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Comparison of different genetic distances to test isolation
by distance between populations

M Séré1,2,3, S Thévenon2,3, AMG Belem4 and T De Meeûs2,3

Studying isolation by distance can provide useful demographic information. To analyze isolation by distance from molecular data,
one can use some kind of genetic distance or coalescent simulations. Molecular markers can often display technical caveats,
such as PCR-based amplification failures (null alleles, allelic dropouts). These problems can alter population parameter
inferences that can be extracted from molecular data. In this simulation study, we analyze the behavior of different genetic
distances in Island (null hypothesis) and stepping stone models displaying varying neighborhood sizes. Impact of null alleles of
increasing frequency is also studied. In stepping stone models without null alleles, the best statistic to detect isolation by
distance in most situations is the chord distance DCSE. Nevertheless, for markers with genetic diversities HSo0.4–0.5, all
statistics tend to display the same statistical power. Marginal sub-populations behave as smaller neighborhoods. Metapopulations
composed of small sub-population numbers thus display smaller neighborhood sizes. When null alleles are introduced, the power
of detection of isolation by distance is significantly reduced and DCSE remains the most powerful genetic distance. We also show
that the proportion of null allelic states interact with the slope of the regression of FST/(1− FST) as a function of geographic
distance. This can have important consequences on inferences that can be made from such data. Nevertheless, Chapuis and
Estoup’s FreeNA correction for null alleles provides very good results in most situations. We finally use our conclusions for
reanalyzing and reinterpreting some published data sets.
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INTRODUCTION

The ecology of natural populations can conveniently be assessed
through the study of spatio-temporal genetic variations of molecular
markers with population genetics tools. This is particularly useful for
organisms such as parasites and vectors that are difficult to observe
directly even with mark–release–recapture methods. Indirect methods
offer the possibility to access to rare and past events (Slatkin, 1987),
reproductive modes and/or strategies, dispersal, population sizes and
pattern of population subdivision (De Meeûs et al., 2007).
Different patterns of population subdivision can occur. The most

frequent one probably corresponds to situations where geographic
distance is the main factor limiting gene flow and thus allowing local
genetic differentiation. This was called isolation by distance by Wright
who derived the first model (Wright, 1943). Since then, different
patterns of isolations by distance were proposed from the discontin-
uous stepping stone models, where migration mainly occurs between
adjacent populations, to continuous models with different dispersal
functions (see (Guillot et al., 2009) and references therein). Empirical
studies of isolation by distance generally aim at determining the
strength and significance of the relationship between an estimator of
subdivision (for example, a genetic distance) and geographic distance
between subsamples or individuals. This is typically undertaken with
two distance matrices of each kind between which a correlation

coefficient is computed. The significant departure from 0 of this
coefficient is then tested through a randomization procedure, the
Mantel test, because the existing autocorrelation that links the different
cells in each matrix prevents using parametric methods (De Meeûs
et al., 2007). The rows and columns of one matrix are randomized a
great number of times and the P-value of the test is the proportion of
times a correlation as big as or bigger than the one observed between
the true matrices was obtained during these randomizations.
Several parameters and their estimators exist to measure genetic

relationship between different subsamples. Among those, Rousset’s θ/
(1− θ) (Rousset, 1997) (FST*), where θ is Weir and Cockerham’s
(Weir and Cockerham, 1984) unbiased estimator of Wright’s FST
(Wright, 1965) or its equivalent between individuals (Watts et al.,
2007), was shown to be linearly related to geographic distances (one-
dimension frameworks) or to its log transform (two dimensions) with
a slope that is inversely proportional to demographic parameters
(effective population density and dispersal). FST is not a genetic
distance in the strict sense. It is more a relative inbreeding of
subsamples as compared with inbreeding in the total sample. It is
thus a direct measure of inbreeding due to subdivision and hence is
often considered as a measure of differentiation between subsamples.
Nevertheless, θ is known to display undesirable behavior as a distance
(Kalinowski, 2002) and is especially unstable (large variance) when
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measured between population pairs (Balloux and Goudet, 2002).
These problems led to several authors advising the use of other genetic
distances such as the chord distance (Cavalli-Sforza and Edwards,
1967) (DCSE), which provides more reliable relative measures for tree
construction (Takezaki and Nei, 1996; Kalinowski, 2002) or the shared
alleles distance (DSA) (Bowcock et al., 1994), which can be preferred in
some cases (De Meeûs et al., 2010) but without a formal demonstra-
tion of the statistical superiority of these distances.
Another difficulty arises when PCR-based amplification failures

affect the genotyping of individuals at some loci (for example, null
alleles, allelic dropouts). Null alleles lead to underestimation of genetic
diversity and overestimation of population differentiation (Chapuis
and Estoup, 2007) and to confusions about reproductive strategy
inferences (Séré et al., 2014).
Finding methods that are the most powerful at detecting isolation

by distance and the least affected by null alleles thus represents an
interesting goal.
In this paper, we propose a simulation approach in order to

compare the respective performances of three genetic distances, FST*
(using θ and other related FST estimators), DCSE and DSA, in terms of
statistical power for detecting isolation by distance and of robustness
to the presence of null alleles. We then use the distance that displays
the best performances to reanalyze real population genetics data sets
and check how the initial interpretations are affected.

METHODS

Simulations
Simulations were undertaken with EASYPOP version 2.0.1 (Balloux, 2001). We
simulated 25, 36, 49 and 64 sub-populations of N= 200 dioecious individuals
with even sex ratio, random mating and discrete generations. We studied
genetic information at 20 loci following a KAM model of mutation (each
mutation event changes an allele into one of the K− 1 remaining allelic states)
with a mutation rate of u= 10− 4 and K= 99. Each simulation started with all
alleles present with balanced frequencies in all sub-populations (maximum
diversity) and stopped after 10 000 generations (if not specified otherwise),
which was considered enough for reaching mutation-drift equilibrium. Two
different models of subdivided populations were explored. Island models (see
De Meeûs et al., 2007), where no spatial structure is defined, provided the
material for the null hypothesis (no isolation by distance). Two-dimension
stepping stone models (see De Meeûs et al., 2007) allowed the evaluation of the
performance of the different genetic distances in case of more or less
pronounced isolation by distance (alternative hypothesis), without null alleles
or with increasing frequencies of those. Three migration rates (m) were used
(0.01, 0.2 and 0.5). In Island models, only m= 0.01 and m= 0.5 were used with
100 replicates for each. For stepping stone simulations, 60 replicates were used
(except if specified otherwise). For simulations with 49 and 64 sub-populations,
only m= 0.5 was used. For 25 sub-populations with m= 0.5, for which less
significant tests were expected, we undertook 80 replicates. For each replicate,
10 sub-populations with 20 individuals (10 females and 10 males) were
sampled. We minimized edge effects by choosing sub-populations with four
neighbors, except in the 25 sub-populations case were one sub-population had
three neighbors. Coordinates of chosen sub-populations were (row, column):
(2,1) (3 neighbors), (2,2), (2,3), (2,4), (3,2), (3,3), (3,4), (4,2), (4,3), (4,4) for 25
sub-populations simulations; (2,2), (2,3), (2,4), (2,5), (3,2), (3,3), (3,4), (3,5),
(4,2), (4,3) for 36 sub-populations; (2,2), (2,3), (2,4), (2,5), (2,6), (3,2), (3,3),
(3,4), (3,5), (3,6) for 49 sub-populations; and (2,2), (2,3), (2,4), (2,5), (2,6),
(2,7), (3,2), (3,3), (3,4), (3,5) for 64 sub-populations. A supplementary 20
replicates set was undertaken with 121 and 400 sub-populations in two-
dimension stepping stones to check for the effects of edges and mean number
of neighbors per sub-population on slope estimate and its variance. With n sub-
populations, the mean number of neighbors for each sub-population is
Nbn ¼ 4 1� 1=

ffiffiffi

n
pð Þ. With 400 sub-populations, the mean number of

neighbors (3.8) is then reasonably close to the one in a torus (4) and hence
the effect of marginal sub-populations becomes more discrete. For n= 400, two

sample sets were analyzed: central set with sub-populations at coordinates (9,8),
(9,9), (9,10), (9,11), (9,12), (10,8), (10,9), (10,10) (10,11) and (10,12); and
Marginal set with populations at coordinates (1,1), (1,2), (1,3), (1,4), (1,5),
(1,6), (1,7), (1,8), (1,9) and (1,10). For these 20 replicates, migration rate was
m= 0.5 and the number of generation only 200, which was enough for reaching
equilibrium for FST. Other parameters were the same as for other simulations.
Graphic representations of the different sampling designs can be found in
Supplementary File S1. The effect of reducing the number of possible alleles was
also explored with K= 2, u= 10− 9 (to conform to single-nucleotide poly-
morphisms) (Séré et al., 2014), n= 25 sub-populations and m= 0.5. In that
case, we used 20 loci to compare with other cases and 200 loci to conform to
what could be advised for single-nucleotide polymorphisms. We also undertook
some simulations with K= 5 and u= 10− 7, K= 10 and u= 10− 6, K= 20 and
u= 10− 5 and K= 40 and u= 10− 4. This was carried out for m= 0.5 and n= 36
or n= 25. Finally, variable sub-population sizes were explored with sub-
population sizes alternating between 100 and 200 individuals in the 36 sub-
population case (the most discriminating between genetic distances, see below)
with the same other parameters as described above.

Null alleles
We define null alleles as alleles that cannot be seen (as it occurs through PCR
amplification failure). At a given locus, an individual can thus be homozygous
or heterozygous for normal alleles, homozygous for the same null allele or
heterozygous for two different null alleles, in which cases the individual
corresponds to a missing data (blank) at the corresponding locus. It can be
heterozygous for a normal and a null allele, in which case the individual is seen
as a homozygous for the normal allele. In simulations, null alleles were
generated by recoding the data outputted by EASYPOP. For each locus, alleles
1–10 (10% of null alleles), 1–20 (20%) and 1–50 (50%) were recoded as null
alleles. Hence, individuals harboring one of these alleles were recoded as
homozygous for the other allele harbored, individuals harboring two of these
alleles were recoded as missing data and individuals harboring none of these
alleles were not recoded. At the end of each simulation, some alleles are lost by
drift. This produces a large variation of null allele frequencies across loci
(absence, weak medium or substantial frequency) as it is expected in real data
with null alleles (De Meeûs et al., 2007; Séré et al., 2014). These proportions of
null alleles (10, 20 and 50%) actually correspond to the proportions of allelic
states that are null. For the sake of simplification, we will call these ‘Proportion
of null alleles’ or ‘Null allele frequencies’.

Geographic and genetic distances
Geographic distances (DG) between each sub-population pairs were computed
with the Euclidian distance using their coordinates as implemented in Genepop
version 4.6 kindly provided by F Rousset before online publication (updated
from Rousset, 2008).
We have used three genetic distances among the most popular ones: DCSE

(Cavalli-Sforza and Edwards, 1967), DSA (Bowcock et al., 1994), and FST*= FST/
(1−FST) (Rousset, 1997). Other FST-related measures were also studied in a
subset of simulated data sets: GST′ (Meirmans and Hedrick, 2011) and DJ (Jost,
2008), computed with GenAlEx 6.5 (Peakall and Smouse, 2012); Robertson and
Hill’s FST_RH and its modified version FST_RH′ (Raufaste and Bonhomme,
2000), computed with Genetix (Belkhir et al., 2004). DCSE and DSA were
computed with MSA v3.1 (Dieringer and Schlötterer, 2003). In one instance,
MSA could not compute one genetic distance for unknown reasons. This
distance was recomputed with FreeNA (Chapuis and Estoup, 2007). We then
used Genepop to compute FST*= θ/(1− θ), where θ is Weir and Cockerham’s
unbiased estimator of FST (Weir and Cockerham, 1984). In two-dimension
isolation by distance, the slope b of the regression FST*= a+b× ln(DG) is
inversely proportional to the average neighborhood size of a sub-population:
b= 1/(4πDeσ

2), where De is the effective sub-population density and σ2 is the
average squared axial distance between an adult and its parents (dispersal)
(Rousset, 1997) and hence σ is half the average adult–parent distance.

Detecting isolation by distance
For each data set, not recoded or recoded for null allele presence, correlation
between geographic and genetic distances was computed and tested with a
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Mantel test with Genepop and 1 000 000 randomizations, as recommended
(De Meeûs et al., 2007). The test uses Pearson’s regression coefficient between
geographic and genetic distance matrices as the statistics and the P-value of the
test corresponds to the proportion of times the randomized regression
coefficient is as big as or bigger than the observed one. For the sake of
homogeneity, all Mantel tests were undertaken with the ln transform of
geographic distances. Even if the P-values obtained with the untransformed
distances can be different, this did not affect the proportion of significant tests
obtained (not shown). The proportion of significant tests at the 5% level was
used to compare performances between the different genetic distances and
between data sets with or without null alleles. Genepop also performs an ABC
Bootstrap procedure that allows computing a 95% confidence interval (CI) for
the regression slope. For each data set, in addition to Mantel tests using genetic
distances, we have also recorded when this CI excluded the 0 value as a
significant test at the 5% level (95% CI).
For simulations with the Island model (no spatial structure), to check if no

45% significant tests were obtained with each genetic distance, we undertook a
unilateral exact binomial test with R version 3.2.1 (R Development Core Team,
2016).
Performance comparisons between genetic distances were carried out with

Fisher’s exact tests with R. To account for multiple non-independents testing,
the P-values obtained were adjusted with the sequential Bonferroni procedure
(for example, De Meeûs, 2014).
The effect of null alleles on the power to detect isolation by distance was

assessed with generalized mixed models with a binomial error distribution and
a logit link with the package lme4 of R (Bates et al., 2015). The model
(command glmer) had the form:

SignificanceBPropNullsþm þ GenetDistþ PropNulls : m þ
PropNulls : GenetDistþm : GenetDistþ 1jRepð Þ

where, for ‘Significance’, a value of 0 was given if P40.05 and a value of 1 was
given if P⩽ 0.05, ‘GenetDist’ is a factor defining one of the three genetic
distances, ‘PropNulls’ is the proportion of null alleles as defined above, ‘m’ is
the migration rate, ‘(1|Rep)’ are the random effects of replicates and ‘:’ stands
for interaction between two variables.
To check whether collinearity between explanatory variables might explain

convergence failure for the model above, significance co-occurrence between
statistics (for example, between FST* and DCSE) was measured by recoding the
results as 1 (not significant) and 2 (significant) for each statistic and doubling
these coding (11 or 22) to build an artificial genotypic data set with four ‘loci’
(the four statistics) with two alleles each (hence if FST* and DCSE gave a
significant isolation by distance this would result in genotypes 22 and 22). We
then computed Garnier Géré and Dillman correlation coefficient rGGD
(Garnier-Géré and Dillmann, 1992) between each ‘locus’ pair. This correlation
was computed in Genetix 4.05.2 (Belkhir et al., 2004).

Effects of null alleles on the regression slope of isolation by distance
The effect of null alleles and migration rate on the slope b, of the regression
FST*= a+b× ln(DG), was assessed with a linear mixed effect model (lme)
(Pinheiro et al., 2014), fitted with the maximum likelihood method, with
package nlme of R version 3.0.2 and a model of the type:

bBmþ PropNullsþm : PropNulls

where the random effects are the replicates (random=~1|Rep). The variance in
each replicate increases as a function of the proportion on null alleles and
migration rates. To account for this violation of homoscedasticity, we used the
argument ‘weights’ (weights= varIdent(form=~1|PropNulls) or weights=
varIdent(form=~1|m)), as recommended in the R documentation (Pinheiro
and Bates, 2000). Because the slope (bounded between − 1 and +1) cannot
strictly follow a normal distribution, we also undertook Spearman correlation
tests with the package rcmdr (Fox, 2005) of R for each migration rate
separately.
The effect of the proportion of null alleles and migration rate on the variance

of the slope of the aforementioned regression was analyzed with a linear

regression with R and the model:

VarianceBPropNullsþmþ PropNulls : m

The quality of fit of each of aforementioned model was assessed by
graphically checking residuals’ normality and homoscedasticity. For each
model, the minimal model was looked for with the command ‘drop1’, using
the Akaike information criterion (AIC; Akaike, 1974).

Comparative vulnerability of the different genetic distances to null
alleles
For each genetic distance, the coefficient of determination (R2, the proportion
of variance explained by the model) of the regressions between ln(DG) matrix
and genetic distances matrices with null alleles of increasing frequencies (0, 0.1,
0.2 and 0.5) was computed for each replicate of each parameter set. We used
rcmdr to compute R2. For each parameter set, in terms of null allele frequency
and migration rate, and for each genetic distance, we computed the average R2

(R2 ) over replicates and used the s.d. of the mean s
R2 and Student’s t0.05,γ,

where γ=Nrep− 1 (Nrep=number of replicates of a given simulation), to
compute the 95% CIs of each R2 as R2 7 t0:05;g ´sR2 . We then applied a
generalized mixed model to the data, as described above with a random effect
of replicates (random=~1|Rep), fitted with the maximum likelihood method
(method= ‘ML’), adjusted for heteroscedasticity with the argument ‘weights=
varIdent(form=~1|PropNulls)’ or ‘weights= varIdent(form=~1|m)’ (model
with the lowest AIC was kept). The model explored was:

R2BPropNullsþ GenetDistþmþ PropNulls : GenetDistþ PropNulls : m

þ GenetDist : m

Here again the function drop1 was used to try selecting the best
(minimal) model.

Using corrected estimates
We also checked how far results can be improved using the available correcting
option implemented in the software FreeNA (Chapuis and Estoup, 2007).
Genetic parameters are estimated from the corrected data set (replacing all
missing genotypes by homozygous genotypes for the same null allele labeled
999) only on visible alleles and using the ENA correction method for FST and
using the INA correction method for DCSE (Chapuis and Estoup, 2007). We
also used these estimations on several simulated data sets with null alleles to
check for the effect on the slope and on power of isolation by distance testing
with regression approaches.

Real data
Several available data sets using microsatellite markers were reanalyzed to
illustrate our results. For all data, we transformed GPS coordinates (Genepop
uses coordinates of subsamples or individuals) into UTM so that we get
geographic distances in meters. The first data set was on the European vector of
Lyme disease, the tick Ixodes ricinus (De Meeûs et al., 2002) where a lot of null
alleles are present (frequently 40–50% and up to 60 %). The second concerned
the rusa deer Cervus timorensis russa in New-Caledonia (De Garine-Wichatitsky
et al., 2009; without null allelles). The third and fourth data came from (Kone
et al., 2011) on two tsetse flies (trypanosomosis vectors), Glossina tachinoides
and G. palpalis gambiensis in Burkina Faso, where as many as 40–50 % of null
alleles can be found and up to 70%. The fifth data concerned another tsetse fly,
G. palpalis from Cameroon and from the Democratic Republic of Congo
(DRC), (Mélachio et al., 2011) where null allele proportions frequently reach
40–50% and up to 70%. The sixth data set concerned Leishmania guyanensis
(a trypanosomatid parasites) from French Guyana (Rougeron et al., 2011)
without null alleles. For I. ricinus and tsetse fly data, because some loci are
X-linked, we only used females so that FreeNA results are not too biased by
male genotypes at these loci. These data sets were all analyzed for isolation by
distance using Genepop using FST* and DCSE on raw data and on FreeNA-
corrected data. We then compared the P-values obtained and also the
neighborhood size as Nb= 1/b (b is the slope of the isolation by distance
regression) (Rousset, 1997). For L. guyanensis, data could only be analyzed at an
individual-based scale. We used the statistic a (Watts et al., 2007)
as recommended when the slope b obtained is such that neighborhood
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Nb= 1/bo50. FreeNA cannot compute this statistic so that the effect on the
slope could not be assessed here. Three independent samples (2006, 2007 and
2008) were analyzed separately and then the resulting P-values combined with
generalized binomial procedure with MultiTest V 1.2 (De Meeûs et al., 2009)
setting the threshold number of tests k′= 3 as recommended when the total
number of tests is o4 (De Meeûs, 2014). Some data sets did not have strong
evidence for null alleles (rusa deer and Leishmania) while other displayed strong
evidence for null alleles (ticks, tsetse flies) with other problems, such as
probable Wahlund effects (ticks and G. palpalis gambiensis) or short allele
dominance (ticks). Leishmania were shown to alternate clonal propagation with
sexual recombination with a strong tendency for mating between relatives
(inbreeding).

RESULTS

For all simulations with 10 000 generations (25–64 sub-populations),
the final mean number alleles maintained and unbiased estimate of
genetic diversity HS (Nei and Chesser, 1983) varied between 17 and 37
and between 0.58 and 0.84, respectively (see Supplementary File S1),
which should provide unbiased estimates of Deσ

2 (Leblois et al., 2003).
For bigger simulations (121 and 400 sub-populations) that were run
for only 1000 and 200 generations only, values obtained are far beyond
the limit and are expected to give biased estimates. In fact, only the
case with 121 sub-populations provided biased slope estimates
(Supplementary File S1, worksheet ‘Compare slopes’).

Detecting isolation by distance under the null hypothesis
In the Island model, where no spatial structure exists, no procedure
gave 45% significant isolation by distance signature (all P-values
40.2, exact unilateral binomial tests). With 11 (5.5 %), 7 (3.5 %), 13
(6.5 %) and 8 (4 %) significant tests (out of 200 tests) for 95% CI for
the regression slope, FST*, DCSE and DSA respectively, no procedure
gave more often significant tests than the other (P-value= 0.5047,
Fisher exact test; Supplementary File S1). This confirms the robustness
of Mantel test. With between 3.5% and 6.5 % significant tests under
the null hypothesis, it also highlights that with such data sets Mantel
test is not too conservative.

Detecting isolation by distance under the alternative hypothesis
For the stepping stone model, results are presented in Figure 1.
Detailed simulation results are available in Supplementary File S1.

The best results are observed for DCSE. Globally, summing all
significant values across the 380 simulations for all genetic distances,
all comparisons are significant after sequential Bonferroni correction.
The poorest statistic is the test based on 95% CI of the slope (95% CI)
(187 significant tests), followed by FST* (217 significant tests), DSA

(257 significant tests) and DCSE (293 significant tests). Except when
migration rates are low, where the different statistics tend to perform
equally well, difference in performance between the different genetic
distances follows the same pattern independently of the number of
sub-populations: 95% CIoFST*oDSAoDCSE. We checked this in the
most discriminating simulations in stepping stone models of 36 sub-
populations. In Supplementary File S1 (worksheet ‘OtherDistances’), it
can be seen that the P-values obtained for isolation by distance with
GST′ and DJ are almost completely correlated to those obtained with
FST* (r40.889) and thus offer no benefit for isolation by distance
detection. Alternatively, FST_RH appears more performant than all
other statistics but DCSE, while FST_RH′ appears just above FST*. From
the Supplementary File S1, it can be seen that the regression slope (b)
obtained with FST_RH is negatively biased as compared with Weir and
Cockerham’s based FST* and that this bias increases with FST, while its
variance is much smaller one, as expected (Raufaste and Bonhomme,
2000). It can also be seen that FST_RH′ displays a constant positive bias
and the highest variance, which explains its poor performances.

Effect of sub-population number on the slope and its variance
There is a negative, though marginally not significant (P-value=
0.0599) relationship between the slope and the number of sub-
populations, with a decrease of the positive bias of b (from ~0.003 for
n= 25 to ~ 0.002 for n= 64) as compared with the expected value
be= 1/2πNm (Rousset, 1997) (0.00159 when N= 200 and m= 0.5)
with decreasing sub-population number. This may come from the
mean number of neighbors per sub-population, which tends to
increase with the total number of sub-populations, as the proportion
of marginal sub-populations decreases as well. To confirm this, we
have studied the slope and its variance in the center and the margin of
20× 20= 400 sub-populations of 200 individuals in a stepping stone
with m= 0.5 (10 replicates). The mean slope observed for central sub-
populations perfectly fits the expected value and is significantly above
for marginal sub-populations (Supplementary File S1). At the same
time, we can observe a swift decrease of 95% CI with the number of
sub-populations. As a consequence, the proportion of significant tests
tends to increase with the number of sub-populations n. Nevertheless,
the relative performance of each statistic, as compared with the others,
remains unchanged and hence DCSE stays the best statistic for
detecting isolation by distance.

Reduced number of possible alleles on statistical power
When the number of available alleles is K= 2, there is no more
significant differences in performances between the different statistics,
which all show weak power to detect isolation by distance (only 11%
tests are significant with DCSE against 50% when K= 99). At the same
time, averaged slopes are not affected but the variance doubled
(Supplementary File S1). With the more realistic 200 loci, the power
to detect isolation by distance and lower variance for slope are
restored. Nevertheless, no genetic distance seems better than the other
in that configuration (Supplementary File S1).

Effect of variable sub-population size on the power of tests
In that case, DCSE still displays the highest power but is not
significantly better than DSA anymore in that respect
(Supplementary File S1).

Figure 1 Performance comparisons between the different genetic distances
to detect isolation by distance in two-dimension stepping stones with
different migration rates (m) and sub-population numbers (n). Four different
procedures are compared: the 95% CI of the slope obtained by ABC
bootstrap (95% CI), mantel tests using FST*, DCSE or DSA. Letters a and b
are indicative of significant differences of performance after sequential
Bonferroni correction: bars with no letter in common are significantly
different. More explanations can be found in the text.
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Effect of null alleles on the power to detect a signature of isolation
by distance
We have already seen that the number of sub-populations does not
influence statistics’ relative performances in detecting isolation by
distance. Nevertheless, small sub-population numbers increases the
variance of these statistics and hence decreases the power to detect
isolation by distance for all them. Consequently, the effect of null
alleles was only studied with n= 25 stepping stone models. The best
model and significance of variables of the generalized linear mixed
model are presented in Supplementary Table S1. The model could
never converge when 95% CI was included, as a probable result of its
collinearity with other statistics as can be measured with Garnier Géré
and Dillman rGGD (see Supplementary File S1). We also needed to
remove two interaction terms (m:PropNulls and m:GenetDist). After
model comparisons with the AIC, the minimum model retained is
Significance ~PropNulls +m+GenetDist + (1|Rep). The results
obtained with the generalized mixed effect model show that FST*
has far less power to detect isolation by distance than DCSE, and DSA

has slightly less power than DCSE (Supplementary Table S1 and
Supplementary File S2). As expected, migration rate has a major
negative effect. The power of detection of isolation by distance
signatures is strongly negatively correlated with the proportion of null
alleles. The interaction between genetic distances and the proportion
of null alleles was not important for the model (lower AIC without it)
and was thus removed from the model. Hence, the performance
differences between all distances do not significantly change with null
alleles.

Effect of null alleles on the slope of Rousset’s regression
The analysis of this model is presented in Supplementary Table S2 and
in Supplementary File S2. Controlling for the increasing variance of
the residuals with null allele frequencies or migration rates (weights=
varIdent(form=~1|PropNulls) or weights= varIdent(form=~1|m))
provided identical results for the linear mixed effect model, though
AIC was smaller with the second model. All parameters and
interactions appeared highly significant (Supplementary Table S2).
The corresponding results of Spearman correlation (ρ) test results are
given in Figure 2. It can be seen that there is a significant positive effect
of null allele frequencies on the slope (b) of the regression FST*=
a+ b× ln(DG) for the smallest neighborhoods (m⩽ 0.2) and a reverse
relationship for the biggest neighborhood (m= 0.5) (interaction
between m and null allele frequency). The three Spearman’s rank
correlation tests (for each migration rate explored) were all highly
significant.
There is also an increase of the variance with null allele frequencies

when neighborhoods are small but not for the biggest ones (m= 0.5)
(Supplementary Table S3 and Figure 2) (see corresponding graphics in
Supplementary File S2). The significant interaction between m and
the proportion of null alleles makes the effect of m very uneasy to
predict and is not significant with the t-test. An analysis of variance
does not confirm the significance of null alleles proportion
(m becomes significant). Thus the interaction at least is significant
(Supplementary Table S3).

Vulnerability of the different genetic distances to null alleles
Results of the fixed effect model are given in Supplementary Table S4.
The smallest AIC was obtained for the model with weights= varIdent
(form=~1|m). Dropping terms lead to remove the interaction
between null allele frequencies and genetic distances and all other
parameters were highly significant (Supplementary Table S4). The
proportion of null alleles and migration rates are the most important

factors and DCSE is associated with the highest R2, followed by DSA and
then FST*. All parameters significantly interact with m: the difference
between genetic distances is the highest for low migration rates and
low null allele frequencies and the magnitude of differences tends to
drop for highest values (see Figure 3 and Supplementary File S2).

Using FreeNa corrections
Simulations were revisited with the correction implemented in
FreeNA. In the Figure 4 (see also Supplementary File S2), it can be
seen that FreeNA provides a very good correction for the slope, except
when the proportion of null alleles is too big (50%) and isolation by
distance weak (m= 0.5), because the variance of estimate becomes
very large, thus reducing R2 to a great extent with a slight alteration of
slope estimate (Figure 4). A logistic mixed model on the significance
obtained with FreeNA-corrected data was undertaken using DCSE. It
suggests that using FreeNA-corrected data does not bring more power
and even less so (Supplementary Table S5). There is also a small effect
of interactions of statistics with the other variables, suggesting that for

Figure 2 Influence of null allele frequencies on the slope of the regression
between FST* and ln(DG) for different migration rates (m=0.01, m=0.2 and
m=0.5). In each graph, Spearman’s correlation (ρ) and its significance
(P-value) are given (bilateral tests). The regression of b (circles) as a
function of null allele frequencies is represented with a thick straight line
and the corresponding determination coefficient is also given (R2). The 95%
CIs of slope values obtained by ABC bootstraps in Genepop (small dots) are
also given with their corresponding regression (dotted thin lines). When
useful, the 0 line is represented by a thin straight line.
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some migration rates and/or null allele frequencies FreeNA-corrected
data may be slightly more powerful, but the effect is obviously weak as
compared with the effect of null alleles alone (see also Supplementary
File S3).

Real data
Results are presented in Supplementary File S3. Generally speaking, as
for the simulation results, FreeNA does not bring much benefit for the
significance of the tests and DCSE from unmodified data provided
more power to the tests, except for G. palpalis palpalis from Cameroon
and DRC and G. palpalis gambiensis from Burkina-Faso.
For I. ricinus females from Switzerland, even if the drop in P-value

is substantial (from 0.241 to 0.088), the use of DCSE leads to a
marginally not significant isolation by distance. The use of FreeNA
provides a strong effect as it leads to almost halve Nb (from 707 to 444
individuals) (hence in the wrong direction).
For Cervus timorensis russa in New-Caledonia, using DCSE changes

the significance level from 0.15 to 0.008 and, as expected with a data
set with no or almost no null alleles, neighborhood size is weakly
affected when using FreeNA correction (from 104 to 107).
For Glossina tachinoides females in Burkina Faso, the use of DCSE is

important (the P-value drops from 0.1 to 0.005) and FreeNA has
much effect on Nb that increases from 81 to 1667.
For G. palpalis palpalis from Cameroon and DRC, FST*-based tests

provide highly significant results while DCSE-based tests give margin-
ally not significant P-values (0 and 0.146, respectively). The FreeNA-
corrected Nb is weakly increased (from 153 to 179).
For Glossina palpalis gambiensis females from Burkina Faso, the

smallest P-value is obtained with FST* on FreeNA-adjusted data
(0.004) while DCSE does not give a significant result (0.522). Here

Figure 3 Effects of null allele frequency, migration rate (m) and genetic
distances on the determination coefficient (R2) of regressions between the
different genetic distances as a function of geographic distances ln(DG). The
bigger R2 the better the genetic distances account for the respective
geographic location of each sub-population as compared with the others.
The mean R2 and 95% CIs across replicates are represented. Note that
negative values of lower bounds were replaced by 0.

Figure 4 Regression results between the initial isolation by distance slopes obtained without null alleles (abscissa) and the slopes obtained using FreeNA
correction for null alleles (ordinates). Regressions displayed are for different null allele frequencies (f(nulls)) and migration rates (m). Resulting regression
formula and corresponding determination coefficient (R2) are given. The slopes and intercepts of these regressions actually measure the average bias of
FreeNA-corrected values while R2 measures how FreeNA-corrected slopes fit to initial ones.
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Nb estimated from FreeNA-corrected data decreases from 249 to 196,
instead of increasing.
Finally, in L. guyanensis data from French Guyana, the P-value

obtained with a (3 years combined) drops from a slightly significant
value with FST* (0.017) to a highly significant value when using DCSE

(0.0018).

DISCUSSION

Our Island model simulations have confirmed the robustness of
Mantel tests as no 45% significant tests were found in that case.
In two-dimension stepping stone models, the most powerful

statistic to detect isolation by distance is DCSE, followed in order of
power by FST_RH, DSA, FST_RH′, FST* (together with GST′ and DJ) and
the least powerful being the test based on the 95% CI of the slope. The
fact that FST_RH provides more powerful tests than the other statistics
but DCSE is probably linked to its very low variance for small values
(Raufaste and Bonhomme, 2000), which concerns most of our
simulations. The greater weight given to the rarest alleles is probably
the main cause of this, though unbalanced samplings, which were not
fully explored here, might lower the good properties of this statistic in
this respect (Goudet et al., 1996). Similar reasons probably explain the
greater power of DCSE (Kalinowski, 2002), though its connection with
FST-based measures is more complex.
When subdivision is extreme (m= 0.01), choice of a genetic

distance to detect a significant signature of isolation by distance
becomes irrelevant (all statistics behave equally well). The same lack of
difference occurs for weakly polymorphic loci as when K= 2 where at
least 200 loci are required for the sake of statistical power and slope
estimate accuracy. This is more than classically advised given our
sample sizes (20) (for example, Smouse, 2010). In fact, it can be seen
from Supplementary File S5 that DCSE outperforms the other statistics
only when genetic diversity outreaches 0.4–0.5 (hence applying to
microsatellite markers). The difference of statistical power may thus be
related to the way allele frequencies are weighted by each statistic.
Nevertheless, it is somehow difficult to understand this when more
than two alleles are maintained. It will thus require further theoretical
investigations to be fully understood. Performance ranking is not
influenced by the number of sub-populations, sub-population size
variation or by the proportion of null alleles. The poor performances
of FST-based measures is a confirmation of earlier studies where it was
shown that its weak statistical performances results from an inflated
variance of its unbiased estimator θ especially when measured between
paired subsamples (Balloux and Goudet, 2002). Intrinsically, FST is
more a measure of inbreeding within subsamples than a genetic
distance between subsample pairs.
Another interesting and unexpected result is the influence of

marginal sub-populations, located at the edges of the metapopulation.
Because these marginal sub-populations receive immigrants from less
numerous neighbors, this results in an increase of estimated slope
when these marginal sub-populations are included in the sample or at
the vicinity of those. Moreover, because in small metapopulations
central sub-populations are more closely related to these marginal sub-
populations, this slope inflation will also affect the entire mesh. This
also increases the heterogeneity between different sub-populations and
thus the variance of slope estimates and hence the power of isolation
by distance tests. Consequently, sampling at the margins of any
metapopulation will result in a reduced neighborhood size as
compared with central sub-populations, and sampling small metapo-
pulation (25–64 sub-populations) will also result in reduced effective
neighborhood size and decline the power of isolation by distance
detection (because of increased variance).

The presence of null alleles disturbs the signature of isolation by
distance not only in terms of detection but also in terms of the slope of
the regression that can be used for demographic inferences. The
decrease of power detection affects each distance equally. More
importantly, null alleles generate an inflated estimate of the slope
and of its variance. With regard to demographic inferences, null alleles
will therefore lead to an underestimate of neighborhood sizes and/or
of dispersal but with an inflated uncertainty as well.
Chord distance DCSE is known to better reflect the topology of

branching nodes between subsamples or species (Takezaki and Nei,
1996). We confirm here that DCSE also reflects geographic distances
more accurately than DSA and FST and is also the most robust genetic
distance to null allele interference in that respect.
Null alleles are known to have major effects when differentiation is

strong and much weaker effects when it is weak (Chapuis and Estoup,
2007). We confirm this in the isolation by distance case, with an
additional interactive effect. Indeed, in case of high migration rate
(m= 0.5), weak null allele effect on FST* seems to interact strongly
with its variance resulting in a decrease of the regression slope of
isolation by distance with null allele frequencies, while it increases with
those in case of smaller neighborhoods (for example, m= 0.2).
FreeNA correction (Chapuis and Estoup, 2007) appears quite

satisfactory if not excellent, at least for slope estimates, except for
high null allele frequencies and strong migration rates where the
variance of estimates might provide unreliable results. Statistically
speaking though, this correction brings weak improvements if any.
Nevertheless, the underlying hypothesis of FreeNA is that observed
heterozygote deficits must be entirely explained by null alleles. Other
factors can produce heterozygote deficits as measured by FIS. Wahlund
effects and selfing should affect all loci equally in this respect and
consequently should theoretically be easy to distinguish from null
alleles that affect each locus in a particular way. Nevertheless, null
alleles are not specific to panmictic populations and can as well affect
selfing species or subsamples experiencing Wahlund effects. Some
methods exist for quantifying the relative effects of inbreeding and null
alleles (for example, see Campagne et al., 2012 and references therein).
In a simulation with the same parameters as described above, with
20% of selfing and m= 0.01, the use of FreeNA produced an
underestimate of the isolation by distance slope of 6% in average,
which is not much and thus validates the usefulness of FreeNA in that
case. Wahlund effect might be more detrimental and will require
further attention. Indeed, Wahlund effect will decrease identity
between individuals in subsamples and can also increase identity
between subsamples resulting in an artificial deflation of genetic
differentiation between geographically separated groups. Hence,
Wahlund effect is likely to decrease the slope of isolation by distance
regressions (and hence increase neighborhood estimate). Applying
FreeNA might induce an additional decrease of this slope and lead to
biased results. Important Wahlund effects are known to occur in
I. ricinus tick populations in Europe (Kempf et al., 2010). This might
represent a good explanation why DCSE did not produce a significant
isolation by ditance. Nevertheless, the fact that FreeNA correction had
such a spectacular decreasing effect on the neighborhood estimate in
that particular situation remains obscure. Short allele dominance
affecting one of the five loci and high null allele frequencies in four
loci probably explains these discrepancies. Wahlund effects are also
known to occur in G. palpalis gambiensis and might explain the
observed lack of improvement when using DCSE. The results obtained
for the rusa deer and Leishmania are in total agreement with what was
expected: an increased power of isolation by distance test using DCSE,
changing the initial rusa deer P-value into a significant one, and for
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this last, lacking null alleles, an absence of effect of FreeNA correction.
For G. palpalis palpalis, for which Wahlund effect has been excluded as
a possible explanation, the reason why the reverse result was obtained
for significance ranking between FST* and DCSE might be just due to
chance. In our simulation, FST*-based tests could rarely, but possibly,
give much smaller P-values than DCSE-based ones. Finally, for
G. tachinoides, performances of the different statistics are in the
expected direction as is FreeNA-corrected neighborhood size estimate,
though the decrease is a bit extreme. Wahlund effect was not detected
in that species but may be this would require further investigations.
Finally, one-dimension patterns of migration, which are known to

structure more than two-dimension ones (Rousset, 1997; Séré et al.,
2014), were not studied here but would probably have provided more
frequent isolation by distance detection as a whole. Nevertheless, we
see no reasons why DCSE would not remain above the others in that
respect, even if this might require further investigations. More
complex migration models could also have been explored. This would
have required the choice of supplementary parameters (distance of
dispersal and kurtosis) with little gain in generalization of the results as
we see no obvious reason why this would dramatically change the
major conclusions of the present study.

Recommandations
With null allele-free data, using DCSE chord distance (Cavalli-Sforza
and Edwards, 1967) represent the best strategy in most situations for
detecting isolation by distance, except for low polymorphism situa-
tions (HSo0.4) where the choice of any statistics seems irrelevant.
To cite a verbal quotation from a lecture: ‘the best way to handle

missing data is to have none’ (literally translated from a lecture given
by Jean-Dominique Lebreton). However, sometimes the worse is
inevitable. In case of null alleles, if these are not too frequent
(no 420%) and if one can be confident that null alleles represent
the only explanation for observed heterozygote deficits, FreeNA
correction will provide an excellent way to correct for slope biases.
As null alleles equally affect the statistical power of all genetic
distances, DCSE stays the best option in that case.
Finally, when other factors than null alleles might be responsible for

observed heterozygote deficits, available amending method will not be
always useful. In such situations, one should consider that null alleles,
if evidenced from important variance of Wright’s FIS across loci, will
produce a reduced probability to find a significant isolation by
distance. In that case, resampling at smaller scales (to avoid or limit
Wahlund effects) and redesigning primers (to reduce the conse-
quences of null alleles) might be of help.
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