maximum a posteriori (MAP) decision rule.
Assume that we have a training sample of vectors {x𝑗𝑘 =(𝑥1𝑗𝑘, 𝑥2𝑗𝑘, . . . , 𝑥𝑝𝑗𝑘)𝑇; 𝑗 = 1, 2, . . . , 𝑁𝑘} of size 𝑁𝑘 for 𝑘 =1, 2, . . . , 𝐾, where x𝑖𝑗𝑘 denotes the jth observation of the ith
variable in the kth population/class (𝐶𝑘). Then the NBCs
assign a class label 𝑦 = C𝑘 for some k as follows:

𝑦 = argmax
𝑘∈{1,...,𝐾}

𝑝 (𝐶𝑘) 𝑓 (x𝑗𝑘 | 𝜃𝑘, 𝐶𝑘)

= argmax
𝑘∈{1,...,𝐾}

𝑝 (𝐶𝑘)
𝑝∏
𝑖=1

𝑓 (x𝑖𝑗𝑘 | 𝜃𝑘, 𝐶𝑘) .
(1)

For the Gaussian NBC, the density function 𝑓𝑘(x𝑗𝑘 | 𝜃𝑘, 𝐶𝑘)
of kth population/class (𝐶𝑘) can be written as

𝑓 (x𝑗𝑘 | 𝜃𝑘, 𝐶𝑘) = (2𝜋)−𝑝/2 󵄨󵄨󵄨󵄨Λ𝑘󵄨󵄨󵄨󵄨−1/2

⋅ exp [−12 (x𝑗𝑘 − 𝜇𝑘)𝑇Λ−1𝑘 (x𝑗𝑘 − 𝜇𝑘)] ,
(2)

where 𝜃𝑘={𝜇𝑘,Λ𝑘}, and here 𝜇𝑘 = (𝜇1𝑘, 𝜇2𝑘, . . . , 𝜇𝑝𝑘)𝑇, is the
mean vector and the diagonal covariance matrix is

Λ𝑘 = [[[[
[

𝜎̂21𝑘 ⋅ ⋅ ⋅ 0
... d

...
0 ⋅ ⋅ ⋅ 𝜎̂2𝑝𝑘

]]]]
]
= diag (𝜎̂21𝑘, 𝜎̂22𝑘, . . . , 𝜎̂2𝑝𝑘) (3)

2.2. Maximum Likelihood Estimators (MLEs) for the Gaussian
NBC. We assume that the prior probabilities 𝑝(𝐶𝑘) are
known and the maximum likelihood estimators (MLEs) 𝜇̂𝑘
and Λ̂𝑘 of 𝜇𝑘 and Λ𝑘 are obtained based on the training
dataset as follows:

𝜇̂k = 1𝑁𝑘
𝑁𝑘∑
𝑗=1

x𝑗𝑘, (4)

Λ̂ = 1𝑁
𝐾∑
𝑘=1

𝑁𝑘Λ̂𝑘, (5)

Λ̂𝑘 = diag (𝜎̂21𝑘, 𝜎̂22𝑘, . . . , 𝜎̂2𝑝𝑘) , (6)

where 𝜎̂2𝑖𝑘 = (1/𝑁𝑘) ∑𝑁𝑘𝑗=1 (𝑥𝑖𝑗𝑘 − 𝜇𝑖𝑘)2, 𝜇𝑖𝑘 = (1/𝑁𝑘) ∑𝑁𝑘𝑗=1 𝑥𝑖𝑗𝑘,
and 𝑁 = ∑𝐾𝑘=1𝑁𝑘; 𝑖 = 1, 2, . . . , 𝑝.

It is obvious from (1)-(2) that the Gaussian NBC depends
on the mean vectors (𝜇𝑘) and diagonal covariance matrix
(Λ𝑘); those are estimated by themaximum likelihood estima-
tors (MLEs) as given in (4)–(6) based on the training dataset.
Therefore, MLE based Gaussian NBC produces misleading
results in presence of outliers in the datasets. To get rid of this
problem, an attempt is made to robustify the Gaussian NBC
by minimum 𝛽-divergence method [16–18].

2.3. Robustification of Gaussian NBC by the Minimum 𝛽-
Divergence Method (Proposed)

2.3.1. Minimum 𝛽-Divergence Estimators for the Gaussian
NBC. Let 𝑔(x𝑘) be the true density and 𝑓(x𝑘 | 𝜃𝑘) be the
model density for kth populations; then the 𝛽-divergence of
two p.d.f can be defined by

𝐷𝛽 (𝑔 (x𝑘) , 𝑓 (x𝑘 | 𝜃𝑘))
⋅ ∫ [ 1𝛽 {𝑔𝛽 (x𝑘) − 𝑓𝛽 (x𝑘 | 𝜃𝑘)} 𝑔 (x𝑘)

− 1𝛽 + 1 {𝑔𝛽+1 (x𝑘) − 𝑓𝛽+1 (x𝑘 | 𝜃𝑘)}] 𝑑x𝑘
(7)

for 𝛽 > 0 and𝐷𝛽(𝑔(x𝑘), 𝑓(x𝑘 | 𝜃𝑘)) ≥ 0. Equality holds if and
only if 𝑔(x𝑘) = 𝑓(x𝑘 | 𝜃𝑘) for all x𝑘. When 𝛽 tends to zero,



BioMed Research International 3

𝛽-divergence reduces to Kullback Leibler (K-L) divergence;
that is,

lim
𝛽↓0

𝐷𝛽 (𝑔 (x𝑘) , 𝑓 (x𝑘 | 𝜃𝑘))
= ∫𝑔 (x𝑘) log 𝑔 (x𝑘)𝑓 (x𝑘 | 𝜃𝑘)𝑑x𝑘
= 𝐷𝐾𝐿 (𝑔 (x𝑘) , 𝑓 (x𝑘 | 𝜃𝑘)) .

(8)

The minimum 𝛽-divergence estimator is defined by

𝜃̂𝑘 = agrmin
𝜃
󸀠
𝑘

D𝛽 (𝑔 (x𝑘) , 𝑓 (x𝑘 | 𝜃󸀠𝑘))

= argmax
𝜃
󸀠
𝑘

[ 1𝑁𝛽
𝐾∑
𝑘=1

𝑓𝛽 (x𝑘 | 𝜃󸀠𝑘) − 1𝛽] .
(9)

For the Gaussian density 𝜃𝑘 = {𝜇𝑘,Λ𝑘} and the minimum𝛽-divergence estimators 𝜇̂𝑘,𝛽 and Λ̂𝑘,𝛽 for the mean vector
𝜇𝑘 and the diagonal covariance matrix Λ𝑘, respectively, are
obtained iteratively as follows:

𝜇̂
(𝑟+1)
𝑘,𝛽 = ∑

𝑁𝑘
𝑗=1𝑊𝛽 (x𝑗𝑘 | 𝜇̂(𝑟)𝑘 , Λ̂(𝑟)𝑘 ) x𝑗𝑘
∑𝑁𝑘𝑗=1𝑊𝛽 (x𝑗𝑘 | 𝜇̂(𝑟)𝑘 , Λ̂(𝑟)𝑘 )

Λ̂
(𝑟+1)

𝑘,𝛽 = 1𝑁
𝐾∑
𝑘=1

𝑁𝑘diag (𝜎̂21𝑘,𝛽, 𝜎̂22𝑘,𝛽, . . . , 𝜎̂2𝑝𝑘,𝛽) ,
(10)

where

𝜎̂2𝑖𝑘,𝛽
= (𝛽 + 1) ∑

𝑁𝑘
𝑗=1𝑊𝛽 (x𝑗𝑘 | 𝜇̂(𝑟)𝑘 , Λ̂(𝑟)𝑘 ) (𝑥𝑖𝑗𝑘 − 𝜇(𝑟)𝑖𝑘,𝛽)2

∑𝑁𝑘𝑗=1𝑊𝛽 (x𝑗𝑘 | 𝜇̂(𝑟)𝑘 , Λ̂(𝑟)𝑘 ) , (11)

𝑊𝛽 (x𝑗𝑘 | 𝜇̂(𝑟)𝑘 , Λ̂(𝑟)𝑘 )
= exp{−𝛽2 (x𝑗𝑘 − 𝜇̂(𝑟)𝑘 )

𝑇
Λ̂
(𝑟)−1

𝑘 (x𝑗𝑘 − 𝜇̂(𝑟)𝑘 )} .
(12)

The formulation of (10)–(12) is straightforward as described
in the previousworks [17, 18].The function in (12) is called the𝛽-weight function, which plays the key role for robust estima-
tion of the parameters. If 𝛽 tends to 0, then (10) are reduced
to the classical noniterative estimates of mean and diagonal
covariance matrix as given in (4) and (6), respectively. The
performance of the proposed method depends on the value
of the tuning parameter 𝛽 and initialization of the Gaussian
parameters 𝜃𝑘 = {𝜇𝑘,Λ𝑘}.
2.3.2. Parameters Initialization and Breakdown Points of the
Estimates. The mean vector 𝜇𝑘 is initialized by the median
vector, since mean and median are same for normal distri-
bution and the median (Me) is highly robust against outliers
with 50% breakdown points to estimate central value of the

distribution. The median vector of kth class/population is
defined as

x𝑘,𝑚𝑑 = [ Me

𝑗 = 1, 2, . . . , 𝑁(𝑥1𝑗𝑘)
𝑘

,
Me

𝑗 = 1, 2, . . . , 𝑁(𝑥2𝑗𝑘),...,
𝑘

, Me

𝑗 = 1, 2, . . . , 𝑁(𝑥𝑝𝑗𝑘)
𝑘

]
𝑇

.
(13)

The diagonal covariance matrix Λ𝑘 is initialized by the
identity matrix (I). The iterative procedure will converge to
the optimal point of the parameters, since the initial mean
vector would belong to the center of the dataset with 50%
breakdown points. The proposed estimators can resist the
effect of more than 50% breakdown points if we can initialize
the mean vector 𝜇𝑘 by a vector that belongs to the good part
of the dataset and the variance-covariance Λ𝑘 by the identity
(I) matrix. More discussion about high breakdown points for
the minimum 𝛽-divergence estimators can be found in [18].

2.3.3. 𝛽-Selection Using T-Fold Cross Validation (CV) for
Parameter Estimation. To select the appropriate 𝛽 by CV, we
fix the tuning parameter 𝛽 to 𝛽0. The computation steps for
selecting appropriate 𝛽 by T-fold cross validation is given
below.

Step 1. Dataset 𝐷𝑘 = {x𝑗𝑘; 𝑗 = 1, 2, . . . , 𝑁𝑘} is split into 𝑇
subsets;𝐷𝑘(1), 𝐷𝑘(2), . . . , 𝐷𝑘(𝑇)where 𝐷𝑘(𝑡) = {x𝑡𝑘; 𝑡 = 1, 2,. . . , 𝑁𝑡𝑘} and ∑𝑇𝑡=1𝑁𝑡𝑘 = 𝑁𝑘.
Step 2. Let 𝐷𝑐𝑘(𝑡) = {x𝑠𝑘 | x𝑠𝑘 ∉ 𝐷𝑘(𝑡), 𝑠 = 1, 2, . . . , 𝑁𝑐𝑡𝑘 =(𝑁𝑘 − 𝑁𝑡𝑘)} for 𝑡 = 1, 2, . . . , 𝑇.
Step 3. Estimate 𝜇̂𝑘,𝛽 and Λ̂𝑘,𝛽 iteratively by (10) based on
dataset𝐷𝑐𝑘(𝑡).
Step 4. Compute CV(t) using dataset 𝐷𝑘(𝑡), for 𝑡 = 1, 2, . . . ,𝑇 CV𝑘(𝑡) = 𝐿𝛽0(𝜇̂𝑘,𝛽, Λ̂𝑘,𝛽 | 𝐷𝑘(𝑡)), where 𝐿𝛽0(𝜇̂𝑘,𝛽, Λ̂𝑘,𝛽 |𝐷𝑘𝑡) = (1/𝛽0)[1 − (1/𝑁𝑘𝑡)|Λ̂𝑘,𝛽|− 𝛽0/2(1+𝛽0)∑x𝑘𝑗∈𝐷𝑘𝑡𝑊𝛽0(x𝑘𝑗 |
𝜇̂𝑘,𝛽, Λ̂𝑘,𝛽)].
Step 5. End.

Computed suitable 𝛽 by

𝛽 = argmin
𝛽

D𝑘,𝛽0 (𝛽) , 𝑘 = 1, 2, . . . , 𝐾, (14)

whereD𝑘,𝛽0(𝛽) = (1/𝑁𝑘) ∑𝑇𝑡=1 CV𝑘(𝑡).
If the sample size (𝑁𝑘) is small such that 𝑁𝑐𝑡𝑘 = (𝑁𝑘 −𝑁𝑡𝑘) < 𝑝, then T = 𝑁𝑘 (leave-one-out CV) can be used to

select the appropriate 𝛽. More discussion about 𝛽 selection
also can be found in [16–18].

2.3.4. Outlier Identification Using 𝛽-Weight Function. The
performance of NBC for classification of an unlabeled data
vector x using (1) not only depends on the robust estimation
of the parameters but also depends on the values of xweather
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it is contaminated or not. The data vector x is said to be
contaminated if at least one component of x = {𝑥1, 𝑥2, . . . , 𝑥𝑝}
is contaminated by outlier. To derive a criterion of whether
the unlabeled data vector x is contaminated or not, we
consider 𝛽-weight function (12) and rewrite it as follows:

𝑊𝑘,𝛽 (x | 𝜇̂𝑘,𝛽, Λ̂𝑘,𝛽)
= exp{−𝛽2 (x − 𝜇̂𝑘,𝛽)𝑇Λ−1𝑘,𝛽 (x − 𝜇̂𝑘,𝛽)} ; 𝛽 > 0. (15)

The values of this weight function lie between 0 and 1. This
weight function produces larger weight (but less than 1) if
x ∈ 𝐶𝑘 and smaller weight (but greater than 0) if x ∉ 𝐶𝑘
or contaminated by outlier. Therefore, the 𝛽-weight function
(15) can be characterized as

𝑊𝑘,𝛽 (x | 𝜇̂𝑘,𝛽, Λ̂𝑘,𝛽)
= {{{

>𝜓𝑘, if x ∈ 𝐶𝑘,
≤𝜓𝑘, if x ∉ 𝐶𝑘 or x is outlying.

(16)

The threshold value 𝜓𝑘 can be determined based on the
empirical distribution of 𝛽-weight function as discussed in
[31] and by the quantile values of𝑊𝑘,𝛽(x | 𝜇̂𝑘,𝛽, Λ̂𝑘,𝛽) for 𝑗 = 1,2, . . . , 𝑁𝑘 with probability

Pr {𝑊𝑘,𝛽 (x𝑘𝑗 = x | 𝜇̂𝑘,𝛽, Λ̂𝑘,𝛽) ≤ 𝜓𝑘} ≤ 𝜗, (17)

where𝜗 is the probability for selecting the cut-off value𝜓𝑘 and
the value of 𝜗 should lie between 0.00 and 0.05. In this paper,
heuristically we choose 𝜗 = 0.03 to fix the cut-off value 𝜓𝑘
for detection of outlying data vector using (18). This idea was
first introduced in [31].

Then the criteria whether the unlabeled data vector x is
contaminated or not can be defined as follows:

𝑤𝛽 (x)= 𝐾∑
𝑘=1

𝑊𝑘,𝛽 (x𝑗𝑘 | 𝜇̂𝑘,𝛽, Λ̂𝑘,𝛽)

={{{
≥𝜓, if x is not outlying,
<𝜓, if x is outlying,

(18)

where 𝜓 = ∑𝐾𝑘=1 𝜓𝑘.
However, in this paper, we directly choose the threshold

value of 𝜓 as follows:

𝜓 = (1 − 𝜂)min
y∈D

𝑊𝛽 (y) + 𝜂max
y∈D

𝑊𝛽 (y) . (19)

With heuristically 𝜂 = 0.10, where D is the training dataset
including the unclassified data vector x, (19) was also used in
the previous works in [16, 18] to choose the threshold value
for outlier detection.

2.3.5. Classification by the Proposed 𝛽-NBC. When the unla-
beled data vector x is usual, the appropriate label/class of x can
be determined using the minimum 𝛽-divergence estimators

Table 1: Gene expression data generating model.

Gene group Individual
Normal Patient

𝐴 𝑑 + 𝑁(0, 𝜎2) −𝑑 + 𝑁(0, 𝜎2)𝐵 −𝑑 + 𝑁(0, 𝜎2) 𝑑 + 𝑁(0, 𝜎2)

𝜃̂𝑘,𝛽 = {𝜇̂𝑘,𝛽, Λ̂𝑘,𝛽} of 𝜃 = {𝜇̂𝑘, Λ̂𝑘} in the predicting equation
(1). If the unlabeled data vector x is unusual/contaminated by
outliers, then we propose a classification rule as follows. We
compute the absolute difference between the outlying vector
and each of mean vectors as

d𝑘 = abs (x − 𝜇̂𝑘,𝛽) = (𝑑𝑘1, 𝑑𝑘2, . . . , 𝑑𝑘𝑝)𝑇 ;
𝑘 = 1, 2, . . . , 𝐾. (20)

Compute sum of the smallest r components of d𝑘 as 𝑆𝑘𝑟 =𝑑𝑘(1) + 𝑑𝑘(2) + ⋅ ⋅ ⋅ + 𝑑𝑘(𝑟), where 𝑟 = round (𝑝/2). Then the
unlabeled test data vector x can be classified as

𝑦 = argmin
𝑘
𝑆𝑘𝑟. (21)

If the outlying test vector x is classified in to class 𝑘, then
its ith component is said to be outlying if 𝑑𝑘𝑖 > 𝑆𝑘𝑟 (𝑖 =1, 2, . . . , 𝑝). Then we update x by replacing its outlying
components with the corresponding mean components from
the mean vector 𝜇̂𝑘,𝛽 of kth population. Let x

∗ be the updated
vector of x. Then we use x∗ instead of x to confirm the
label/class of x using (1).

3. Simulation Study

3.1. Simulated Dataset 1. To investigate the performance of
our proposed (𝛽-NBC) classifier in a comparison with four
popular classifiers (KNN, NBC, SVM, and AdaBoost), we
generated both training and test datasets from 𝑚 = 2 multi-
variate normal distributions with different mean vectors (𝜇𝑘,𝑘 = 1, 2) of length 𝑝 = 10 but common covariance matrix
(Λ𝑘 = Λ; 𝑘 = 1, 2). In this simulation study, we generated
N1 = 40 samples from the first population and N2 = 42
samples from the secondpopulation for both training and test
datasets. We computed the training error and test error rate
for all five classifiers using both original and contaminated
datasets with different mean vectors {(𝜇1,𝜇2 = 𝜇1 + 𝑡);𝑡 = 0, . . . , 9}, where the other parameters remain the same
for each dataset. For convenience of the presentation, we
distinguish the two mean vectors in such a way in which the
second mean vector is generated by adding t with each of the
components of the first mean vector.

3.2. Simulated Dataset 2. To investigate the performance
of the proposed classifier (𝛽-NBC) in a comparison of the
classical NBC for the classification of object into two groups,
let us consider a model for generating gene expression
datasets as displayed in Table 1 which was also used in
Nowak and Tibshirani [32]. In Table 1, the first column
represents the gene expressions of normal individuals and
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the second column represents the gene expressions of patient
individuals. First row represents the genes from group A and
second row represents the genes from group B. To randomize
the gene expression, Gaussian noise is added from 𝑁(0, 𝜎2).
First we generate a training gene-set using the data generating
model (Table 1) with parameters 𝑑 = 5 and 𝜎2 = 1, where𝑝1 = 30 genes denoted by {𝐴1, 𝐴2, . . . , 𝐴30} are generated for
group A and 𝑝2 = 30 genes denoted by {𝐵1, 𝐵2, . . . , 𝐵30} are
generated for group B with 𝑛1 = 30 normal individuals and𝑛2 = 30 patients (e.g., cancer or any other disease). Then we
generate a test gene-set using the same model with the same
parameters 𝑑 = 5 and 𝜎2 = 1 as before, where 𝑝11 = 30 genes
denoted by {𝐴31, 𝐴32, . . . , 𝐴60} are generated for group A and𝑝22 = 30 genes denoted by {𝐵31, 𝐵32, . . . , 𝐵60} are generated
for group B with 𝑛11 = 25 normal individuals and 𝑛22 = 25
patients (e.g., cancer or any other disease).

3.3. Simulated Dataset 3. To demonstrate the performance
of the proposed classifier (𝛽-NBC) in a comparison of some
other robust linear classifiers based on the robust estimators
(MCD, MVE, OGK, MCD-A, MCD-B, MCD-C, and FSA) as
mentioned earlier for the classification of object into different
groups, we have generated the training and test datasets from𝑚 = 2, 3 multivariate normal distributions with variables p
= 10, 5, respectively. We consider 𝑛1 = 40 and 𝑛2 = 35 (𝑛 =𝑛1 + 𝑛2) samples from 𝑚 = 2 different multivariate normal
populations 𝑁𝑝(𝜇1,Λ1) and 𝑁𝑝(𝜇2,Λ2). Here 𝜇2 = 𝜇1 + Ω
with Ω = 0, 1, . . . , 10 such that 𝜇1 = 𝜇2 for Ω = 0; otherwise
𝜇1 ̸= 𝜇2, where the scalar numberΩ is the commondifference
between two corresponding mean components of 𝜇1 and 𝜇2,
respectively. Similarly, for generating the training and test
datasets, we consider the 𝑛1 = 30, 𝑛2 = 30, and 𝑛3 = 30
(𝑛 = 𝑛1 + 𝑛2 + 𝑛3) samples from𝑚 = 3. It is carried out with
different means and common variance-covariance matrix of
multivariate normal populations𝑁𝑝(𝜇1,Λ1),𝑁𝑝(𝜇2,Λ2), and𝑁𝑝(𝜇3,Λ3). In this case we consider 𝜇𝑘 = 𝜇𝑘 + Ω withΩ = 0, 1, . . . , 10 and 𝑘 = 1, 2, 3 such that 𝜇1 = 𝜇2 = 𝜇3 forΩ = 0; otherwise 𝜇1 ̸= 𝜇2 ̸= 𝜇3, where the scalar numberΩ is the common difference among the corresponding mean
components of 𝜇1, 𝜇2, and 𝜇3, respectively.

3.4. Head and Neck Cancer Gene Expression Dataset. To
demonstrate the performance of the proposed classifier (𝛽-
NBC) in a comparison with four popular classifiers (KNN,
NBC, SVM, and AdaBoost) with the real gene expression
dataset, we considered the head and neck cancer (HNC)
gene expression dataset from the previous work [33]. The
term head and neck cancer denotes a group of biologically
comparable cancers originating from the upper aero digestive
tract, including the following parts of human body: lip,
oral cavity (mouth), nasal cavity, pharynx and larynx, and
paranasal sinuses. This microarray gene expression dataset
contains 12626 genes, where 594 genes are differentially
expressed and the rest of the genes are equally expressed.

4. Simulation and Real Data Analysis Results

4.1. Simulation Results of Dataset 1. We have used the simu-
lated dataset 1 to investigate the performance of the proposed

method with the performance of the other popular classifiers
such as classical NBC, SVM, KNN, and AdaBoost. Figures
1(a)–1(f) represent the test error rate estimated by these five
classifiers against the common mean differences in absence
of outliers (original dataset) and in presence of 5%, 10%,
15%, 20%, and 25% outliers in test dataset, respectively. From
Figure 1(f) it is evident that in absence of outlier everymethod
produces almost the same result, whereas, in presence of dif-
ferent levels of outliers (see Figures 1(a)–1(e)), the proposed
method outperformed the other methods by producing low
test error rate. Table 2 is summarized with different per-
formance measures (accuracy, sensitivity, specificity, positive
predicted value (PPV), negative predicted value (NPV),
prevalence, detection rate, detection prevalence, Matthews
correlation coefficient (MCC), and misclassification error
rate). All these performance measures are computed by the
five methods (NBC, KNN, SVM, AdaBoost, and proposed).

From Table 2 we observed that the proposed method
produces better results than the other classifiers (NBC, SVM,
KNN, and AdaBoost), since it produces higher values of
accuracy (>97%), sensitivity (>95%), specificity (>94%), PPV
(>94%), NPV (>94%), andMCC (>94%) and lower values of
prevalence andMER (<4%).The proportion test statistic [34]
has been used to test the significance of several proportions
produced by the five classifiers for each of the performance
measures. The column 7 of Table 2 represents the 𝑝 values of
this test statistic. Since all the 𝑝 values except MER are less
than 0.01, so we can conclude that the performance results
are highly statistically significant. The MER (𝑝 value < 0.05)
is also statistically significant at 5% level of significance. So
we may conclude from simulated dataset 1 that our proposed
method performed better than the other classical methods
for the contaminated dataset. It keeps equal performance in
absence of outliers for the original dataset.

4.2. Simulation Results of Dataset 2. To investigate the per-
formance of the proposed classifier (𝛽-NBC) in a comparison
of the classical NBC for the classification of objects into two
groups, we considered the simulated dataset 2. Figures 2(a)
and 2(b) show training and test datasets in absence of outliers,
respectively. Here genes are randomly allocated in the test
dataset. Figures 3(a) and 3(b) show the results of classified
test dataset by classical and proposed NBC, respectively.

From classification results we observed that both the
naı̈ve Bayes procedures and proposed method produce
almost the same results with low misclassification error
rates in absence of outliers. To investigate the robustness
performance of our proposed method in a comparison with
the conventional näıve Bayes procedure for classification, we
randomly contaminated 30% genes by outliers in the test
gene-sets (Figures 4(a)–4(c)).

To classify sample into any one of the groups using the
contaminated test gene-set (Figure 4(a)), we calculated the
misclassification error rate by NBC and proposed method.
From Figure 4 we see that the traditional näıve Bayes
procedures fail to achieve correct classification (Figure 4(b))
and the misclassification error rate is 34%. Then we try to
classify objects/patients using the proposed method which is
shown in Figure 4(c). It is obvious from these figures that the
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Figure 1: Misclassification error rate at different outlier levels: (a) 5% contamination rate, (b) 10% contamination rate, (c) 15% contamination
rate, (d) 20% contamination rate, (e) 25% contamination rate, and (f) without contamination rate for the test dataset by the simulated dataset
1.
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Table 2: Performance evaluation by different methods based on simulated dataset 1.

Prediction methods NBC SVM KNN AdaBoost Proposed 𝑝 value
Accuracy 0.55 0.84 0.86 0.82 0.97 0.00
95% CI of accuracy (0.45, 0.65) (0.75, 0.90) (0.77, 0.92) (0.73, 0.89) (0.91, 0.99) —
Sensitivity 0.54 0.78 0.79 0.90 0.95 0.00
Specificity 0.62 0.94 0.97 0.76 0.94 0.00
PPV 0.88 0.96 0.98 0.73 0.94 0.00
NPV 0.20 0.71 0.73 0.91 0.94 0.00
Prevalence 0.84 0.63 0.63 0.41 0.40 0.00
Detection rate 0.45 0.49 0.50 0.37 0.48 0.00
Detection prevalence 0.51 0.51 0.51 0.51 0.51 —
MCC 0.12 0.70 0.74 0.65 0.94 0.00
MER 0.49 0.18 0.17 0.08 0.03 0.03
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Figure 2: Simulation dataset 2 using data generating model (given in Table 1): (a) training gene-set and (b) test gene-set, without
contamination.
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Figure 3: Classification results using (a) classical NBC and (b) proposed (𝛽-NBC) method for the case without contamination based on the
simulated dataset 2.
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Figure 4: Classification results for the contaminated data: (a) contaminated test gene-set, (b) classified test gene-set by NBC, and (c) classified
test gene-set by proposed method.

classification performance of the proposed method is good
and the misclassification error rate is approximately 5% for
test gene datasets.

4.3. Simulation Results of Dataset 3. We also investigated the
performance of the proposed robust naı̈ve Bayes classifier in a
comparison with classical näıve Bayes as well as robust linear
classifier based on the MVE, FSA, MCD, MCD-A, MCD-
B, MCD-C, and OGK estimators of the mean vectors and
covariance matrices. We computed different performance
measures such as average of true positive rate (TPR), false
positive rate (FPR), area under the ROC curve (AUC), and

partial AUC (pAUC) based on 50 replications of the dataset
tomeasure the performance of all classifiers. Amethod is said
to be better than others, if it produces larger values of TPR,
AUC, and pAUC and smaller values of FPR and MER.

Table 3 shows the average values of AUC and pAUC
at FPR = 0.2 based on the 50 replicated simulated datasets
3 with 𝑝 = 15 for the two- (2-) class classification. The
performance measures have been estimated by the classical,
FSA, MCD, MVE, MCD-A, MCD-B, MCD-C, OGK, and
proposed methods. They show the average estimates of AUC
and pAUC for seven classifiers using simulated dataset 3
in absence and presence of outliers. We observed that in
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Table 3: Performance evaluation of different methods using average values of AUC, pAUC, and standard error of pAUC for two-class
classification based on simulated dataset 3.

Two- (2-) class classification
Estimators Average.AUCtest SE.AUCtest Average.pAUCtest SE.pAUCtest

Without outliers
Classical 0.88 0.01 0.11 0.01
MVE 0.84 0.04 0.10 0.03
FSA 0.86 0.04 0.11 0.03
MCD 0.88 0.04 0.12 0.02
MCD-A 0.88 0.04 0.12 0.02
MCD-B 0.88 0.04 0.12 0.02
MCD-C 0.88 0.04 0.12 0.02
OGK 0.85 0.05 0.10 0.02
Proposed 0.91 0.01 0.13 0.02

5% outliers
Classical 0.92 0.03 0.14 0.01
MVE 0.79 0.07 0.04 0.04
FSA 0.85 0.06 0.10 0.05
MCD 0.90 0.06 0.13 0.04
MCD-A 0.90 0.06 0.13 0.04
MCD-B 0.90 0.06 0.13 0.04
MCD-C 0.90 0.06 0.13 0.04
OGK 0.84 0.04 0.07 0.04
Proposed 0.95 0.02 0.16 0.01

10% outliers
Classical 0.89 0.03 0.13 0.02
MVE 0.80 0.05 0.05 0.05
FSA 0.85 0.06 0.11 0.04
MCD 0.90 0.04 0.13 0.02
MCD-A 0.90 0.04 0.13 0.02
MCD-B 0.90 0.04 0.13 0.02
MCD-C 0.90 0.04 0.13 0.02
OGK 0.86 0.05 0.10 0.05
Proposed 0.93 0.02 0.15 0.01

15% outliers
Classical 0.85 0.05 0.11 0.03
MVE 0.81 0.05 0.06 0.05
FSA 0.84 0.06 0.10 0.04
MCD 0.89 0.05 0.13 0.03
MCD-A 0.89 0.05 0.13 0.03
MCD-B 0.89 0.05 0.13 0.03
MCD-C 0.89 0.05 0.13 0.03
OGK 0.88 0.05 0.10 0.05
Proposed 0.92 0.03 0.14 0.02

20% outliers
Classical 0.92 0.02 0.14 0.01
MVE 0.75 0.05 0.016 0.03
FSA 0.81 0.06 0.06 0.06
MCD 0.87 0.04 0.12 0.02
MCD-A 0.87 0.04 0.12 0.02
MCD-B 0.87 0.04 0.12 0.02
MCD-C 0.87 0.04 0.12 0.02



10 BioMed Research International

Table 3: Continued.

Two- (2-) class classification
Estimators Average.AUCtest SE.AUCtest Average.pAUCtest SE.pAUCtest
OGK 0.78 0.05 0.02 0.05
Proposed 0.95 0.01 0.17 0.00

25% outliers
Classical 0.81 0.07 0.09 0.03
MVE 0.72 0.08 0.04 0.04
FSA 0.83 0.07 0.08 0.05
MCD 0.86 0.07 0.11 0.05
MCD-A 0.86 0.07 0.11 0.05
MCD-B 0.86 0.07 0.11 0.05
MCD-C 0.86 0.07 0.11 0.05
OGK 0.87 0.04 0.11 0.043
Proposed 0.92 0.03 0.14 0.03

absence of outliers all the classifiers produce almost similar
results. The proposed classifiers produced better result than
the classical NBC and other robust estimators in presence
of different levels (5%, 10%, 15%, 20%, and 25%) of outliers.
AlsoMCD,MCD-A,MCD-B, andMCD-C show the constant
performance result at the same level of outlier rate and varied
for the different level of outlier rates. The ROC analysis also
supported these results which are shown in Figures 5(a)–5(f),
so wemay conclude that the proposedmethod outperformed
the others.

To investigate the performance of the proposed method
in a comparison with other methods (classical, FSA, MCD,
MVE, MCD-A, MCD-B, MCD-C, OGK, and proposed) for
multiclass (3) classification problem.We generated simulated
datasets 3 based on 50 replicated with 𝑝 = 5 the number of
variables.The performancemeasures were estimated for each
of these methods. Table 4 shows the average standard error
of AUC and pAUC for multiclass classification. It is revealed
that the proposed robust näıve Bayes classifier outperformed
the classical and other robust linear classifiers in presence
of outliers with false positive rate 0.2. The proposed method
produces the larger values of AUC and pAUC and shows the
lower values of MER and standard error of AUC and pAUC
values. The performance measures using different types of
MCD estimators were shown in the constant result at the
same level of outlier rate. It was varied for the different levels
of contamination rate.

4.4. Head and Neck Cancer Gene Expression Data Analy-
sis. We also investigated the performance of the proposed
method in real microarray gene expression dataset. The
normalized Head and Neck cancer (HNC) dataset is con-
sidered here [33]. The RNA sample was extracted from the
22 normal and 22 cancer tissues for generating the HNC
dataset. The Affymetrix GeneChip was used for processing
RNA samples and finally got the quantified CELL file for-
mat. The Robust Multichip Analysis (RMA) and quantile
normalization methods were used for processing the CELL
files. The HNC dataset was 12,642 probe sets, 44 samples,
and 42 significantly differentially expressed probe sets. The

detailed discussion is shown in [33] for preprocessing ofHNC
dataset. We first select the differentially expressed (DE) genes
whose posterior probability is more than 0.9; otherwise the
genes are equally expressed (EE) using bridge R package
[35] which is shown in Figure 6 that shows 594 differentially
expressed genes from 12626 genes. We have performed the
Anderson-Darling (A-D) normality test [36, 37] for the HNC
dataset. The results show that a few numbers of DE genes
(5%) for both normal and cancer groups break the normality
assumption at 1% level of significance. Also we checked the
independence assumption of DE genes using the mutual
information [38]. We found that the mutual information
for HNC dataset is 0.044 which is almost close to zero for
both normal and cancer groups. So we may conclude that
the DE genes almost satisfy the independence assumption.
Therefore, we may assume that the HNC dataset almost
satisfies the normality and independence assumption of NBC
for a given class/groups.

For classification problem, we have considered half of
the differentially expressed genes (594/2 = 297) as training
gene-set and we identified their group using hierarchical
clustering (HC). Figure 7 represents the dendrogram of HC
of half of the differentially expressed genes for training
data. The rest of the 297 differentially expressed genes are
considered as a test gene-set.Thenwe employed both classical
NBC and robust NBC (𝛽-NBC) in this dataset to classify
cancer genes (see Figures 8(a)–8(d)). We observed that from
Figure 8 the traditional naı̈ve Bayes procedure can not find
the group of gene properly whereas our proposedmethod (𝛽-
NBC) performs better for identifying the gene group in the
HNC dataset. Figure 8(d) shows that the proposed classifier
shows better performance for classifying the samples than the
classical method (Figure 8(c)).

We also computed different performance measures
(accuracy, sensitivity, specificity, positive predicted value
(PPV), negative predicted value (NPV), prevalence, detection
rate, detection, prevalence, Matthews correlation coefficient
(MCC), andmisclassification error rate) by the five classifica-
tion methods (NBC, KNN, SVM, AdaBoost, and proposed)
using HNC dataset (Table 5). From Table 5 we have observed
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Figure 5: ROC curve for the 2- (two-) class classification of different estimators at different percentage of outliers: (a) absence of outliers, (b)
5% outliers, (c) 10% outliers, (d) 15% outliers, (e) 20% outliers, and (f) 25% outliers.
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Table 4: Performance evaluation of different methods using average values of AUC, pAUC, and standard error of pAUC using dataset 3 for
multiclass (3) classification.

Multiclass (3) Class Classification
Estimators Average.AUCtest SE.AUCtest Average.pAUCtest SE.pAUCtest

No outlier
Classical 0.89 0.03 0.13 0.02
MVE 0.84 0.05 0.10 0.02
FSA 0.88 0.04 0.12 0.02
MCD 0.89 0.04 0.13 0.02
MCD-A 0.89 0.04 0.13 0.02
MCD-B 0.89 0.04 0.13 0.02
MCD-C 0.89 0.04 0.13 0.02
OGK 0.86 0.05 0.11 0.02
Proposed 0.90 0.03 0.13 0.02

5% outliers
Classical 0.84 0.05 0.10 0.02
MVE 0.82 0.05 0.08 0.03
FSA 0.86 0.05 0.11 0.02
MCD 0.87 0.04 0.12 0.02
MCD-A 0.87 0.04 0.12 0.02
MCD-B 0.87 0.04 0.12 0.02
MCD-C 0.87 0.04 0.12 0.02
OGK 0.85 0.05 0.10 0.03
Proposed 0.88 0.03 0.12 0.01

10% outliers
Classical 0.77 0.07 0.07 0.02
MVE 0.82 0.05 0.09 0.03
FSA 0.85 0.04 0.11 0.02
MCD 0.86 0.04 0.12 0.02
MCD-A 0.86 0.04 0.12 0.02
MCD-B 0.86 0.04 0.12 0.02
MCD-C 0.86 0.04 0.12 0.02
OGK 0.84 0.05 0.10 0.03
Proposed 0.87 0.04 0.12 0.02

15% outliers
Classical 0.76 0.07 0.07 0.03
MVE 0.82 0.05 0.09 0.03
FSA 0.83 0.05 0.11 0.02
MCD 0.85 0.05 0.12 0.02
MCD-A 0.85 0.05 0.12 0.02
MCD-B 0.85 0.05 0.12 0.02
MCD-C 0.85 0.05 0.12 0.02
OGK 0.85 0.05 0.11 0.03
Proposed 0.86 0.04 0.11 0.02

20% outliers
Classical 0.67 0.10 0.05 0.03
MVE 0.80 0.05 0.08 0.03
FSA 0.79 0.03 0.10 0.01
MCD 0.79 0.03 0.09 0.01
MCD-A 0.79 0.03 0.09 0.01
MCD-B 0.79 0.03 0.09 0.01
MCD-C 0.79 0.03 0.09 0.01
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Table 4: Continued.

Multiclass (3) Class Classification
Estimators Average.AUCtest SE.AUCtest Average.pAUCtest SE.pAUCtest
OGK 0.82 0.05 0.09 0.02
Proposed 0.84 0.03 0.10 0.01

25% outliers
Classical 0.72 0.08 0.05 0.03
MVE 0.82 0.06 0.08 0.04
FSA 0.81 0.07 0.10 0.03
MCD 0.81 0.07 0.10 0.03
MCD-A 0.81 0.07 0.10 0.03
MCD-B 0.81 0.07 0.10 0.03
MCD-C 0.81 0.07 0.10 0.03
OGK 0.85 0.05 0.10 0.03
Proposed 0.82 0.05 0.10 0.02

Table 5: Performance investigation using head and neck cancer data.

Prediction methods NBC SVM KNN AdaBoost Proposed 𝑝 value
Accuracy 0.46 0.740 0.73 0.73 0.76 0.00
95% CI of accuracy (0.35, 0.56) (0.63, 0.81) (0.63, 0.81) (0.63, 0.81) (0.75, 0.79) —
Sensitivity 0.46 0.79 0.84 0.79 0.83 0.00
Specificity 0.44 0.61 0.67 0.68 0.77 0.00
PPV 0.62 0.59 0.56 0.62 0.86 0.00
NPV 0.30 0.79 0.90 0.84 0.87 0.00
Prevalence 0.66 0.36 0.33 0.39 0.43 0.00
Detection rate 0.31 0.28 0.28 0.31 0.43 0.00
Detection prevalence 0.50 0.50 0.50 0.50 0.50 —
Balanced accuracy 0.45 0.71 0.76 0.74 0.93 0.00
MCC −0.08 0.48 0.47 0.86 0.90 0.04
MER 0.50 0.27 0.25 0.08 0.0 0.05
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Figure 6: Differentially expressed genes of head and neck cancer
dataset using bridge.

that the proposed classifier produces better results than the
other classifiers (NBC, SVM, KNN, and AdaBoost). The
proportion test [34] has shown that the 𝑝 values <0.01 for
the different performance results excluding MCC and MER.
Then we may say that they are highly statistically significant.
The MCC and MER are statistically significant at 5% level
of significance because of the 𝑝 values < 0.05. Hence, the
performances of the proposed methods in real HNC data
analysis are better than classical and other methods. Also
this data set is contaminated by outliers reported in [31].
So we consider this dataset to investigate the performance
of the proposed method in a comparison of some popular
existing classifiers. We observed that the proposed method
outperforms the others for this HNC dataset.

5. Discussion

In this paper, we discussed the robustification of Gaussian
NBC using the minimum 𝛽-divergence method within two
steps. For both simulated and real data analysis, at first,
the mean vectors and the diagonal covariance matrices were
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Figure 7: HC Dendrogram for calculated first half of DE genes.

computed by the minimum 𝛽-divergence estimators for the
Gaussian NBC based on the training dataset. Then outlying
test data vectors were detected from the test dataset using
the 𝛽-weight function and outlying components in each test
data vector were replaced by the corresponding values of
their estimated mean vectors. Then the modified test data
vectors were used as the input data vectors in the proposed𝛽-NBC for their class prediction or pattern recognition. The
rest of the data vectors from the test dataset were directly
used as the input data vectors in the proposed 𝛽-NBC for
their class prediction or pattern recognition. We observed
that the performance of the proposed method depends on
the tuning parameter 𝛽 and the initialization of the Gaussian
parameters. Therefore, in this paper, we also discussed the
initialization procedure for the Gaussian parameters and
the 𝛽-selection procedure using cross validation in Sec-
tions 2.3.2 and 2.3.3, respectively. The classifier reduces to
the traditional Gaussian NBC when 𝛽 → 0. Therefore,
we call the proposed classifier 𝛽-NBC. We investigated
the robustness performance of the proposed 𝛽-NBC in a
comparison of several robust versions of linear classifiers
based on MCD, MVE, and OGK estimators taking the
smaller number of variables/genes (p) with larger number
of patients/samples (n) in the training dataset, since these
types of robust classifiers also suffer from the inverse problem
of its covariance matrix in presence of large number of
variables/genes (p) with small number of patients/samples
(𝑛) in the training dataset. We observed that the proposed𝛽-NBC outperforms the existing robust linear classifiers
as early mentioned in presence of outliers. Otherwise, it
keeps almost equal performance. Then we investigated the
performance of the proposed method in a comparison of
some popular classifiers including Support Vector Machine
(SVM), K-Nearest Neighbors (KNN), and AdaBoost which
are widely used for gene expression data analysis [27–29].
In that comparison, we used both simulated and real gene
expression datasets. We observed that the proposed method
improves the performance over the others in presence of
outliers. Otherwise, it keeps almost equal performance as
before.Themain advantage of the proposed classifier over the
others is that it works well for both conditions of (i)𝑝 < 𝑛 and
(ii)𝑝 > 𝑛, and it can resist the effect of 50%breakdownpoints.
If the dataset does not satisfy the normality assumptions,

then the proposed method may show weaker performance
than others in absence of outliers. However, the nonnormal
dataset can transform to the normal dataset by some suitable
transformation like Box-Cox transformation [39]. Then the
proposed method would be useful to tackle the outlying
problems. The proposed method may also suffer from the
correlated observations. In that case, correlated observations
can be transforming to the uncorrelated observations using
standard principal component analysis (PCA) or singular
value decomposition (SVD) based PCA. Then the proposed
methodwould bemore useful to tackle the outlying problems
as before. However, in our current studied in this paper,
we investigated the performance of the proposed classifier
(𝛽-NBC) in a comparison of some popular existing clas-
sifiers (NBC, KNN, SVM, and AdaBoost) including some
robust linear classifiers (MCD, MVE, OGK, MCD-A, MCD-
B, MCD-C, and FSA) using both simulated and real gene
expression datasets, where simulated datasets satisfied the
normality and independent assumptions. We observed that
the proposed method improved the performance over the
others in presence of outliers. Otherwise, it keeps almost
equal performance.Usually gene expression datasets are often
contaminated by outliers due to several steps involved in the
data generating process from hybridization to image analysis.
Therefore the proposed method would be more suitable for
gene expression data analysis.

6. Conclusion

The accurate sample class prediction or pattern recognition
is one of the most significant issues for MGED analysis.
The naı̈ve Bayes classifier is an important and widely used
method for the class prediction in bioinformatics. However,
this method suffers from outlying problems to estimate the
location parameters in the MGED analysis. To overcome
this we proposed 𝛽-NBC for estimating the robust location
and scale parameters. In the simulation studies 1 and 2, we
showed that, in presence of outliers, the proposed 𝛽-NBC
outperforms other popular classifiers while datasets were
generated from themultivariate and univariate normal distri-
bution, respectively, and it keeps equal performance with the
other classifiers, in absence of outliers. We also investigated
the robustness performance of the proposed 𝛽-NBC in a
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Figure 8: (a) Training gene data set; (b) test gene data set; (c) classification of gene data set by classical naı̈ve Bayes procedure; (d) classification
of gene data set by proposed (𝛽-näıve Bayes) method.

comparison of linear classifier using some popular robust
estimators in the simulation study 3. From this simulation
study we observed that the proposed 𝛽-NBC outperforms
existing robust linear classifiers. Finally we applied in the
real HNC dataset; our proposed 𝛽-NBC showed better
performance than the other traditional classifiers. Therefore,
we may conclude that, in presence of outliers, our proposed𝛽-NBCoutperforms othermethods using both simulated and
real datasets.

Additional Points

Supplementary Materials. The source code is written in R
which is available in the Supplementary Material, available
online at https://doi.org/10.1155/2017/3020627.
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