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SUMMARY

Whole genome sequencing analysis of lung adenocarcinomas revealed noncoding somatic 

mutational hotspots near VMP1/MIR21 and indel hotspots in surfactant protein genes (SFTPA1, 
SFTPB, and SFTPC). Extrapolation to other solid cancers demonstrated highly recurrent and 

tumor-type-specific indel hotspots targeting the noncoding regions of highly expressed genes 

defining certain secretory cellular lineages: albumin (ALB) in liver carcinoma, gastric lipase 

(LIPF) in stomach carcinoma, and thyroglobulin (TG) in thyroid carcinoma. The sequence 

contexts of indels targeting lineage-defining genes were significantly enriched in the AATAATD 

DNA motif and specific chromatin contexts, including H3K27ac and H3K36me3. Our findings 

illuminate a prevalent and hitherto unrecognized mutational process linking cellular lineage and 

cancer.
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INTRODUCTION

Large-scale sequencing of human tumor samples has implicated unexpected pathways and 

mutational processes in carcinogenesis (Garraway and Lander, 2013; Vogelstein et al., 

2013). The growing power of whole genome sequencing now enables the discovery of 

significantly altered loci in noncoding sequences. Examples include the common mutation 

of the TERT promoter in many cancer lineages (Horn et al., 2013; Huang et al., 2013), 

alterations of the TAL1 super-enhancer in acute T-lymphoblastic leukemia (Mansour et al., 

2014), and the identification of MYC and KLF5 enhancer duplication in multiple epithelial 

cancer lineages (Zhang et al., 2016).

The vast majority of analytic efforts to nominate mutation hotspots in cancer genomes using 

statistical approaches have focused on protein-coding regions in whole exome capture data. 

The 98% of the genome that does not code for proteins includes transcribed but untranslated 

exons of genes, introns, and noncoding regulatory genetic elements, some of which may 

harbor clinically important and targetable DNA alterations (Khurana et al., 2013; Melton et 

al., 2015; Weinhold et al., 2014). For whole exome analysis, statistically calibrated 

approaches such as InVEx (Hodis et al., 2012) and MutSigCV (Lawrence et al., 2014) have 

been developed to correct for the mutational heterogeneity that otherwise results in the 

nomination of spurious hotspots in late replicating and poorly expressed genes. Such 

calibration is important in the analysis of tumor types harboring high burdens of neutral 

mutations, such as lung cancer and melanoma (Hodis et al., 2012; Imielinski et al., 2012). 

This challenge becomes particularly daunting with whole genome sequencing analysis, 

where the number of hypotheses (i.e. candidate regions) is large while the number of 

samples is small, relative to whole exome capture data.

Lung adenocarcinoma is the most common type of lung cancer and a prototype for precision 

oncology (Pao and Hutchinson, 2012). Though several large-scale sequencing studies have 

resolved the landscape of recurrent coding alterations in lung adenocarcinoma in significant 

detail (Ding et al., 2008; Govindan et al., 2012; Imielinski et al., 2012; Kan et al., 2010; 
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TCGA Network, 2014a), the analysis of whole genome sequences has thus far revealed only 

rare noncoding mutations (Weinhold et al., 2014). In the present study, we analyzed whole 

genome sequences of lung adenocarcinoma using a somatic burden test based on Gamma-

Poisson regression (Hilbe, 2014) for analysis of both insertion/deletion (indel) and single 

nucleotide variant (SNV) somatic mutations.

To our surprise, in addition to alterations of known cancer genes and a noncoding mutation 

hotspot near MIR21 and VMP1, we found recurrent somatic indel mutations in noncoding 

regions of surfactant protein genes, the major transcriptional product of type II pneumocytes 

in the lung. Through statistical analysis of whole genome sequences across a diverse 

collection of cancers, we found that other tumor types harbor similarly prevalent hotspots of 

noncoding somatic indel mutations, targeting a class of lineage-defining genes. These highly 

expressed genes define cell types that play essential biosynthetic roles in the physiology of 

their respective organs, and (in the majority of cases) represent the precise cell-of-origin for 

the respective cancers. The frequent indel mutation of this gene class is a previously 

undescribed feature of cancer genomes and is likely to inform our understanding of the 

mutational processes and molecular pathogenesis of human cancers.

RESULTS

Recurrent mutation hotspots in lung cancer genomes

To identify regions of the genome under positive somatic mutational selection in lung 

cancer, we analyzed whole genome sequencing reads from 79 lung adenocarcinoma tumor-

normal pairs (Imielinski et al., 2012; TCGA Network, 2014a). These cases comprise 

predominantly early stage and treatment-naïve surgical resection specimens. We tallied 

mutation calls across a genome-wide hypothesis set of 2.823 million overlapping 10 Kbp 

intervals across 2.429 Gbp of eligible genomic territory to identify candidate noncoding 

hotspots in the genome (Figure 1A).

We applied Gamma-Poisson regression (Hilbe, 2014) to statistically account for the regional 

genomic heterogeneity in neutral somatic variant densities (Lawrence et al., 2013; Polak et 

al., 2015; Schuster-Böckler and Lehner, 2012) by modeling counts of patients harboring 

indel or SNV in each interval as a function of eligible territory width and 8 genomic 

covariates (Figure 1A, STAR*Methods). Given this model, we computed P-values for 

mutation enrichment in each interval i with mutation count yi as the probability P(Y ≥ 

y↓i,θ)), using the expected mutation count μi and shape parameter θ from the Gamma-

Poisson regression fit (Figure 1A, Figure S1A).

Quantile-quantile (Q-Q) plots can be used to demonstrate how well a set of genome-wide P-

values approximate a uniform distribution through the slope λ of a line y = λx that fits a set 

of −log10 transformed observed and expected quantiles (Pearson and Manolio, 2008). 

Algorithms like InVEx (Hodis et al., 2012) and MutSigCV (Lawrence et al., 2014) 

demonstrate statistically calibrated Q-Q plots (λ near 1) when applied to whole exome 

sequencing data, but are not readily adaptable to whole genome analysis. Application of our 

Gamma-Poisson regression model yielded P-values closely aligned to the uniform 

distribution, as demonstrated by Q-Q plots with λ (genomic inflation) values at 1.01 for 
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SNV and 1.00 for indel analyses (Figure 1B, 1C). The resulting most significant loci are 

shown in Table S1A (SNV) and Table S1B (indel). Loci significant for SNVs (FDR<0.1, 

Figure 1B) corresponded to known coding mutation driver alterations in TP53 (P = 3.6 × 

10−14), STK11 (P = 3.6 × 10−8), and KRAS (P = 3.6 × 10−7), supporting the relevance of 

this analysis (Table S1A, Figure 1B).

Among the significant SNV loci was a previously uncharacterized noncoding mutation 

hotspot overlapping VMP1 and MIR21 (Figure 1B, 2A, Table S1A-B). MIR21 encodes a 

microRNA whose over-expression has been linked to tumorigenesis in lung cancer and other 

tumor types (Seike et al., 2009). This locus was recently shown to be recurrently amplified 

in lung adenocarcinoma (Campbell et al., 2016). VMP1 encodes a vacuolar membrane 

protein that is functionally linked to autophagy and has been found to be recurrently 

rearranged in several cancer types, including breast and esophageal cancer (Blum et al., 

2016; Inaki et al., 2011). Interestingly, the VMP1/MIR21 locus was also the ninth most 

highly ranked hotspot in the indel analysis (Figure 1C), though it did not pass the FDR 

threshold of 0.1 (P= 6.4 × 10−6). The SNV and indels contributing to these hotspots did not 

affect any coding positions of VMP1 or MIR21, but clustered in a nearly 40 Kbp region of 

open chromatin and H3K27ac (Figure 2A), as profiled in a lung adenocarcinoma cell line 

A549. Samples harboring indels or SNVs in this locus demonstrated significantly higher 

levels of MIR21 expression, while there was no significant association of mutation status 

with expression of nearby protein-coding genes (TUBD1, VMP1) (Figure 2B).

Lung cancer indels target surfactant protein genes

The three most significantly altered loci in the indel analysis of lung adenocarcinomas 

(Figure 1C, Table S1B) overlapped the genes SFTPB (P = 1.8 × 10−14), SFTPA1 (P = 4.8 × 

10−10), and SFTPC/BMP1 (P = 1.3 × 10−7). SFTPB, SFTPA1, and SFTPC encode surfactant 

proteins that are specific markers of type II pneumocytes in the normal lung, where they 

help generate the surface tension required to maintain open air spaces (Haagsman and 

Diemel, 2001). Though germline mutations in SFTPA1 have been recently linked to adult 

lung cancer (Nathan et al., 2016), none of these genes have previously been implicated as 

somatic mutational targets in lung cancer or other tumor types. Surfactant proteins harbor 

divergent domain structures (SFTPB – 4 Saposin domains, SFTPC – BRICHOS domain, 

SFTPA1 – Collagen-like and C-type lectin domains) and are not paralogues, though they 

contribute to the same pathway (Haagsman and Diemel, 2001). The corresponding genomic 

loci (which we will refer to as SFTP loci) lie on different chromosomes (2, 10, and 8, 

respectively) and consist of early replicating regions with average GC-content (Figure S1B). 

Upon visual inspection, the somatic mutations in these loci were supported by multiple 

tumor DNA-specific alignments of high mapping quality, without strand bias or an excess of 

mismatches. Furthermore, loci harboring these mutations were not enriched in alignments 

with low allele frequency mismatches or low mapping quality reads (Table S1B). Though 

SFTP loci were highly enriched in the indel analysis, they showed no significant deviation 

from background with respect to SNV density (Figure S1B). Other loci in the indel analysis 

passing a false discovery threshold of 0.1 were TP53 (P = 8.8 × 10−7) and MYO5C (P = 1.8 

× 10−6) (Table S1B). Indel density in EGFR was also nominally enriched (P = 2.7 × 10−6), 

though it did not pass the genome-wide false discovery threshold (FDR = .12). Unlike with 
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SFTP loci, indels within TP53 and EGFR hotspots comprised exclusively protein-coding 

variants.

Overall, somatic indel mutations in SFTP loci were found within or near the 3′ UTRs of 

SFTPB, SFTPA1, and SFTPC (Figure 3A–C). In total, 18/79 (23%) of lung 

adenocarcinomas harbored one of 21 indels occurring at SFTPB (10 cases), SFTPA1 (5 

cases), or SFTPC/BMP1 (4 cases). Among SFTPB-associated indels, only one mutation was 

predicted to alter transcript structure through the perturbation of a splice site, while the 

majority were located within (8/11 events) or downstream (2/11 events) of the annotated 

SFTPB 3′ UTR. Events associated with SFTPC (5 events) and SFTPA1 (5 events) loci 

occurred exclusively at or downstream of the annotated 3′ UTR of the respective gene. In 

summary, the vast majority of SFTP indel mutations (19/21) occurring at bases at or 

downstream of the 3′ UTR were not covered by standard exome capture, as demonstrated 

by the analysis of aggregate base-resolution coverage profiles across more than 1000 lung 

cancer exome sequences (Campbell et al., 2016). SFTP indels were not significantly 

associated with known DNA alterations in lung adenocarcinoma or smoking status (Figure 

S2A–D), nor with cis gene expression, splicing, or methylation at the respective SFTP gene 

or other neighboring genes (Figure S2E–F). However, we observed significant gene 

expression differences at the pathway level when comparing RNA-seq profiles of SFTP 

mutant and wild type lung adenocarcinomas (Table S2, Figure S3A), including significant 

upregulation of peptide chain elongation (P = 9.8 × 10−7), 3′ UTR-mediated translational 

regulation (P = 9.8 × 10−5), mitochondrial fatty acid beta oxidation (P = 1.6 × 10−4), and 

respiratory electron transport (P = 1.8 × 10−4) pathways. These pathway changes were 

comparable in magnitude to those observed for an analysis comparing TP53 mutant vs. wild 

type transcriptomes in the same dataset, which yielded pathways with established roles in 

TP53 biology, such as DNA replication, DNA recombination, and cell cycle control (Figure 

S3B).

SFTPB, SFTPA1, and SFTPC demonstrate striking lung-specific expression in Genotype-

Tissue Expression (GTEx) data (Figure 3D) (Melé et al., 2015), obtained from healthy 

human tissues. To examine whether the corresponding somatic indel patterns were tissue-

specific, we analyzed whole genome sequences from 487 tumors representing 12 additional 

tumor types. Scanning these genomes for somatic variants in the three SFTP loci, we only 

found two additional samples harboring SFTP indels across these 487 tumors: one in a 

poorly differentiated, late-stage lung squamous cell cancer and one in a gastric 

adenocarcinoma. This represents a 25-fold enrichment (95% CI: [13.2, 47.4]) in lung 

adenocarcinoma vs. other tumor types, even after correcting for sample-specific variations in 

indel density (P=5.6 × 10−23, Wald test, logistic regression) (Figure 3E).

Multi-cancer analysis of mutation and lineage

Given the specificity of SFTP gene expression to lung tissue and SFTP somatic indels to 

lung adenocarcinoma, we hypothesized that other tumor types might harbor similar 

noncoding indel enrichment at highly expressed and lineage-specific genes. Through semi-

supervised analysis (see STAR*Methods, Figure S4A–B) of 2917 GTEx samples spanning 

30 normal tissues (Melé et al., 2015) we identified three clusters of genes with greater than 
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1000 RPKM median expression in at least one tissue, comprising 60 housekeeping genes 

(e.g. RPL13, HLA-B), 47 multi-lineage genes (e.g. APOD, IGFBP7), and 126 lineage-

specific genes (INS, CYP2E1, PGA5). We examined somatic mutation densities (normalized 

to average per-sample mutation density) in these genomic territories (gene +/− 10 Kbp 

flanking sequence) across 487 whole genome sequenced samples spanning 12 cancer types 

other than lung adenocarcinoma. For each cancer type, we identified lineage-specific, multi-

lineage, and housekeeping gene territories that were either native or foreign to that cancer’s 

lineage-context based on their expression in healthy GTEx tissues (Table S3A).

We compared variant densities in each tumor context (expression native vs. foreign) and 

territory class (lineage-specific vs. multi-lineage vs. housekeeping) and evaluated group 

differences using Gamma-Poisson regression (Figure 4A, Table S3B). We found that 

lineage-specific gene territories were 14.3 fold (95% CI: [10.7, 19.2], P = 9.5 × 10−70, Wald 

test, Figure 4B) enriched in indels in the expression native vs. foreign tumor context (Figure 

4B). Lineage-specific territories were also significantly enriched in indels relative to both 

multi-lineage (P = 4.7 × 10−24) and housekeeping (P = 1.8 × 10−35) territories when 

examining only expression native tumor contexts (Figure 4B). In contrast, following 

Bonferroni correction for 6 comparisons (P < 0.0083, adjusted P<0.05), there was no 

significant expression native vs. foreign enrichment for indel densities at multi-lineage (P = 

0.044) or housekeeping territories (P = 0.188), or between multi-lineage and housekeeping 

territories in expression native tumors (P = 0.29) (Figure 4B). There was no significant 

difference in the density of SNVs between expression native and foreign tumors at lineage-

specific genes (P = 0.146, Figure 4C). There was a significant, albeit modest (<2 fold), SNV 

enrichment in lineage-specific vs. multi-lineage genes (P = 1.7 × 10−7, RR: 1.47, 95% CI: 

[1.27, 1.70]) and lineage-specific vs. housekeeping genes (P = 1.5 × 10−4, RR: 1.30, 95% 

CI: [1.13, 1.48]) (Figure 4C, Table S3C) in native tumors. These results suggest a mutational 

process selectively generating indels at lineage-specific genes within an expression native 

tumor context.

Four of 11 non-lung adenocarcinoma tumor types demonstrated significant expression native 

vs. foreign enrichment (adjusted P<0.05) of indel density in lineage-specific gene territories: 

hepatocellular carcinoma (LIHC, P = 2.8 × 10−15), gastric adenocarcinoma (STAD, P = 6.8 

× 10−10), papillary thyroid carcinoma (THCA, P = 5.8 ×10−8), and cutaneous melanoma 

(SKCM, P = 0.0043), following Bonferroni correction (adjusted P < 0.05) for 11 hypotheses 

(Figure S4C, Table S3B). (Bladder tissue was not assigned any lineage-specific genes; 

hence, bladder cancer could not be evaluated in these analyses). We probed the 233 highly 

expressed genes to identify those preferentially mutated between native and foreign tumor 

contexts. We identified five genes with significant indel enrichment (Bonferroni adjusted 

P<0.05, 52 hypotheses, Wald test, logistic regression, Figure S4D, Table S3D): ALB in 

hepatocellular carcinoma (P = 2.1 × 10−24), ALDOB in hepatocellular and kidney clear cell 

carcinoma (P = 3.6 × 10−7), and FGG in hepatocellular carcinoma (P = 4.0 × 10−6), TG in 

thyroid carcinoma (P = 1.3 × 10−13), and LIPF in gastric adenocarcinoma (P = 6.7 × 10−13) 

(Figure 5A–C). As with SFTP genes, all of these genes were strongly and preferentially 

expressed in the presumed tissue-of-origin of the cancer type in which they were found to be 

mutated (Figure 5D).
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ALB encodes albumin, which is the most abundant protein in human plasma and synthesized 

primarily by hepatocytes (Farrugia, 2010). ALB was targeted by indels in 41% (22/54) of 

hepatocellular carcinoma cases and showed 17.6-fold enrichment of indels (95% CI: [10.2, 

30.6]) in hepatocellular carcinoma vs. other tumor types, mirroring its tissue-specific 

expression pattern (Figure 5A, Figure S4D). A recent WGS study in an independent 

Japanese hepatocellular carcinoma cohort found ALB mutations in 14% of 268 patients 

(Fujimoto et al., 2016). TG encodes thyroglobulin, a protein produced by follicular cells of 

the thyroid that alone comprises more than half of that organ’s mass (Boron and Boulpaep, 

2008). TG is specifically expressed in thyroid tissue and was targeted by indels in 43% 

(20/47) of thyroid carcinoma samples, representing a 9.03-fold enrichment in thyroid 

carcinomas relative to other tumor types (95% CI: [5.04, 16.2]) (Figure 5B, Figure S4D). 

LIPF, encoding gastric lipase, is a secretory product of chief cells that reside in the antral 

and fundic gastric mucosa (Roussel et al., 1999). This gene was targeted by indels in 18% 

(9/39) of gastric adenocarcinoma samples and showed 15.5-fold enrichment of indels (95% 

CI: [7.34, 32.7]) in gastric cancer vs. other tumor types (Figure 5C, Figure S4D, Table S3D). 

ALB and TG showed significant, but more modest (3–5 fold) enrichment in SNV density 

between native and foreign tumors (Figure S4D, Table S3D). As with SFTP locus mutations, 

ALB, TG, and LIPF indels predominantly target noncoding sequences (Figure 5A–C, Table 

S4A). Tables of indel mutation calls at LIPF and TG loci with image links to genome viewer 

variant snapshots are provided as Table S4A.

Noncoding mutations occurring in introns and untranslated regions of genes may exert 

biological effects by perturbing splicing, gene expression, and methylation, among other 

mechanisms. We tested cis associations between tumor gene expression or splicing and 

somatic indel status in loci nominated in these analyses (ALB, FGG, ALDOB, LIPF, TG) 

and did not find any significant associations (Figure S5A–J). Testing methylation differences 

between mutant and wild type samples, we observed a significant reduction of ALB 
methylation in liver cancers harboring noncoding ALB indels (P = 9.0 × 10−5), and not at 

other genes in the genomic vicinity of the ALB locus (Figure S5K). There were no 

associations between cis methylation and indel status across the other indel hotspots. As 

with SFTP mutations in lung adenocarcinomas, we observed significant pathway differences 

when comparing transcriptomes of samples that were mutant vs. wild type for lineage indel 

hotspot mutations (Table S2). In liver cancer (LIHC), we found significant upregulation of 

fatty acid metabolism (P = 3.1 × 10−5), glycine, serine and threonine metabolism (P = 8.5 × 

10−5), and numerous amino acid and redox metabolism pathway differences between tumors 

that harbored noncoding indels in ALB, FGG, and ALDOB vs. tumors that were wild type 

for all of these loci (Figure S6A). In thyroid cancer, we found significant downregulation of 

immune pathways in tumors harboring TG noncoding indels vs. wild type tumors, marked 

by downregulation of HLA expression (Allograft rejection, Graft vs. Host Disease 

pathways), CTLA4 pathway, and PD1 signaling pathway (Figure S6B). The common theme 

among these observed gene set changes is not immediately clear.

Lineage-specific indels are enriched in specific chromatin contexts

To examine the topographic context of lineage indel hotspots, we analyzed somatic variant 

data with respect to tumor-tissue matched (Table S5A-B) chromatin features identified by 
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ENCODE (ENCODE Project Consortium, 2012), the Epigenomics Roadmap (Roadmap 

Epigenomics Consortium et al., 2015), and other annotations (see STAR*Methods for 

details). For a given feature, such as H3K4me3, we used Gamma-Poisson regression to 

examine the enrichment of indels in peak vs. non-peak associated subsets of the hotspot-

associated territory, comparing this enrichment to that associated with other highly 

expressed genes and background (1000 randomly chosen genes), in 100 bp, 1 Kbp, and 10 

Kbp windows defined around the peak region. Applying 440 analyses across 110 chromatin 

marks yielded 64 significant depletion/enrichment associations across 25 epigenetic features 

following Bonferroni correction (Figure 6A, Table S5C).

We detected several chromatin marks with indel density enrichment in hotspot regions 

relative to highly expressed genes or background, most significantly H3K79me2, H420me1, 

H3K36me3, H3K4me3, and H3K27Ac. H3K27ac and H3K36me3 were associated with 

indel mutations across all four tumor types at a window width of 1 Kbp or greater (Figure 

6B) and were enriched in their indel densities relative to both highly expressed genes and 

background (Figure 6C). The strongest ChIP-Seq signal for these chromatin marks was 

found in the lung (A549 cell) and liver cancer (HepG2 cell) models, though thyroid (“Fetal 

adrenal”) and gastric (“Gastric digestive”) cancer models also contributed to this association 

(Figure 6D). Other enrichment signals were driven either by a single tumor type, in 

particular several transcription factor binding site associations (NRSF, TCF4) and Pol2 that 

were driven by liver cancer and HepG2 cells. Conversely, several chromatin marks were 

associated with significant indel density depletion in lineage-indel hotspot regions, including 

H2BK5ac and H2BK15ac, compared to both other highly expressed genes and background 

(Figure S7).

In addition to ENCODE features, we examined hotspot-specific indel depletion or 

enrichment in the vicinity of nuclear compartment transitions including TAD boundaries (Jin 

et al., 2013), loop domains (Rao et al., 2014), and alternate polyadenylation sites (APA) 

(You et al., 2015). We found significant enrichment of indels within 10 Kbp of loop 

domains, previously defined (Rao et al., 2014) through high-resolution Hi-C analyses as 

sites demarcating nuclear compartments. This association was driven by a highly significant 

depletion of somatic indels in loop domain neighborhoods in background genes (P = 4.2 × 

10−19), which was absent in both highly expressed genes (P = 0.30) and hotspot genes (P = 

0.22) (Figure S7C). We also found significant enrichment of indels in hotspot regions within 

1 Kbp of APA sites, but this was not significant relative to other highly expressed genes, 

instead driven by both groups having an elevated APA-associated indel density relative to 

background (Figure S7D). Though these associations may not be relevant to the biology of 

hotspot loci, the relationship of indel densities with expression, loop domains, and APA 

regions appears significant and may warrant further investigation.

The enrichment of recurrent somatic indels in loci encoding highly transcribed and lineage-

specific genes in lung, gastric, and thyroid cancer suggests the signature of a somatic 

mutational process shaping the cancer genome. One candidate for such a process is 

transcription-associated mutagenesis (TAM), which creates indels that expand or contract 

polynucleotide repeats following the collision of replication and transcription machinery at 

highly transcribed genes (Jinks-Robertson and Bhagwat, 2014). TAM has been previously 
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invoked as a hypothetical mechanism for somatic mutation enrichment in COL2A1, a highly 

expressed and cartilage-specific gene, in chondrosarcoma (Tarpey et al., 2013).

To investigate this hypothesis, we probed the immediate sequence context of somatic indels 

targeting highly expressed genes across the 13 tumor datasets (including lung 

adenocarcinoma). We found that the inserted or deleted sequences associated with lineage-

specific hotspot indels were not significantly more likely to expand or contract a repeat than 

non-hotspot events (P=0.12, Fisher’s exact test, Table S4B-C). Though lineage-associated 

indels were not associated with an enrichment of this particular TAM signature, a large-

fraction (>=90%) of noncoding somatic indels involved a repeat contraction or expansion 

whether or not they were contained inside a lineage-specific hotspot. We did not identify any 

significant G vs. C or A vs. T transcriptional strand bias either within or around inserted or 

deleted sequences. We however found significant enrichment of AT (vs GC) bases associated 

with hotspot indels, both within deleted sequences (P = 7.7 × 10−5, Wilcoxon rank-sum test, 

Table S4C) and their 5-base genomic neighborhoods (P = 2.55 × 10−4), though the 

biological significance of this enrichment is unclear.

A recent bacterial study has proposed that replication-transcription collision is a mechanism 

of indel mutagenesis (Sankar et al., 2016). This mechanism is thought to be distinct from 

TAM though it may be used to explain transcription-associated indel events. To probe 

signatures of replication-transcription collisions, we examined indel patterns as a function of 

replication and transcription strands. A recently published study by Haradhvala and 

colleagues (Haradhvala et al., 2016) examined strand asymmetry of SNVs across many 

cancer types and ascertained replication direction through the analysis of replication-timing 

datasets. We applied Haradhvala et al.’s annotation to examine indel patterns in highly 

expressed genes. Specifically, we classified genic regions as being either “co-directional” (if 

the associated strand of transcription matched the strand of replication) or “head-on” (if the 

transcription strand was opposite to the replication strand), where “+” (vs. “−”) transcripts 

were considered co-directional (vs. head-on) to right (vs. left) replicating genomic regions. 

Examining mutation patterns across highly expressed genes in 13 cancers, we found 

significant indel enrichment in “head-on” gene territories in the native expression context (P 
= 0.0035) (Figure S7E). This asymmetry suggests that expression-associated indels may be 

the result of head-on replication-transcription collisions. However the degree of this 

enrichment is mild, and likely does not account fully for the lineage-specific indel 

phenomenon driving observed indel hotspots.

Lineage-specific indels arise near a motif, AATAATD

To examine previously undescribed sequence contexts that might be associated with lineage-

specific indel hotspots, we examined sequence features in the 50-base neighborhood of 

highly expressed indels. Applying the DREME algorithm (http://meme-suite.org/), we 

discovered significant enrichment of an AATAATD/HATTATT (E = 5.9 × 10−10) motif in the 

vicinity of hotspot- vs. non-hotspot-associated indels (Figure 7A). (In this motif notation, D 

and H are IUPAC ambiguity codes describing and “A, G, T, not C” and “A, C, T, not G”, 

respectively). The motif was present in 38/107 (35%) of hotspot-associated indels but only 

19/355 (5.3%) of non-hotspot-associated indels (OR = 10.3, 95% CI: [4.89, 22.1], P=5.7 × 
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10−11), with particularly strong enrichment for LIPF/STAD events (10/11 events, OR= 170, 

95% CI: [22, 7300], P = 2 × 10−11). The correlation was not driven purely by indels 

associated with the LIPF hotspot: there was also a significant enrichment of this motif 

among non-LIPF events (OR= 7.2, 95% CI: [3.7, 15], P = 1.2 × 10−9) (Figure 7B). The 

AATAATD motif occurred on either side, or occasionally both sides, of the indel lesion 

(oriented with respect to the transcribed strand of the respective genes), did not exhibit 

transcriptional strand bias, and occasionally was disrupted by a deletion event (Figure 7C). 

A subset of this motif (AATAAT or AAUAAU) comprises the sequence target of a 

microRNA MIR126 which has been previously linked to cancer and metastasis (Png et al., 

2012). AATAATD does not match any known eukaryotic motif in TOMTOM (http://meme-

suite.org/tools/tomtom); however, it resembles the AATAAA polyadenylation site conserved 

across eukaryotes (Proudfoot, 2011).

Discussion

We have applied a whole genome sequence analysis approach to nominate recurrently 

somatically mutated regions across 79 lung adenocarcinoma cases, among these a hotspot of 

noncoding SNVs and indels in the vicinity of MIR21, a microRNA previously shown to be 

amplified and overexpressed in lung adenocarcinoma. Through this analysis, we discovered 

a phenomenon of recurrent somatic indel mutations in multiple cancer types located in 

lineage-specific genes that exhibit high expression in the cognate tissues of the respective 

cancers. Larger-scale whole genome and targeted sequencing analyses will further delineate 

the distribution and prevalence of these lineage-specific indel mutations across a broader 

range of cancer types.

One possible interpretation of the high prevalence (20–40%) and statistically significant 

enrichment of these lineage-specific mutations is that these genes (i.e. SFTPB, ALB, TG, 

LIPF) may be targets of positive selection in their respective cancer types. Mutations in 

SFTP loci were the most highly significant somatic indel alterations discovered in lung 

adenocarcinoma, using a statistically calibrated genome-wide test that corrected for known 

covariates of neutral mutation density. The remaining loci emerged through a focused 

analysis between normal tissue gene expression and somatic mutation patterns in tumors, 

yielding a similarly strong statistical signal of expression native indel enrichment at several 

lineage-specific genes.

Alternatively, these lineage-specific indel mutation patterns may be the result of a focal and 

previously undescribed mutational process. The correlation of these mutations to several 

genomic features (e.g. chromatin marks and AATAATD sequence motif) may reflect 

features of the mutational process that generated them rather than indicate a particular 

direction of selection pressure during tumor evolution. It is thus appropriate to entertain both 

hypotheses (driver hotspot vs. mutational process) as possible explanations for the described 

lineage-specific mutational phenomenon.

If these loci are indeed cancer-relevant genes, they may represent dominant oncogenes or 

recessive tumor suppressors. Since malignant transformation is frequently associated with 

dedifferentiation, a trivial explanation for these observations may be that these mutations 
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halt the production of a metabolically expensive protein product as a tumor cell sheds the 

specialized characteristics of its cell-of-origin. According to this hypothesis, we might 

expect to see these genes also frequently targeted by deletions or truncating mutations. This 

however has not been observed in large-scale exomic mutation studies of these tumor types 

(Imielinski et al., 2012; TCGA Network, 2014b; 2014c; 2014a) or GISTIC analysis of focal 

copy number alterations (http://www.broadinstitute.org/tcga/gistic/) (Zack et al., 2013), with 

the exception of ALB mutations in hepatocellular carcinoma (Fujimoto et al., 2016; Schulze 

et al., 2015). Furthermore, our analysis does not demonstrate significant reduction of cis 
gene expression of the corresponding transcript in mutant tumors compared to wild type. 

Though alterations in cancer cell gene expression could be masked in these samples through 

sample contamination with non-neoplastic epithelium expressing high transcript quantities, 

the above observations argue against a simple loss-of-function role for these indel mutations.

If these mutations drive cancer through a dominant oncogenic effect, they would likely affect 

the epigenetic or transcriptional state of cancer cells, including splicing, methylation, 

noncoding RNA expression, or distribution of chromatin marks. Though our analyses do not 

demonstrate any mutation-associated cis changes in transcription, exon splicing, or 

methylation, across the various tumor types that harbor such hotspots (LUAD, LIHC, 

THCA, STAD) (with the exception of a cis reduction of ALB methylation levels in the 

setting of ALB indels) (Figure S2, Figure S5), we observe statistically significant changes of 

gene expression in trans at the pathway level. In lung adenocarcinoma, the signal strength of 

pathway level gene expression changes with SFTP gene mutations is comparable to those 

obtained from an identical gene set analysis comparing TP53 mutant and wild type samples. 

While the TP53 gene set analysis reveals pathways involved in TP53 biology (cell cycle 

progression, DNA replication), trans expression changes associated with SFTP noncoding 

mutants point to pathways involved in 3′ UTR RNA processing and protein synthesis. It is 

unclear how 3′ UTR mutations that appear to be transcriptionally inert in cis might globally 

upregulate RNA processing and protein synthesis in trans, though detailed transcriptomic 

and proteomic comparisons of mutant and wild type isogenic cell lines may shed light into 

possible mechanisms. One possibility is that these pathway changes are not causally tied to 

the associated genetic lesions, but rather tag a particular evolutionary trajectory in 

tumorigenesis which is reflected in the transcriptional signature. However, we do not 

observe a significant association of SFTP mutations with any known lung adenocarcinoma 

driver, which one would expect to be linked to a reproducible evolutionary path. Functional 

characterization of the phenotypic impact of these noncoding mutations through transgene 

over-expression or genome editing in controlled cellular or animal models of cancer will be 

necessary to evaluate their potential as bona fide cancer drivers. Additional proteomic 

profiling of genotyped tumor samples and cell lines will determine whether these mutations 

exert their effects by altering translation in cis (e.g. whether SFTPB 3′ UTR mutations alter 

SFTPB translation without perturbing gene expression or splicing).

If the observed indel patterns are not the result of selection, they may constitute a previously 

uncharacterized transcription-associated somatic mutation phenomenon. The relationship 

between transcription and mutation has been studied extensively in yeast (Jinks-Robertson 

and Bhagwat, 2014), and recently explored in human cancer genome studies (Chapman et 

al., 2011; Haradhvala et al., 2016; Lawrence et al., 2013; Pleasance et al., 2009a; 2009b). 
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The indel patterns reported in this study do not readily fall under previously described 

phenomena such as transcription coupled repair (which results in reduced mutation density 

in highly expressed genes) or transcriptionally coupled damage (which is associated with 

A→G SNV in hepatocellular cancer) (Haradhvala et al., 2016). They also cannot be readily 

explained by mismatch repair deficiency or microsatellite instability (Kim et al., 2013; 

Supek and Lehner, 2015; Zhao et al., 2014), as they do not cluster in hyper-mutator patients, 

are not enriched in microsatellite contexts, and arise in focal genomic regions rather than 

affecting genome-wide mutation distributions. Furthermore, they do not exhibit signatures of 

transcription-associated mutagenesis (TAM) or transcription-associated recombination 

(TAR), which have been characterized in yeast and E. coli and proposed as a source of 

genome instability in human cancer (Kim and Jinks-Robertson, 2012). While somatic indels 

in lineage genes are enriched in genes that are transcribed in a head-on orientation relative to 

the direction of replication (Figure S7E), this correlation appears to account for a minority of 

the expression native enrichment that is associated with the key indel hotspots that we have 

nominated in liver, lung, gastric, and thyroid cancer.

The indel hotspots described in this study target a special class of loci, encoding protein 

products that are manufactured in large quantities by a single cell type within a specific 

organ. Moreover, the secretion of these lineage-defining proteins is a primary function of 

that cell type and vital to healthy organ and systems physiology. For example, SFTPB, 

SFTPA1, and SFTPC proteins are secreted from type II alveolar cells to coat 300 million 

microscopic air-spaces in the human lung, allowing alveoli to efficiently inflate and 

preventing pulmonary collapse (Andreeva et al., 2007). Albumin, the product of the ALB 
gene, comprises more than half of the blood plasma protein mass and is responsible for the 

oncotic pressure that maintains intravascular volume (Farrugia, 2010). Thyroglobulin, the 

product of the TG gene, comprises over half of the mass of the thyroid gland, where it is 

used to synthesize thyroid hormone (Boron and Boulpaep, 2008). Gastric lipase, the product 

of the LIPF gene, catalyzes the majority of lipid hydrolysis in the stomach (Roussel et al., 

1999).

Further sequencing and analysis will reveal what additional tumor types are affected by the 

mutational phenomenon described in this study, and whether it is a hallmark of carcinomas 

arising from secretory epithelial cell types or a more general phenomenon. Our results build 

upon recently discovered links between epigenetic features of normal tissues and tumor-

specific mutation patterns (Polak et al., 2015). However, in contrast to the broad megabase-

level correlations that Polak and colleagues observed between tissue-specific epigenetic 

patterns and local somatic SNV densities in cancer, our data demonstrate a much more focal 

pattern of tissue specificity for indel mutations. Though the mutation patterns observed in 

our whole genome sequencing analyses (results not shown) do not suggest that these lesions 

are subclonal or present in normal-adjacent tissues, deep sequencing of normal, pre-

malignant, and malignant epithelium will be needed to examine the precise timing of these 

mutations in tumor evolution.

The clinical implications of recurrent indel mutations in lineage-specific genes across 

multiple cancer types remain to be fully elucidated. Reproducible links between the 

transcriptional or epigenetic state of a healthy cell and the mutational state of a tumor may 
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be diagnostically useful in cases where a poorly differentiated cancer has drifted 

phenotypically from its cell or tissue-of-origin, including but not limited to the diagnostic 

dilemma of carcinoma of unknown primary origin. Analysis of lineage-specific indel 

patterns may also illuminate the study of field cancerization through deep sequencing of 

tumor-adjacent tissues. Finally, the tissue and cancer selectivity of lineage-specific indel 

mutations could be exploited in the future for early cancer detection or for circulating tumor 

DNA monitoring.

STAR*METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Human reference genome hg19 Genome Reference Consortium http://hgdownload.cse.ucsc.edu/goldenpath/hg19/chromosomes/

GENCODE v19 (Harrow et al., 2012) https://www.gencodegenes.org/releases/19.html#

Whole genome and RNA-
sequencing .bam or .fastq files for 
STAD, LUAD, LUSC, SKCM, 
THCA, BLCA, BRCA, GBM, 
HNSC, LIHC, KIRC, and LGG 
projects, whole exome 
sequencing .bam files for LUAD 
project

The Cancer Genome Atlas 
(TCGA)

phs000178.v1.p1

TCGA Level 3 gene expression, 
splicing, methylation, clinical, and 
miRNA profiles for STAD, LUSC, 
SKCM, THCA, BLCA, BRCA, 
GBM, HNSC, LIHC, KIRC, and 
LGG samples

Firehose Broad Institute TCGA 
GDAC

http://gdac.broadinstitute.org

Lung adenocarcinoma whole 
genome sequencing .bam files

(Imielinski et al., 2012) phs000488.v1.p1

Prostate adenocarcinoma whole 
genome sequencing .bam files

(Baca et al., 2013) phs000447.v1.p1

Metastatic melanoma whole 
genome sequencing .bam files

(Berger et al., 2012) phs000452.v1.p1

ENCODE ChIP-Seq, DNaseI seq, 
and TFBS profiles

(ENCODE Project 
Consortium, 2012)

http://www.genome.gov/ENCODE/

Epigenomics Roadmap ChIP-Seq, 
ChromHMM, DNaseI 
hypersensitivity, and TFBS 
profiles

(Roadmap Epigenomics 
Consortium et al., 2015)

http://egg2.wustl.edu/roadmap/web_portal/

Genome-Tissue Expression project (Melé et al., 2015) http://www.gtexportal.org

Molecular signatures database: 
Canonical Pathways gene sets

Broad Institute http://software.broadinstitute.org/gsea/msigdb/genesets.jsp?collection=CP

TAD boundary annotations (Jin et al., 2013) GSE43070

Loop domain annotations (Rao et al., 2014) GSE63525

Alternate polyadenylation sites (You et al., 2015) http://genome.bucm.edu.cn/utr/

Replication direction annotation (Haradhvala et al., 2016) http://www.broadinstitute.org/cancer/cga/AsymTools

Replication timing annotation (Koren et al., 2012) http://mccarrolllab.com/wp-content/uploads/2015/03/Koren-et-al-Table-S2.zip

Software and Algorithms

BWA v0.5.9 (Li and Durbin, 2009) http://bio-bwa.sourceforge.net
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REAGENT or RESOURCE SOURCE IDENTIFIER

Picard v1.8 Broad Institute https://broadinstitute.github.io/picard/

GATK v3.1 Broad Institute https://software.broadinstitute.org/gatk/

Strelka v2.0 (Saunders et al., 2012) https://sites.google.com/site/strelkasomaticvariantcaller/home

R 3.3 (data.table, stats, MASS) The R Project https://www.r-project.org/

Bioconductor 3.4 
(GenomicRanges, Rsamtools, 
Biostrings, limma)

Bioconductor https://www.bioconductor.org/

TITAN (Ha et al., 2014) http://compbio.bccrc.ca/software/titan/

fish.hook Imielinski lab https://github.com/mskilab/fish.hook

skitools Imielinski lab https://github.com/mskilab/skitools

gUtils Imielinski lab https://github.com/mskilab/gUtils

gTrack Imielinski lab https://github.com/mskilab/gTrack

MuTrix Imielinski lab https://github.com/mskilab/MuTrix

MEME suite v4.7 (Bailey et al., 2009) http://meme-suite.org/tools/dreme

Other

Universal mask for whole genome 
sequencing variant calling

Heng Li, personal 
communication

https://github.com/lh3/sgdp-fermi/releases/download/v1/sgdp-263-hs37d5.tgz

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact: Matthew Meyerson (matthew_meyerson@dfci.harvard.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Subjects—Cancer genome sequence data were generated through informed 

consent as part of previously published sequencing studies and analyzed in accordance with 

each original studies’ data use guidelines and restrictions. Data are available via dbGAP 

controlled access (http://view.ncbi.nlm.nih.gov/dbgap-controlled, accession numbers: 

phs000488.v1.p1, phs000447.v1.p1, phs000452.v1.p1, phs000178.v1.p1).

Gender and age characteristics of study participants were as follows: Prostate 

adenocarcinoma from (Baca et al., 2013) (31 cases, 100% male, median age 62 years [range 

46–73]); Cutaneous melanomas from (Berger et al., 2012) (25 cases, 68% male, median age 

49.5 years [range 25–77]); Lung adenocarcinoma from (Imielinski et al., 2012) (29 cases, 

72.4% male, median age 64 years [range 43–83]); Bladder cancers from (TCGA Network, 

2014d) (23 cases, 65.2% male, median age 65 years [range 34–84]); Breast carcinoma from 

(TCGA Network, 2012a) (95 cases, 1.1% male, median age 58 years [range 30–89]); 

Glioblastoma from (Verhaak et al., 2013) (27 cases, 63% male, median age 60 years [range 

21–76]); Head and neck squamous from (TCGA Network, 2015a) (16 cases, 81.2% male, 

median age 53 years [range 29–75]); Kidney chromophobe from (TCGA Network, 2013) (5 

cases, 60% male, median age 62 years [range 51–77]); Low grade glioma from (Ceccarelli et 

al., 2016) (19 cases, 42.1% male, median age 39 years [range 17–62]); Hepatocellular 

carcinoma from TCGA (54 cases, 55.6% male, median age 65.5 years [range 23–84]); Lung 

adenocarcinoma from (TCGA Network, 2014a) (50 cases, 48% male, median age 66 years 
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[range 41–82]); Lung squamous cell from (TCGA Network, 2012b) (50 cases, 76% male, 

median age 68 years [range 47–83]); Prostate adenocarcinoma from (TCGA Network, 

2015b) (20 cases, 100% male, median age 60 years [range 46–73]); Cutaneous melanoma 

from (TCGA Network, 2015c) (33 cases, 78.8% male, median age 52 years [range 25–81]); 

Gastric adenocarcinoma from (TCGA Network, 2014b) (40 cases, 65% male, median age 70 

years [range 39–90]); Thyroid carcinoma from (TCGA Network, 2014c) (49 cases, 22.4% 

male, median age 49 years [range 17–85]).

METHOD DETAILS

Sequence data and processing—We obtained WGS reads for 50 TCGA lung 

adenocarcinoma (LUAD), 50 lung squamous cancer (LUSC), 33 cutaneous melanoma 

(SKCM), 49 papillary thyroid carcinoma (THCA), 23 bladder cancers (BLCA), 95 breast 

cancer (BRCA), 27 glioblastoma (GBM), 16 head and neck squamous (HNSC), 54 

hepatocellular carcinomas (LIHC), 5 kidney cancer chromophobe (KIRC), 19 low-grade 

glioma (LGG), 40 gastric cancers (STAD), and 20 prostate cancer (PRAD) tumor-normal 

pairs via dbGAP access phs000178.v1.p1 (TCGA Network, 2012a; 2012b; 2013; 2014a; 

2014b; 2014c; 2014d; 2015b; 2015c). We also obtained WGS reads for 29 lung 

adenocarcinoma cases from Imielinski et al. (dbGAP phs000488.v1.p1) (Imielinski et al., 

2012), 31 prostatic adenocarcinoma cases from Baca et al. (dbGAP phs000447.v1.p1) (Baca 

et al., 2013), and 25 metastatic melanoma cases from Berger et al. (dbGAP 

phs000452.v1.p1) (Berger et al., 2012). Paired-end read data were aligned to hg19 using 

BWA aln and sampe v0.5.9 (http://bio-bwa.sourceforge.net/) (Li and Durbin, 2009) We used 

Picard v1.8 (https://broadinstitute.github.io/picard/) and Genome Analysis Toolkit v3.1 

(https://software.broadinstitute.org/gatk/) for downstream duplicate marking, base quality 

score recalibration, and local realignment around indels in tumor and normal. We called 

somatic SNVs and indels using Strelka v2.0.13 (Saunders et al., 2012).

Whole genome somatic variants were filtered against a “universal mask” (Heng Li, personal 

communication) implementing the principles outlined in (Li, 2014). This mask specifies 

genomic regions that are likely to harbor recurrent artefactual variant calls. The mask is 

available as a gzipped bed file at https://github.com/lh3/sgdp-fermi/releases/download/v1/

sgdp-263-hs37d5.tgz, was created using a script detailed in https://gist.github.com/

lh3/9d6dcfc3436a735ef197. Briefly, this script filters regions that have either (1) low 

mappability, (2) low complexity, or (3) are enriched in aberrant SNP calls in the 1000 

genomes project (http://www.1000genomes.org/). Low mappability hg19 regions were 

defined from genomic positions for which 37 or fewer of all possible 75-mers intersecting 

that position cannot be mapped elsewhere in the genome with at most one mismatch or gap. 

Low complexity hg19 regions were defined by running the mdust program (https://

github.com/lh3/mdust), UCSC RepeatMasker (http/.genome.ucsc.edu), and homopolymers 

that span 7 or more bases. SNP-enriched regions corresponding to regions of likely hg19 

misassembly were chosen as clusters of pre-filtered 1000 Genomes Project SNP calls that 

harbored excess heterozygosity. All instances of “eligible territory width” in the manuscript 

are made with reference to the intersection of this interval mask with a particular genomic 

region (e.g. gene, 10 Kbp tile)
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Genome-wide noncoding mutational scan—To identify regions of the genome under 

positive somatic mutational selection in lung cancer, we analyzed whole genome sequencing 

reads from 79 lung adenocarcinoma tumor-normal pairs (Imielinski et al., 2012; TCGA 

Network, 2014a) aligned to hg19 by BWA (Li and Durbin, 2009), with mean tumor coverage 

of 54.9 fold (range 41–86) and mean normal coverage of 39.8 fold (range 23–49). These 

samples were drawn from predominantly early stage and treatment naïve surgical resection 

cases. We generated variant calls using the Strelka (Saunders et al., 2012) algorithm filtered 

by a genomic interval mask (Heng Li, personal communication, see above), yielding 4.65 

million somatic single nucleotide variants (SNV) and 36,333 somatic insertion/deletion 

(indel) variants, corresponding to a mean SNV density of 14.3 per Mbp (range 0.13–99) and 

mean indel density of 0.09 per Mbp (range 0.0008–0.41) across 2.429 Gbp of eligible 

territory. Masked regions (666 Mbp) corresponded to regions of low-complexity, low-

mappability, and misassembled sequence on hg19, implementing the principles described in 

(Li, 2014). We tallied mutation calls across the intersection of 6.191 million regularly spaced 

10 Kbp intervals (each overlapping by 9.5 Kbp) and the 2.429 Gbp of eligible territory. We 

used this spacing and interval size as a genome-wide hypothesis set for identifying candidate 

noncoding hotspots in the genome (Figure 1A), with a focus on regulatory elements (e.g. 

enhancers or promoters) which are usually less than 10 Kbp in size and would presumably 

appear as local peaks of mutational density in the analysis. Among the 6.191 million tiles, 

we excluded regions with fewer than 75% eligible bases or greater than 95% quiescent 

chromatin as assessed by ChromHMM (Ernst and Kellis, 2012) analysis of the A549 lung 

adenocarcinoma cell line ENCODE profiles (http://www.genome.gov/ENCODE/), yielding 

a final set of 2.823 million intervals for hypothesis testing (see “Genome-wide modeling of 

neutral mutation density” section below). Among eligible subset of these intervals, we 

computed the values of 8 genomic covariates: GC content, CpG and TpC percentage, 

replication timing, DNaseI hypersensitivity, quiescent and active chromatin in the A549 cell 

line, and the 1 Mbp regional mutational density. The values of covariates were aggregated 

across the covered subsets of the 2.823 million candidate intervals, and fit to observed 

counts by maximum likelihood. Parameter fits for SNV and indel models are shown in Table 

S1C.

GTEx expression analysis—RPKM values were downloaded from the GTEx Portal 

(www.gtexportal.org) for 2917 samples and 30 tissue types (Melé et al., 2015). To identify 

highly expressed genes, we examined the histogram of tissue medians of expression across 

20,345 genes and 2917 GTEx samples spanning 30 normal tissues (Melé et al., 2015) and 

identified an upper mode containing 233 genes with expression above 1000 RPKM (Figure 

S4A). We used complete-linkage clustering with a Euclidean distance metric to cluster 

median tissue gene expression across highly expressed genes across 30 tissue types and 

labeled the three top-most clusters (lineage-specific, multi-lineage, housekeeping) based on 

visual inspection of the dendrogram and heatmap results (Figure S4B). We mapped tumor 

types in our WGS tumor analysis to tissues-of-origin (Table S3A). We mapped gene and 

tumor pairs into expression native and foreign categories if a gene was found to have a 100 

or greater RPKM in the tissue from which that tumor is presumed to arise (e.g. gastric 

cancer and stomach). Examples of highly expressed genes classified as housekeeping 

included those coding for ribosomal proteins (e.g. RPL13), human leukocyte antigen genes 
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(e.g. HLA-B), and metabolic enzymes (e.g. GADPH). Examples of highly expressed multi-

lineage genes include those encoding growth factors (e.g. IGFBP7), apolipoproteins (e.g. 

APOD), and proteoglycans (e.g. BGN). Highly expressed, lineage-specific genes included 

those encoding insulin in the pancreatic islets (e.g. INS), cytochrome P450 in the liver (e.g. 

CYP2E1), and pepsinogen in the stomach (e.g. PGA5).

Epigenomic data provenance—We compiled transcription factor binding sites and 

chromatin marks from reference epigenomes profiled in ENCODE and Epigenetics 

Roadmap data portals (ENCODE Project Consortium, 2012; Roadmap Epigenomics 

Consortium et al., 2015). We also obtained genomic annotations of topologically-associated 

domain (TAD) boundaries (Jin et al., 2013), 3-D loop domains (Rao et al., 2014), and 

alternate polyadenylation sites (You et al., 2015) via web links obtained from the respective 

publications. For ENCODE and Roadmap data, there were multiple profiles per assay (e.g. 

chromatin or transcription factor ChIP-seq) requiring choice of an optimal tissue matched 

reference epigenome. To achieve this, we manually annotated ENCODE and Roadmap 

reference epigenomes and TCGA tumor samples analyzed in our study with respect to a 

matrix of binary histopathological and anatomic features (Table S5A-B). Using this 

annotation, we mapped TCGA tumors to their closest reference epigenomes in ENCODE 

(http://www.mskilab.com/publications/cell2017/ENCODEvsTCGA/index.html) and 

ROADMAP (http://www.mskilab.com/publications/cell2017/ROADMAPvsTCGA/

index.html) on the basis of their Euclidean distance in feature space (Table S5A-B), allowing 

the choice of the closest reference epigenome to be made for each sample in a systematic 

fashion. For other feature types (TAD boundaries, Loop domains, APA), we used a single 

annotation for all analyses. In the case of TAD boundaries, we used IMR90 profiles as the 

reference cell type. For loop domain analyses, we chose features that were found in the 

deeply profiled GM12878 cell type and at least one other lower depth in situ Hi-C profile 

generated by (Rao et al., 2014). For APA data, there was a single track that represented the 

union of all discovered alternate polyadenylation sites.

Cis and trans analyses of expression and methylation—We compared mutant vs. 

wild type gene, exon, microRNA expression using the functions voom, eBayes, lmFit within 

the limma (v3.29) R package in R Bioconductor (https://bioconductor.org/). We compared 

mutant vs. wild type methylation using Wilcoxon test on methylation (Beta) values obtained 

from the Broad GDAC TCGA portal (https://gdac.broadinstitute.org/). We assessed gene set 

enrichments using the CAMERA (Wu and Smyth, 2012) algorithm via “camera” function in 

limma. For gene sets we used the Canonical Pathways components of the MsigDB v5.1 

(http://software.broadinstitute.org/gsea/msigdb/genesets.jsp?collection=CP) comprising 

1330 gene sets. We applied “camera” with inter.gene.cor parameter set to 0.08. Though 0.05 

is the default setting, we found that 0.05 resulted in inflated Q-Q plots when permuting 

sample labels. We chose 0.08 after sweeping parameter values from 0.01 to 0.1 and finding 

0.08 as the setting that, on average, yielded uniform P-value distributions with sample label 

permutations.

Sequence motif analysis—We queried hg19 for sequence context in the vicinity of 

hotspot- and non-hotspot-associated indels. We used the rtracklayer and Biostrings packages 
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in R BioConductor (https://bioconductor.org/) to determine strand-bias, AT-bias, and other 

simple sequence context characteristics. We used the MEME suite (http://meme-suite.org/

tools) to search for de novo motifs that were enriched in the neighborhood of hotspot-

associated indels. Specifically, we used the DREME algorithm (http://meme-suite.org/tools/

dreme) with an E value threshold of 0.05 to search for motifs between 3 and 8 sequences in 

length. We then used Fisher’s Exact Test to determine enrichments of the AATAATD motif 

in subsets of indels (i.e. associated with specific tumor type-specific hotspots).

QUANTIFICATION AND STATISTICAL ANALYSIS

Genome-wide modeling of neutral mutation density—We applied Gamma-Poisson 

regression to predict local heterogeneity in the neutral somatic mutation density using 

sequence, interval, and numeric track covariates in a generalized linear model framework 

(Figure 1A, Figure S1A, Table 1). We chose the Gamma-Poisson distribution as a model of 

over-dispersed count data (Hilbe, 2014). The model was applied to overlapping 10 Kbp tiles 

staggered at 500 bp intervals along the genome, each corresponding to a hypothesis about a 

particular region being a target of somatic selection (or non-background mutation 

processes).

We used 8 genomic covariates to predict the local genomic mutation density. For sequence 

covariates, we used GC, TpC, and CpG fraction as sequence contexts previously associated 

with mutation signatures in lung cancer (Alexandrov et al., 2013; Imielinski et al., 2012; 

Lawrence et al., 2013; Pleasance et al., 2009b). For interval track covariates, we used 

DNaseI hypersensitive sites, quiescent chromatin, and active chromatin in A549 lung cancer 

cell lines. To obtain these tracks, we downloaded A549 DNaseI hypersensitivity data and 

other A549 chromatin marks (H3K27me3, H3K4me1, H3K27ac, H3K4me3, H3K36me3) 

from ENCODE (http://www.genome.gov/ENCODE/). Active and quiescent chromatin 

regions were defined after applying a 15-state ChromHMM model to input chromatin data 

(Ernst and Kellis, 2012). We delineated states with H3K27ac marks as “active” and states 

showing no marks or only H3K27me3 marks as “quiescent”. Numeric covariates comprising 

replication timing data were obtained from Koren et al. (Koren et al., 2014) and 1 Mbp local 

somatic variant density was computed from the data.

The values of all covariates and mutation counts were computed in the “eligible territory” of 

each interval i ∈ {1,…,n} where eligibility was defined via intersection with a publicly 

available whole genome interval mask (see “Sequence Data and Processing” section above). 

Sequence and interval covariate values were computed for each hypothesis i as the fraction 

of the eligible positions in interval i that matched the given sequence feature or intersected 

the interval track. Numeric covariates for each hypothesis i were computed as the mean 

value of the numeric track within the eligible subset of interval i. The mutation count yi was 

computed as the number of samples in the dataset harboring a mutation in the eligible subset 

of interval i. We removed intervals with fewer than 75% eligible bases or greater than 95% 

quiescent chromatin to yield a total of 2.823 million genome-wide hypotheses.

We modeled mutation counts yi in each interval i, given eligible territory width wi and k 

covariate values , j ∈ {1,…,k}, as
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where  is the mean parameter and θ is the shape parameter. The k + 1 

parameters of the model (θ, αj, j ∈ {1,…,k}) were estimated by maximum likelihood using 

the MASS R package (https://cran.r-project.org/package=MASS) on a random 100,000 

subsample of the 2.823 million data matrix rows. Given the ML fit, θ̂, α̂
j ∈ {1,…,k} we then 

computed randomized P-values pi ~Uniporm(ai,bi) for each hypothesis i using the right tail 

masses

and

P-value randomization is a standard approach used to generate uniformly distributed P-

values from discrete null distributions (Dickhaus, 2014). Analyses were performed 

separately for SNVs. and indels. P-values were mapped to FDR values using the Benjamini-

Hochberg procedure in the R stats package. Since significant (FDR<0.1) candidate intervals 

overlapped each other at peak regions, we chose a subset of non-overlapping and maximally 

significant intervals that covered each peak region to comprise the final set of significant 

loci. Q-Q plots and associated λ “genomic inflation” values were computed by −log10 

transforming observed quantiles of P values and expected quantiles of the uniform 

distribution, then fitting a line y = λx through the transformed points. The modeling 

framework (including covariate calculations, model fitting, and Q-Q plot computation) is 

provided as an R package (fish.hook, https://github.com/mskilab/fish.hook).

Lineage-context analyses of indel and SNV density—We compared indel and SNV 

densities across variants in classes (lineage-specific, multi-lineage, and housekeeping) of 

233 highly expressed genes in expression native and foreign tumor sample contexts using 

Gamma-Poisson regression to model mutation counts. We used regression to correct for 

sample-specific differences in mutation density, which may occur when comparing across 

tumor types.

For expression native vs. expression foreign comparisons (Figure 4), we chose a gene class 

(e.g. multi-lineage genes) to analyze and modeled mutation counts in expression native (yi,1) 

and expression foreign (yi,0) genomic territories associated with that gene class across all 

tumor samples i ∈ {1,…n}
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where c ∈ {0,1} is a binary indicator variable denoting expression native (1) or expression 

foreign (0) status, wi,c is the eligible width for expression native vs. foreign class c in sample 

i, and γi is the mean (per Mbp) variant density in sample i. We inferred model parameters 

(α,β,θ) and 95% confidence intervals for expression native vs. foreign enrichment (lnβ) 

through maximum likelihood estimation and obtained two-tailed P-values using the Wald 

test. We applied this test for all three territory classes (lineage-specific, multi-lineage, and 

housekeeping). We also applied this analysis to individual tumor types to compare indel 

densities between expression native and foreign lineage-specific territories and obtain tumor 

type-specific P-values and effect sizes. The latter analyses could only be performed in tumor 

types that were assigned at least one expression native, lineage-specific territory in the 

upstream GTEx analysis (Table S3A). This comprised 11 of the 12 non-LUAD tumor types 

analyzed in this study (all with the exception of bladder cancer).

We employed a related analysis (Figure 4) to compare mutation densities in pairs of gene 

classes within the expression native tumor context. Namely, for a given pair of gene classes 

(e.g. housekeeping vs. multi-lineage), we modeled mutation counts in the first class (yi,0) 

and second class (yi,1) across all tumor samples i ∈ {1,…,n} as above except c ∈ {0,1} 

indicates geneclass status in the given pair, wi,c is the eligible width for the expression native 

subset of gene class c in sample i, and eβ represents class 1 vs. class 0 enrichment as a 

relative risk.

To identify genes that were differentially mutated in expression native vs. foreign context 

(Figure 5) we applied logistic regression on (dichotomous) mutation status in each sample i 
as a function of average per-sample mutation density ri. Specifically, we modeled mutation 

status yi,g in sample i and gene g with expression native/foreign status ci,g as

computing adjusted odds-ratios eβ and associated 95% confidence intervals by maximum 

likelihood and computing P-values using the Wald test using the “stats” package in R for 

each gene g separately. Only genes that were mutated in three or more cases were included 

in this analysis.

Epigenomic feature enrichment analysis—We used Gamma-Poisson regression to 

assess significant enrichment or depletion of indel density in epigenomic peak regions 

associated with three groups (hotspot genes, other highly expressed genes, 1000 randomly 

selected genes) in liver, lung, thyroid, and gastric cancer (Figure 6). For a given assay with 

peak regions (e.g. ChIP-Seq peaks, APA sites) and a given window (0, 100, 1000, 10,000 

bp) around them we computed the intersection of genes in a given class with (padded) peak 

regions. We modeled indel counts in groups of peak vs. non-peak regions across samples as 

a function of eligible territory, using peak × group interaction terms (γ1, γ2) to capture 
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significant enrichment/depletion of peak-associated indels in hotspot regions vs. other 

territory classes. The model is represented by the following equation:

for all i ∈ {1,…,n} samples, p ∈ {0,1} peak vs. non-peak regions, and g ∈ {0,1,2} groups 

(where the values of g indicate hotspot (2) vs. other highly expressed (1) vs. background 

genes (0)). wi,p,g is eligible territory width for sample i in territory group g with peak status 

p, ri is the mean (per Mbp) variant density in sample i. The term Ix(g) is an indicator 

function which is 1 when g = x and 0 otherwise. We inferred model parameters 

(α,β0,β1,β2,γ1,γ2,θ) through maximum likelihood estimation and obtained two-tailed P-

values using the Wald test. We applied the above model to 440 assay × window 

combinations, and compiled effect sizes and P-values for the γ2 term representing the 

interaction between group 2 and peak status. We applied Bonferroni multiple hypothesis 

correction for 440 hypotheses and applied a corrected P-value threshold of Pcorrected <0.05 to 

assess significance.

Replication direction analysis—We obtained annotations of replication direction from 

(Haradhvala et al., 2016) and crossed with the GENCODE v19 gene annotation of highly 

expressed genes to label genes as either “head-on” or “co-directional” with respect to their 

transcriptional strand and replication orientation. We excluded ~2 Gbp of genomic territory 

that were given an indeterminate replication direction. In each sample, we then subdivided 

expression native and foreign territories with respect to their head-on vs. co-directional 

status. We then applied Gamma-Poisson regression to model expression native mutation 

counts yi,c,d as a function of expression native status c ∈ {0,1} and head-on replication-

transcription orientation d ∈ {0,1} across samples i ∈ {1,…,n}

where wi,c,d is the eligible territory width in sample i for territory with expression native 

status c with and replication-transcription orientation d, ri is the mean (per Mbp) variant 

density in sample i. We inferred model parameters (α,β,γδ,θ) and 95% confidence intervals 

for the relative risk (ln δ) corresponding to the interaction term between expression native 

status and replication-transcription orientation using maximum likelihood estimation and a 

two-tailed P-value via the Wald test.

DATA AND SOFTWARE AVAILABILITY

Custom software tools developed for this study are available as open source R packages. 

These include fish.hook (https://github.com/mskilab/fish.hook), an R package for applying 

Gamma-Poisson regression to nominate genome-wide hotspots of mutation density and 

examine differential enrichment in mutation density across classes of genomic intervals, 

while taking into account covariates and eligibility. Additional tools comprise custom 

packages for manipulating genomic intervals (gUtils, https://github.com/mskilab/gUtils) and 
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visualizing complex genomic tracks (gTrack, https://github.com/mskilab/gTrack). Additional 

violin plots, gene set visualizations of CAMERA results, and mutation matrices were 

generated using custom functions in skitools (https://github.com/mskilab/skitools) and 

muTrix (https://github.com/mskilab/muTrix).

ADDITIONAL RESOURCES

Links to multi-track visualizations of statistical signals near top mutation hotspots and 

alignment data supporting key mutational events are provided at www.mskilab.com/

publications/cell2017. Links to these images can also be found among the corresponding 

supplementary tables in the paper.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) Schematic of the Gamma-Poisson regression model used to model genomic variation in 

mutation density and identify noncoding somatic mutation hotspots in lung adenocarcinoma. 

The model is applied to n overlapping intervals representing a genome-wide hypothesis set 

by identifying a combination of k genomic covariate weights αj,j ∈ {1,…,k} and shape 

parameter θ that is most likely to fit the observed mutation count data yi, i ∈ {1,…,n} and 

the k covariate values cj, j ∈ {1,…,k}. P-values are computed by identifying the probability 

of observing a mutation count greater than or equal to the observed mutation count yi under 

the Gamma-Poisson distribution given the expected value μi and shape parameter θ. The 

model was fit using k = 8 covariates (STAR*Methods, see Figure S1 for more detailed 

schematic). (B) Quantile-quantile plots showing P-values for SNV and (C) indel densities 

across 79 lung adenocarcinoma WGS cases. In these plots, λ refers to the slope of the y = 

λx line fitting observed −log10 quantiles of observed P values and the uniform distribution.

Imielinski et al. Page 26

Cell. Author manuscript; available in PMC 2018 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
(A) Genomic track plot of SNV and mutation hotspots identified in a whole genome scan of 

lung adenocarcinoma in the vicinity of MIR21. Tracks represent RNA-seq and chromatin 

data from ENCODE for lung adenocarcinoma cell line A549 (B) Violin plots show mutant 

vs. wild type expression data for three genes in the vicinity of the nominated mutation 

hotspot (MIR21, TUBD1, VMP1).
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Figure 3. 
Lollipop plots demonstrating the genomic distribution of mutations in (A) SFTPB, (B) 

SFTPA1, and (C) SFTPC at two scales of resolution. Gray rectangles shown above the 

lollipops indicate top peak regions in the significance analysis. Model fits and significance 

plots are shown in Figure S1B and Table S1C. (D) Expression values from 2917 normal 

human tissue samples from the GTEx database for SFTPA1, SFTPB, and SFTPC. Tissue 

types on x-axis are abbreviated as follows: Adipose Tissue (AD), Adrenal Gland (AG), 

Bladder (BD), Blood (BL), Brain (BR), Breast (BS), Blood Vessel (BV), Cervix Uteri (CE), 

Colon (CO), Esophagus (ES), Fallopian Tube (FT), Heart (HA), Kidney (KI), Liver (LI), 

Lung (LU), Muscle (MU), Nerve (NE), Ovary (OV), Pancreas (PA), Pituitary (PI), Prostate 

(PR), Salivary Gland (SA), Skin (SK), Small Intestine (SM), Spleen (SP), Stomach (ST), 

Testis (TE), Thyroid (TH), Uterus (UT), and Vagina (VA). (E) Histograms of mutation 

frequencies of SFTPA1, SFTPB, and SFTPC somatic indels in lung adenocarcinoma and 12 

other tumor types comprising 487 WGS sequenced tumor-normal pairs.
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Figure 4. 
Schematic of analysis of mutation density and lineage-context across highly expressed genes 

and tumors from multiple tissue types. 233 highly expressed genes were identified from 

analysis of GTEx (Melé et al., 2015) and clustered into housekeeping (HK), multi-lineage 

(ML), and lineage-specific (LS) categories (see STAR*Methods and Figure S4A–B, Table 

S3A for details). Mutation densities were then compared in tumors where a given gene 

territory was expression native (EN) or foreign (EF), on the basis of that tumor’s tissue-of-

origin (Table S3A). (B) Violin plots comparing indel and (C) SNV densities in LS/ML/HK 

gene territories in tumor types in EN and EF tumor contexts across 487 WGS-sequenced 

cases across 12 (non-lung adenocarcinoma) cancer types. P-values (Wald test, see 

STAR*Methods) above the plot represent pairwise EN comparisons, while P-values in the 

middle represent EN vs. EF comparisons within a single LS, ML, or HK territory class.
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Figure 5. 
Lollipop plots demonstrating the genomic distribution of (A) ALB (B) TG and (C) LIPF 
hotspot somatic indels within and outside of their expression native context (hepatocellular 

carcinoma, thyroid cancer, and gastric cancer, respectively). (D) Expression values from 

2917 normal human tissue samples and 30 tissues for ALB (albumin), TG (thyroglobulin), 

and LIPF (gastric lipase) obtained from GTEx. See Figure 3 legend for tissue type 

abbreviations.
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Figure 6. 
Topographic feature enrichment analysis. (A) Volcano plot demonstrating top enriched and 

depleted topographic features, including chromatin marks, transcription factor binding sites, 

and loop domain annotations. Indel densities in peak-associated regions (within 0, 100 bp, 1 

Kbp, 10 Kbp of a peak) were evaluated using Gamma-Poisson regression at hotspot genes 

vs. other highly expressed genes and a panel of 1000 randomly chosen genes. (B) Matrix 

demonstrating mutational support for significantly enriched features stratified by tumor type 

and window distance. (C) Violin plots demonstrating supporting data for two of the most 

significantly enriched features in the Epigenomics Roadmap dataset. The interaction P-value 

(Wald test) is shown at the top, and additional P-values associated with individual pairwise 

comparisons are indicated using rectangular connectors. (D) Genomic track plots 

demonstrating peaks (red ranges) and high-resolution (−log10 P value of ChIP-Seq 

enrichment) signals for H3K27Ac and H3K36me3 near select mutational hotspots in lung, 

liver, thyroid, and gastric cancer. See STAR*Methods for analytic details.
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Figure 7. 
(A) Logo of AATAATD motif (and its reverse complement HATTATT) significantly 

enriched in the sequence neighborhood of 107 lineage-specific hotspot indels (associated 

with LIPF, TG, or SFTP loci) relative to 355 somatic indels associated with other highly 

expressed genes. E-value calculated using DREME (http://meme-suite.org/tools/dreme). “D” 

and “H” are IUPAC ambiguity codes describing “A, G, T, not C” and “A, C, T, not G”, 

respectively. (B) Fraction of indel events harboring the AATAATD motif in their sequence 

neighborhood stratified by tumor type. (C) 50-base sequence context around 36 of 107 

lineage-specific hotspot indels that harbor the AATAATD motif in their sequence 

neighborhood, with sequences oriented to the (+) transcript strand of the associated gene. 

The motifs are color coded with respect to strand. The site of the indel lesion is located in 

the middle of each sequence.
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