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Genetic-based interactions among tree neighbors:
identification of the most influential neighbors, and
estimation of correlations among direct and indirect genetic
effects for leaf disease and growth in Eucalyptus globulus
J Costa e Silva1, BM Potts2, AR Gilmour3 and RJ Kerr4

An individual’s genes may influence the phenotype of neighboring conspecifics. Such indirect genetic effects (IGEs) are
important as they can affect the apparent total heritable variance in a population, and thus the response to selection. We
studied these effects in a large, pedigreed population of Eucalyptus globulus using variance component analyses of
Mycosphearella leaf disease, diameter growth at age 2 years, and post-infection diameter growth at ages 4 and 8 years. In a
novel approach, we initially modeled IGEs using a factor analytic (FA) structure to identify the most influential neighbor
positions, with the FA loadings being position-specific regressions on the IGEs. This involved sequentially comparing FA models
for the variance–covariance matrices of the direct and indirect effects of each neighbor. We then modeled IGEs as a distance-
based, combined effect of the most influential neighbors. This often increased the magnitude and significance of indirect
genetic variance estimates relative to using all neighbors. The extension of a univariate IGEs model to bivariate analyses also
provided insights into the genetic architecture of this population, revealing that: (1) IGEs arising from increased probability of
neighbor infection were not associated with reduced growth of neighbors, despite adverse fitness effects being evident at the
direct genetic level; and (2) the strong, genetic-based competitive interactions for growth, established early in stand
development, were highly positively correlated over time. Our results highlight the complexities of genetic-based interactions at
the multi-trait level due to (co)variances associated with IGEs, and the marked discrepancy occurring between direct and total
heritable variances.
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INTRODUCTION

Recent developments in quantitative genetics suggest that interactions
among conspecifics may change the understanding of the inheritance
and response to selection for polygenic traits (Bijma, 2011). Classical
quantitative genetic models have overlooked the fact that an indivi-
dual’s genes may also influence the phenotype of neighboring
conspecifics. Such indirect genetic effects (IGEs; Griffing, 1967;
Moore et al., 1997; Wolf et al., 1998; Bijma, 2014) may occur by,
for example, competitive interactions (Muir, 2005; Bijma et al., 2007;
Muir et al., 2013; Wilson, 2014), as well as exposure to disease
infection (Lipschutz-Powell et al., 2012; Anche et al., 2014), with both
recently reported among trees in a plantation (Costa e Silva et al.,
2013). As with direct genetic effects, IGEs are dynamic and may
change with age (Moorad and Nussey, 2016), sex (Wilson et al., 2011)
and environment (Camerlink et al., 2015), and they may arise from
multiple genetic causes (Wolf et al., 2011; Bailey and Hoskins, 2014).
IGEs underlie many ‘social’ interactions in plants and animals (Bijma,
2014; Wilson, 2014), may vary across a species range (Bailey et al.,
2014) and, at the interspecific level (IIGEs), structure biological
communities (Shuster et al., 2006).

Within a univariate variance-component framework, a quantitative
genetic model including IGEs seeks to estimate the covariance between
direct and indirect genetic effects. This is a key determinant of the
impact of indirect genetic effects on the heritable variation available at
the population level for a trait affected by interactions among
conspecifics (Griffing, 1967; Bijma et al., 2007; Bijma, 2011). However,
as selection operates on complex phenotypes involving several
correlated traits, it is important to also consider covariances among
traits for direct and indirect genetic effects to better understand and
predict genetic responses to selection (McGlothlin et al., 2010). Under
either a variance-component or a trait-based modeling of IGEs
(McGlothlin and Brodie, 2009; Bijma, 2014), recent studies have used
multivariate approaches to address direct and indirect genetic relation-
ships among traits in animals (for example, Peeters et al., 2012; Bailey
and Hoskins, 2014) and in plants (for example, Mutic and Wolf, 2007;
Wolf et al., 2011) but, to our knowledge, no such multivariate studies
have yet been reported in forest trees.
Previous univariate models evaluating the genetic basis of interac-

tions among trees have assumed that the indirect breeding values of all
the surviving immediate neighbors impacted on the focal individual’s
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phenotype (Cappa and Cantet, 2008; Costa e Silva and Kerr, 2013;
Costa e Silva et al., 2013; Cappa et al., 2015). They devised weights
based on distance to each neighbor to integrate the neighbor effects
into a modeling of IGEs as a combined effect. However, it begs the
question whether the weights are optimal, and whether cardinal
direction or cultural operations may moderate the position effect.
For example, the neighbor effect could be moderated by prevailing
wind direction, by slope and aspect and dominant direction of
sunlight. In forest genetic trials, identifying the neighbor positions
contributing most to IGEs is important because: (1) it may enable
better detection of IGEs under a variance-component framework; and
(2) it has implications for the accurate estimation of the total heritable
variance determining potential response to selection.
Using a large pedigreed population of the forest tree Eucalyptus

globulus, the present study aims to:

� develop an approach to identify the neighbor positions contributing
most to IGEs for Mycosphearella leaf disease and diameter growth;

� follow over time the estimates of direct and indirect additive genetic
(co)variance parameters and total heritable variance obtained for
diameter growth; and

� extend univariate models to the multivariate level to assess the
magnitude and significance of correlations among direct and/or
indirect additive genetic effects between traits (leaf disease and post-
infection growth) and ages.

MATERIALS AND METHODS

Plant material, crossing design, field experiment and trait
measurements
The plant material was generated by combining crosses from both diallel and
factorial mating schemes, and evaluated in a field trial located in Western
Australia (latitude 34°13′34′′ S, longitude 116°8′37′′E). Both mating schemes
were unbalanced. A total of 570 full-sib families were planted, generated from
51 parents in the diallel crosses and 110 parents in the factorial crosses. The
diallel scheme incorporated reciprocal mating but no self crosses. The factorial
crosses were included to provide genetic links with previous breeding and
research trials. The E. globulus trees used as parents in the crosses were in
general selected from first-generation breeding trials, with the base population
parents belonging to three races (Furneaux, Strzelecki Ranges and Otways; for
Otways, all are from the Western Otways except one which was from the
proximal Eastern Otways) and eight races (Furneaux, King Island, North- and
South-eastern Tasmania, Southern Tasmania, Strzelecki Ranges, Eastern and
Western Otways) for the diallel and factorial schemes, respectively. The
numbers of parents and crosses in the diallel differed slightly from those
reported by Costa e Silva et al. (2013), as some parents were re-allocated to the
factorial to improve the number of families per parent and geographic focus of
the parents in the diallel. The base population parents were assumed to be
unrelated and non-inbred due to widely spaced sampling.
The field experiment was designed as a resolvable row–column design (John

and Williams, 1995) with 15 replicates. One seedling per full-sib family was
randomly planted as a single-tree plot within each replicate, and the tree
spacing was 2.125 and 5.0 m within and between planting rows, respectively.
There were 9450 trees originally planted in an incomplete rectangular grid of 72
rows by 161 columns. For spatial modeling purposes (see below), coordinates
with missing values were added to complete the planting grid, which is a
standard practice in spatial analysis of field trials with an irregular shape
(Gilmour et al., 2015).
There was an outbreak of Mycosphaerella leaf disease (MLD) 2 years after

planting. Each tree was then assessed for the percentage of the juvenile foliage
affected by MLD, following the method described by Milgate et al. (2005).
Over-bark diameter at breast height (DBH) was measured at 2, 4 and 8 years
from planting, with the later age corresponding to about half the harvest age of
E. globulus plantations. The MLD mean was 23% (s.d.= 11%), and the DBH

means increased from 98 mm (s.d.= 16 mm) at age 2 to 175 mm
(s.d.= 37 mm) at age 8 years. The mean tree survival was high, dropping from
96% at age 2 to 93% at age 8 years.
The sequence and rationale of the analytic steps followed to model our data

are depicted in Figure 1, and further details are given below and in
Supplementary Information.

Univariate data analysis
Definition of the general statistical model. For each trait at a given age, the
following univariate general linear mixed model was fitted:

y ¼ Xbþ Zaua þ Zsus þ Zmum þ Zrur þ Zouo þ e ð1Þ
where y is a vector of individual tree observations, b is a vector of fixed

effects, ua is a vector of random additive genetic effects, us is a vector of random
full-sib family effects, um is a vector of random maternal effects in the diallel, ur
is a vector of random reciprocal effects in the diallel, uo is a vector of additional
random effects, e is a vector of random residual effects and X, Za, Zs, Zm, Zr
and Zo are incidence matrices linking a tree’s phenotype to the fixed and
random effects. The vector b included the overall trait mean and a term to
account for the race effects within each cross type (that is, diallel or factorial).
The vector ua was composed of sub-vectors comprising direct and indirect
additive genetic effects. The vector us contained full-sib family effects for each
cross type. The vector uo included effects for the different experimental design
features such as replicates, and rows and columns within replicates. The
residual term e was partitioned into e= ξ+η, with the elements in vector ξ
following a spatial autoregressive process and the elements in vector η being
distributed independently of each other and of those in ξ. Vectors b and uo also
included terms to remove non-stationarity from ξ.

Under the general mixed model specified in Equation (1), the joint
distribution of the random terms was assumed to be multivariate normal with
a zero-mean vector and a block-diagonal variance matrix, specified as a direct
sum of variance–covariance matrices related to the effects in ua, us, um, ur, uo
and e. The form of the variance–covariance matrices for effects in uo and e
depended on the analysis that was carried out for modeling the interactions
between a focal tree and its immediate neighbors, as described below. An
arcsine transformation (that is, sin− 1 ffiffiffiffiffiffiffiffiffiffiffi

MLD
p� �

) was applied for the MLD data,
as preliminary analysis of this trait indicated that the distribution of the model
residuals was slightly skewed.

Figure 1 Sequence of analyses followed to model indirect effects at the
heritable and non-heritable levels for the MLD and DBH data measured in a
forest genetic trial of Eucalyptus globulus.
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Modeling individual neighbor effects. In forest genetic trials, trees are usually
planted in a rectangular or square grid indexed by row and column numbers,

and so a focal tree has up to eight immediate neighbors (Figure 2). We jointly

modeled the covariance of a focal tree with its eight immediate neighbors with

the aim of identifying the positions impacting most on IGEs. For this purpose,

we considered three basic models as follows:

� indirect effects at both the heritable (that is, additive genetic) and non-

heritable (that is, independent residual) levels, using all eight neighbors

(hereafter called model FN_1);
� indirect effects at the additive genetic level only, using all eight neighbors

(hereafter called model FN_2); and
� indirect effects at the additive genetic level only, using a subset of the

neighbor positions (hereafter called model RN).

In models FN_1 and FN_2, ua ¼ u0ad ; u
0
aiðK1 Þ

;u0aiðK2 Þ ; :::::;u
0
aiðK8 Þ

� �0
with the

related incidence matrix given by Za ¼ Zad ;ZaiðK1 Þ ;ZaiðK2 Þ ; :::::;ZaiðK8 Þ

� �
, where

the subscripts d and i denote direct and indirect effects, respectively, the

subscripts K1 to K8 denote the neighbor positions (Figure 2), and the

superscript 0 refers to the transpose operation. Zad relates the phenotype of a

focal tree to its own direct additive genetic effect, and ZaiðK1Þ to ZaiðK8 Þ relate the

phenotype of a focal tree to the indirect additive genetic effect of each of its

eight immediate neighbors (that is, from K1 to K8). For the indirect genetic

effects under model RN, ua and Za pertained to a reduced set of neighbors. To

model the IGEs as a common effect across positions except for scale, we used a

constrained factor analytic structure with one factor, hereafter denoted as FA1,

for the genetic effects in ua. A common indirect effect was modeled by setting

the specific variances (representing variation that is not explained by the factor)

associated with the neighbor effects to zero, so that the correlations between the

indirect effects of K1 to K8 and the direct effect are the same except for sign, and

the correlations among the indirect effects of K1 to K8 are all one or minus one.

Thus, the ‘factor’ represents the common indirect effect, and the loading for a

given neighbor represents the size (scale) of the effect in that direction. This

constrained FA1 matrix with 10 parameters was used in models FN_1 and

FN_2. A reduced form, obtained by deleting certain neighbor positions, was

used in model RN. Further details on modeling effects in ua are given in

Supplementary Note S1 (Supplementary Information).

In these three models, the spatially correlated residuals in ξ were modeled by
a variance–covariance structure based on a separable autoregressive process in
the row and column directions of the field layout, and thus
VarðnÞ ¼ s2ce RrowðfrowÞ#RcolðfcolÞ½ �, where s2ce is the variance of the trend
(correlated residual) process, and Σrow and Σcol are autoregressive correlation
matrices with autocorrelation parameters ϕrow and ϕcol for row and column
directions, respectively. In addition, under model FN_1, we explicitly modeled
direct and indirect (co)variances pertaining to non-heritable effects that may
cause interactions between a focal tree and its immediate neighbors, and
distributed independently of the correlated residuals in ξ. In this sense, and akin
to effects in ua, we used a FA1 structure to model the variance–covariance
matrix for the independent residuals in η. For models FN_2 and RN, the
residuals in η were assumed to represent direct non-heritable effects only.
Further details on the modeling of effects in ξ and η are provided in
Supplementary Note S2 (Supplementary Information).

We used the Akaike’s (AIC; Akaike, 1974) and Schwarz’s Bayesian (BIC;
Schwarz, 1978) information criteria (see Supplementary Note S3 in
Supplementary Information) to successively compare the models. The compar-
ison of model FN_2 to model FN_1 assessed whether there was important non-
heritable indirect effects after allowing for indirect effects at the genetic level.
Then, assuming that FN_2 was a plausible model, several RN models were
compared to the model FN_2 to assess whether all eight neighbor positions
were necessary for modeling IGEs. Differences (Δ) in AIC or BIC values were
computed with respect to the more parsimonious model (that is, FN_2 and RN
in the first and second comparisons described above, respectively).
Supplementary Note S4 (Supplementary Information) describes the procedure
used to compare RN and FN_2 models for identifying those neighbor positions
with the greatest influence on the expression of IGEs for a given trait and age.

Modeling a combined indirect effect. The preceding models used a FA1
structure to define an underlying factor for indirect effects, and the loadings
provided the regression or weighting of this factor with respect to the various
neighbor positions. Thus, the underlying factor in the FA1 model represents a
common indirect effect. Alternatively, one can calculate a combined indirect
effect using a sum of weighted neighbor design matrices, where the weights are
calculated as ‘intensity of interaction factors’ based on neighbor distance, as
done by earlier authors (for example, Cappa and Cantet, 2008; Costa e Silva
and Kerr, 2013). In the present case, we used both approaches in a
complementary manner, by first applying the FA1 structure to identify the
neighbor positions contributing most to IGEs, and then using these influential
neighbors to model a combined indirect effect (Figure 1). Supplementary Note
S5 (Supplementary Information) describes the methodological details in regard
to the modeling of a combined indirect effect under univariate data analysis.

Bivariate data analysis
To study the genetic relationships between pairs of traits or ages, we extended
the univariate approach that modeled IGEs as a combined effect using the most
influential neighbors and intensity of interaction factors to obtain a bivariate
linear mixed model which, following a reformulation of Equation (1), can be

Figure 2 Neighborhood consisting of a focal tree and its eight immediate
neighbors, and the neighbors contributing most to IGEs for Mycosphearella
leaf disease (MLD) and breast-height stem diameter (DBH) growth at ages 2
and 4 years, respectively. The same-row neighbors are denoted as K1 and K2;
the same-column neighbors are denoted as K3 and K4; and the diagonal
neighbors are denoted as K5, K6, K7 and K8. The inter-column (within row)
spacing corresponds to a distance between the focal tree and K1 or K2 of
2.125 m, and the inter-row spacing corresponds to a distance between the
focal tree and K3 or K4 of 5 m. The direction to the north is also depicted.
The arrows indicate the neighbors contributing most to IGEs, as detected
when modeling IGEs as individual neighbor effects by using a factor analytic
structure with one factor (FA1). In this context, the arrow length is
proportional to the parameter estimate/standard error ratio of a neighbor’s
loading on the common factor, standardized by the maximum value observed
for this ratio across the two illustrated cases. The sign of the direct–indirect
genetic covariance between the focal tree and each of its influential neighbors
is also shown. The FA1 model for MLD had a generally positive correlation
between direct and indirect genetic effects, which reflects the infection
process; the FA1 model for DBH had a generally negative correlation between
direct and indirect genetic effects, reflecting competitive interactions (see
Supplementary Table S1 and its footnotes for further details).
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represented as:

y ¼ Xbþ Zaduad þ Zaiuai þ
Xt

l¼1

Zlul þ nþ g ð2Þ

where y ¼ ðy01; y02Þ0, X= diag(X1, X2), b ¼ ðb01; b02Þ0, Zad ¼ diagðZad1
;Zad2

Þ,
uad ¼ ðu0ad1 ; u

0
ad2

Þ0, Zai ¼ diagðZai1
;Zai2

Þ, uai ¼ ðu0ai1 ; u
0
ai2
Þ0, Zl ¼ diag Zl1 ;Zl2ð Þ,

ul ¼ ðu0l1 ; u0l2 Þ
0, n ¼ ðn01; n02Þ0 and g ¼ ðg01;g02Þ0;

Pt
l¼1 Zlul includes each

of the terms defined under Equation (1) for full-sib family, maternal, reciprocal
and additional random effects; the subscripts 1 and 2 refer to a pair of traits
or ages.
The vector b included a mean term, as well as other fixed effects fitted as

required for each trait or age. For all the random terms defined under Equation
(2), the description of the corresponding variance–covariance matrices is
provided in Supplementary Note S6 (Supplementary Information).

Parameter estimation
Restricted maximum likelihood (REML) estimates of (co)variance parameters
were obtained by using the Average Information REML algorithm developed by
Gilmour et al. (1995), and implemented in the ASReml software (Gilmour
et al., 2015). The phenotypic variance for a trait at a given age was calculated as
described by Costa e Silva et al. (2013). On the basis of the REML estimates of
additive genetic (co)variances obtained by modeling IGEs as a combined effect,
direct–indirect genetic correlations were calculated for a trait at a given age
under the univariate analysis, and between traits or ages under the bivariate
analysis. In addition, the correlation between the total breeding values of two
traits or ages ðrTBV ð1;2Þ Þ was computed as described in Supplementary Note S7
(Supplementary Information).
Taylor series expansion was used to obtain approximate standard errors for

the (co)variance parameters estimated from the linear mixed model, as well as
for derived linear combinations or ratios of the (co)variance estimates (Lynch
and Walsh, 1998; Gilmour et al., 2015). Because of the computational time
required to fit more complex models, no attempts were made to formally test
the significance of the genetic correlations estimated under the bivariate
analysis, although REML likelihood-ratio tests were used to test the significance
of (co)variance parameters estimated under simpler (univariate) models fitted
for a given trait and age. Consequently, where adequate, the significance of a
genetic correlation (that is, deviation from zero) was judged by a conservative
approach based on the ratio of the parameter estimate relative to its
approximate standard error (that is, a statistically significant outcome at the
5% level occurs when the ratio isX 1.96, assuming that it is asymptotically
normally distributed).

RESULTS

Univariate data analysis
Modeling individual neighbor effects. Table 1 presents the results
obtained from comparing model FN_2 to FN_1, and model RN to
FN_2, by using the AIC and BIC information criteria. In general, the
AIC and BIC tended to agree on the preferred model, although the
magnitude of the differences in ΔAIC were considerably smaller than
those in ΔBIC, reflecting the larger weight placed on the penalty
for model complexity in the BIC relative to AIC (see Supplementary
Note S3).
As a model for these data, FN_2 provided in general a better

compromise between model fit and complexity than FN_1. For DBH,
the negative values of ΔAIC(FN_2, FN_1) and ΔBIC(FN_2, FN_1) indicated
that both information criteria preferred FN_2 over FN_1. For MLD,
model FN_2 was clearly supported by the BIC only. However, despite
its positive value (which would favor model FN_1), the magnitude of
ΔAIC(FN_2, FN_1) for MLD was ⩽ 2 which, according to the guidelines
proposed by Burnham and Anderson (2002; page 70), indicates a
substantial level of empirical support for FN_2. Hence, based on the
AIC, model FN_2 was essentially as good as FN_1 for MLD, as the
increase in REML log-likelihood obtained from FN_1 did not justify T
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the extra model complexity. Under these circumstances, and as
suggested by Kuha (2004), ‘playing safe’ and preferring the simpler,
more parsimonious model is the best decision. Selection of an overly
complex model is more likely when the true effect of a measured
factor is relatively weak (Richards, 2008). This could be the case of
MLD, as suggested by the estimate/standard error ratios of FA1
loadings estimated for indirect additive genetic effects being in general
weaker for MLD than for DBH (see Supplementary Table S1 in
Supplementary Information). Consequently, when compared with
FN_1, modeling indirect effects at the additive genetic level only
under FN_2 was preferred to FN_1 for these traits and ages.
In the sequential approach followed for comparing model RN to

FN_2, the AIC and BIC preferred the same RN model for all the pairs
of RN/FN_2 comparisons. For MLD and DBH at age 2 years, the RN
model indicated by AIC included neighbor positions K1 and K2 only,
but position K4 was also included for DBH at ages 4 and 8 years. In all
cases, the change in BIC from adding an extra neighbor position was
42, indicating empirical evidence against a more complex RN model
(Kass and Raftery, 1995). Figure 2 illustrates the neighbors contribut-
ing most to IGEs for MLD and DBH at ages 2 and 4 years,
respectively.

Modeling a combined indirect effect. Table 2 shows the genetic (co)
variance parameters estimated by modeling IGEs as a combined effect,
using either the full set (hereafter called FS) of eight immediate
neighbors or a reduced set (hereafter called RS) comprising the most
influential neighbors that were identified under model RN. Figure 3
and Supplementary Table S4 (Supplementary Information) present
estimates over time for the total heritable variance [ ^VarðTBVÞ, where
TBV denotes total breeding value] underlying potential response to
selection, including the components of ^VarðTBVÞ due to direct
and indirect genetic effects.
The ŝ2ad estimate was found to be always highly significant

(Po0.001), according to a one-tailed likelihood-ratio test; in addition,

highly significant (Po0.001) outcomes were also always obtained by a
two-tailed likelihood-ratio test of the overall significance of IGEs, and
involving a joint test of both of the parameter estimates ŝ2ai and r̂adi . In
general, no major changes were detected between the FS and RS
neighborhoods for ŝ2ad , a trend that was also observed for ŝ2ad=ŝ

2
p

ratios (that is, ordinary heritability; Figure 3 and Supplementary Table
S4), as well as for the r̂adi estimates which are consistent with neighbor
infection (MLD) and strong competition (DBH) (Table 2). However,
while remaining virtually unchanged for MLD, the magnitude and
significance (as indicated by the ratio of the parameter estimate
relative to its standard error) of ŝ2ai values for DBH increased under
the RS analysis compared with those under the FS analysis, with the
relative improvement in the magnitude of ŝ2ai being accentuated with
age (Table 2). These results were reflected in the ΔAIC obtained from
comparing the RS and FS analyses for a given trait/age (not shown).
The contributions of IGEs to ^VarðTBVÞ differed between the FS

and RS analyses for a given trait/age, reflecting a lower value under the
RS neighborhood for the quantity nrow f row þ ncol f col þ ndiag f diag in
the equation used to calculate ^VarðTBVÞ (Costa e Silva and Kerr,
2013). For MLD under the RS, the reduction of the contribution of
the indirect genetic variance, coupled with a lower positive contribu-
tion due to the direct–indirect genetic covariance, resulted in a
decrease of ^VarðTBVÞ when compared with the FS (Figure 3). For
DBH under the RS, and despite the increases observed in ŝ2ai
(Table 2), there was also a reduction at all ages of the contribution
of the indirect genetic variance when compared with the FS; yet, the
lower value for nrow f row þ ncol f col þ ndiag f diag under the RS led to a
less negative contribution due to the direct–indirect genetic covar-
iance, which resulted in a net increase of ^VarðTBVÞ relative to the FS
(Figure 3).
The contributions of IGEs to the total heritable variance also

differed among traits/ages. When compared with ŝ2ad , IGEs increased
^VarðTBVÞ for MLD by 76 and 36% under the FS and RS,

respectively, leading to corresponding ^VarðTBVÞ=ŝ2
p ratios of 0.75

Table 2 Additive genetic (co)variance components (± standard errors) estimated from a univariate model in which IGEs were modeled as a

combined effect, using either full or reduced sets of neighbor positionsa,b,c,d,e,f

Trait (age) All eight neighbor positions Reduced set of neighbor positions

ŝ2
ad ŝ2

ai r̂adi ŝ2
ad ŝ2

ai r̂adi

MLD

(2 years)

78.18±13.81

(5.7)

1.63±0.65

(2.5)

0.82±0.13

(6.3)

82.96±14.45

(5.7)

1.50±0.62

(2.4)

0.83±0.13

(6.4)

DBH

(2 years)

91.27±16.18

(5.6)

6.08±1.50

(4.0)

−0.92±0.06

(−15.3)

90.32±15.26

(5.9)

6.78±1.49

(4.6)

−0.90±0.06

(−15.0)

DBH

(4 years)

218.12±29.60

(7.4)

32.27±5.18

(6.2)

−0.96±0.03

(−32.0)

218.29±28.68

(7.6)

36.34±5.10

(7.1)

−0.95±0.03

(−31.7)

DBH

(8 years)

708.05±72.62

(9.7)

116.74±14.13

(8.3)

−0.97±0.02

(−48.5)

643.50±68.90

(9.3)

149.96±16.61

(9.0)

−0.95±0.03

(−31.7)

Abbreviations: IGEs signifies indirect genetic effects; DBH and MLD denote stem diameter at breast-height and Mycosphearella leaf disease, respectively.
aThe tabulated (co)variance parameter estimates refer to: ŝ2ad =direct additive genetic variance; ŝ2ai = indirect additive genetic variance; and r̂ adi =direct–indirect additive genetic correlation. The
ratio of the parameter estimate relative to its standard error is given in parenthesis.
bModeling IGEs as a combined effect used either all eight immediate neighbors of a focal tree (Figure 2) or a subset of the neighbor positions that were found to contribute most to IGEs (that is,
see ‘Neighbors kept in RN’ in Table 1).
cResults obtained from modeling IGEs as a combined effect by using all eight immediate neighbors were previously reported by Costa e Silva et al. (2013) for MLD at age 2 years, and DBH at ages
2 and 4 years. However, the results provided above for all neighbor positions differ slightly to those reported in Costa e Silva et al. (2013), as some parents have been subsequently re-allocated to
the factorial to improve the number of families per parent and geographic focus of the parents in the diallel (see the Materials and methods section).
dFor MLD, the parameter estimates refer to the (arcsine) transformed and rescaled observations (for more details, see footnote e of Table 1).
eA univariate model that ignored additive genetic terms involving IGEs was used as a base model to assess the statistical significance of the direct additive genetic variance via a one-tailed
likelihood-ratio test (Stram and Lee, 1994). In this sense, a nested model constraining the estimate of the direct additive genetic variance to be zero was compared with the base model. For all
traits and ages, the estimate of the direct additive genetic variance was found to be always highly significant (Po0.001).
fThe complete univariate model that estimated both direct and indirect additive genetic (co)variances (providing the results tabulated above) was compared with a nested model that fitted only
direct additive genetic effects, in order to carry out a joint test of significance for the variance and covariance parameter estimates involving IGEs. Using a two-tailed likelihood-ratio test, highly
significant (Po0.001) results were detected for all traits and ages.
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and 0.61, and thus were noticeably greater than the ŝ2ad=ŝ
2
p ratios of ≈

0.4 (Supplementary Table S4). The IGEs reduced substantially
^VarðTBVÞ for DBH at all ages when compared with ŝ2ad (Figure 3):

the percentage decreases under the FS were 77, 92 and 95%, and those
under the RS were 54, 81 and 87%, at ages 2, 4 and 8 years,
respectively; this led to corresponding ^VarðTBVÞ=ŝ2

p ratios of 0.09,
0.04 and 0.03 under the FS, and 0.17, 0.08 and 0.06 under the RS
(Supplementary Table S4). All of these ^VarðTBVÞ=ŝ2

p ratios were
considerably lower than the ŝ2ad=ŝ

2
p ratios (varying from 0.37 to 0.48),

indicating that the heritable competition expressed in DBH growth
will substantially limit the potential for response to selection. Yet, these
results over time suggest that the impact of competitive interactions
among individuals on the heritable variance of DBH tended to
stabilize at age 8 years (as also observed for r̂adi in Table 2). Indeed,
although the component of ^VarðTBVÞ due to the direct–indirect
genetic covariance was increasingly negative with age for DBH, the
relative difference between ages 2 and 4 years was much greater than
that between 4 and 8 years (Figure 3). These results clearly indicate a
marked change in the competitive environment between ages 2 and 4
years, an interval usually associated with canopy closure.

Bivariate data analysis
On the basis of data analyses using a bivariate linear mixed model,
estimates of genetic correlations—that is, correlations comprising the
direct (ad) and/or indirect (ai) additive genetic effects, plus those
involving TBV—are given in Table 3 for relationships between MLD
measured at the age of infection (2 years) and post-infection DBH
growth at ages 4 and 8 years, and in Table 4 for relationships between
DBH measured at early (2 and 4 years) and late (8 years) ages.
Preliminary analysis that used a simpler bivariate model fitting direct
genetic effects only indicated a non-significant genetic correlation
estimate (− 0.03± 0.16) between MLD and DBH measured at age 2
years; no correlation is expected since DBH at this age effectively
reflects growth before infection by Mycosphaerella. Thus, a more
complex variance–covariance matrix (as defined in Equation [S_6]; see
Supplementary Note S6) to estimate direct–indirect and indirect–
indirect genetic correlations between these traits at age 2 years was not
attempted.
The direction of the genetic correlations involving ad and/or ai

effects was stable between MLD and post-infection DBH, but the
magnitude and significance of the estimates decreased over time

Figure 3 Relative contributions (that is, as a proportion of the phenotypic variance) to the total heritable variance due to the variances associated with direct
and indirect genetic effects, and to their covariance, for breast-height stem diameter (DBH) growth at ages 2, 4 and 8 years, and for a damage due to a
transient outbreak of Mycosphearella leaf disease (MLD) occurring at age 2 years, estimated using the full (FS) and reduced (RS) sets of neighbor positions.
There is a marked contrast of the impact of IGEs on disease damage compared with growth: for MLD, the positive direct–indirect covariance (indicative of
infection) significantly increased the total heritable variance in the population compared with the direct genetic variance; conversely, for DBH, the negative
direct–indirect covariance (indicative of competition) resulted in a substantial decrease of the total heritable variance. For DBH, the relative magnitude of the
indirect genetic variance and the direct–indirect genetic covariance increased more with age than the direct genetic variance did, but less between ages 4
and 8 years than between ages 2 and 4 years, leading to a stabilization of the impact of competitive interactions on the heritable variance at the later age.
Further details on these results are provided in Supplementary Table S4 (Supplementary Information).
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(Table 3). Negative genetic correlation estimates indicated an adverse
impact of MLD assessed at age 2 years on the ad effects for later
growth. This appeared mainly at the direct genetic level, as genotypes
with higher ad effects for damage by MLD were significantly associated
with lower DBH in the focal tree (r̂ ad MLD;ad DBH =− 0.44± 0.11 and
− 0.31± 0.11 for DBH measured at ages 4 and 8 years, respectively)
but did not reduce the growth of its neighbors. Rather, the ad effects
for MLD were significantly positively correlated with the ai effects for
DBH measured at ages 4 and 8 years (r̂ ad MLD ;ai DBH = 0.42± 0.10 and
0.36± 0.09). In addition, despite a highly positive r̂adi for MLD
(Table 2), the estimated correlations between the ai effects for MLD
and the ad effects for DBH did not appear to differ significantly from
zero (r̂ ai MLD ;ad DBH =− 0.34± 0.22 and − 0.07± 0.24). These outcomes
could be explained by the following: (1) a focal tree performing poorly
for growth (a lower ad effect for DBH) due to disease damage (a
higher ad effect for MLD) will compete less with its neighbors (a less
negative, or even positive ai effect for DBH), as indicated by the strong
negative r̂adi (Table 2) estimate for DBH; and (2) this reduced
competitive environment of the neighborhood as a whole could result
in a favorable effect by countering any adverse impact that the
increased risk of neighbor infection (a higher ai effect for MLD,
reflecting a strong positive r̂adi estimate; Table 2) would have on the
DBH growth of neighboring trees. These putative explanations are also
mirrored in the positive relationships between MLD and DBH for
ai effects, although the estimated genetic correlations did not
appear to be significant particularly for DBH at age 8 years
(r̂ ai MLD ;ai DBH = 0.24± 0.25). When the direct and indirect genetic
effects were combined (as in Equations [S_9] and [S_10]; see
Supplementary Note S7), a significant adverse overall association
was obtained between MLD and post-infection DBH at age 4 years

(r̂ TBV MLD;TBV DBH =− 0.37± 0.18), but was virtually zero for later
growth (r̂ TBV MLD;TBV DBH = 0.01± 0.21) (Table 3).
The results in Table 4 show that the direct–direct genetic correla-

tions between DBH at ages 2 or 4 years and at age 8 years were positive
and significant, although lower for age 2 (0.79± 0.05) than for age 4
(0.93± 0.02), a pattern also observed for the total breeding values (that
is, 0.60± 0.15 versus 0.73± 0.14). The direct–indirect genetic correla-
tions were all negative and significant among the early-late DBH
relationships: the correlation between the ad effects at age 2 years and
the ai effects at age 8 years (− 0.80± 0.05) indicated that a genotype
growing rapidly at an early stage will have (on average) a substantial
negative heritable effect on the later growth of its neighbors; in
addition, the correlation between the ai effects at age 2 years and the ad
effects at age 8 years (− 0.94± 0.03) is consistent with an early onset of
competitive interactions for growth between a focal tree and its
neighbors. For the ai effects, the significant correlation estimates for
DBH over time indicated that heritable competition effects were highly
positively correlated between early and late growth stages.

DISCUSSION

A new approach to identify the most influential neighbors
A novel application using a factor analytic (FA) model enabled the
modeling of indirect effects, at the non-heritable and/or heritable
levels, as individual neighbor effects on a focal tree. For a given trait
and age, a sequential approach comparing factor analytic models
allowed the identification of a subset of neighbor positions with the
greatest influence on the expression of IGEs. Although factor analytic
models have been commonly applied for studying genotype by
environment interaction (Smith et al., 2001; Meyer, 2009), including
forest trees (for example, Costa e Silva and Graudal, 2008; Cullis et al.,

Table 4 Genetic correlations (with standard errors in parenthesis) estimated between DBH growth measured at late (8 years) and early ages

(2 and 4 years)a

DBH (4 years) DBH (2 years)

ad ai TBV ad ai TBV

DBH (8 years)
ad 0.93 (±0.02) −0.99 (±0.01) — 0.79 (±0.05) −0.94 (±0.03) —

ai −0.94 (±0.02) 0.99 (±0.01) — −0.80 (±0.05) 0.95 (±0.03) —

TBV — — 0.73 (±0.14) — — 0.60 (±0.15)

Abbreviations: IGEs, indirect genetic effects; DBH, stem diameter at breast-height.
aAdditive genetic (co)variance components were estimated from a bivariate model in which IGEs were modeled as a combined effect, using a subset of the neighbor positions that were found to
contribute most to IGEs (that is, see ‘Neighbors kept in RN’ in Table 1). The estimated (co)variances were used to derive genetic correlations between: the direct genetic effects (ad) for the two
traits; the ad for one trait and the indirect genetic effect (ai) for another, and vice versa; the ai for the two traits; and the total breeding values (TBV) for the two traits.

Table 3 Genetic correlations (with standard errors in parenthesis) estimated between MLD measured at the age of infection (2 years) and post-

infection DBH growth (ages 4 and 8 years)a,b

DBH (4 years) DBH (8 years)

ad ai TBV ad ai TBV

MLD (2 years)
ad −0.44 (±0.11) 0.42 (±0.10) — −0.31 (±0.11) 0.36 (±0.09) —

ai −0.34 (±0.22) 0.41 (±0.24) — −0.07 (±0.24) 0.24 (±0.25) —

TBV — — −0.37 (±0.18) — — 0.01 (±0.21)

Abbreviations: IGEs signifies indirect genetic effects; DBH and MLD denote stem diameter at breast-height and Mycosphearella leaf disease, respectively.
aAdditive genetic (co)variance components were estimated from a bivariate model in which IGEs were modeled as a combined effect, using a subset of the neighbor positions that were found to
contribute most to IGEs (that is, see ‘Neighbors kept in RN’ in Table 1). The estimated (co)variances were used to derive genetic correlations between: the direct genetic effects (ad) for the two
traits; the ad for one trait and the indirect genetic effect (ai) for another, and vice versa; the ai for the two traits; and the total breeding values (TBV) for the two traits.
bFor MLD, the parameter estimates refer to the (arcsine) transformed and rescaled observations (for more details, see footnote e of Table 1).
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2014), we are unaware of any studies where they have been used to
study the interactions between neighbors at the genetic or non-genetic
levels. However, structural equation modeling, which combines path
and factor analyses, has been used to study phenotypic interactions
underlying IGEs in plants (Wolf et al., 2011) and animals
(Santostefano et al., 2016).
The application of the factor analytic model has the advantage that

it allows for: (i) an initial testing of whether interaction effects can
be partitioned into a genetic and non-genetic component; and
(ii) directionality of the interaction effects to be empirically detected.
In allowing for asymmetry, the factor analytic model enables the
identification of the most influential neighbor positions, and these
alone can subsequently be used to model a combined indirect effect.
Our results also indicated that the relative importance of the
contribution of each neighbor to IGEs was associated with the
significance of the corresponding loading in the factor analytic model.
When compared with all eight immediate neighbors, modeling IGEs
as a combined effect of the most influential neighbors often resulted in
increases in the magnitude and significance of the estimated indirect
genetic variance, while estimates of narrow-sense heritability remained
virtually unchanged. Forest genetics trials are generally smaller than
that used in the present study, and IGEs may go unnoticed unless the
most influential neighbors are identified. We have indeed observed
this in other field trial analyses, in which a significant indirect genetic
variance estimate has been detected after considering only a subset of
neighbor positions (unpublished results). Thus, in forest trees, we
suggest that quantitative genetic studies involving interactions among
conspecifics commence with the identification of the neighbors
contributing most to indirect effects (see Supplementary Figure S1
in Supplementary Information, and also the Discussion section in
Costa e Silva and Kerr, 2013).
In the present study, the FA1 model was fitted to individual

neighbor positions to explicitly investigate their influence on IGEs
depending on directionality. If our interest had been focused mainly
on distance, the FA1 model could have been fitted to distance
categories (that is, in our case, three classes resulting from collapsing
same-row, same-column or same-diagonal neighbors together). How-
ever, using a FA approach for the analysis of IGEs in animal systems
will be limited by the fact that there is usually no positional basis for
giving differential weights to individuals. Nevertheless, an application
of the FA model in both farmed and wild animal systems could be
possible where categories of interacting individuals can be identified,
for example, based on the time the animals interact within a given
pen/cage (Cantet and Cappa, 2008). In this sense, the length of time
the animals share a pen could be used to collapse all pen mates onto a
specified number of categories (for example, akin to collapsing
neighboring trees onto distance classes), and then the FA model
could be applied using these categories as a positional basis.

The most proximal trees are the most influential
The most influential neighbors varied with trait and age, but in all
cases the same-row positions were identified as impacting most on
IGEs. These trees were the spatially closest neighbors to the focal
tree, and these results are consistent with the well-documented
distance-related competition demonstrated in E. globulus (Soares and
Tomé, 1999). Nevertheless, given that the same-row positions were
also in the direction of cultivation and ripping, below-ground intra-
row interactions may have been further facilitated by greater ease of
root growth within rows due to less compacted soils (Misra and
Gibbons, 1996). Although our results indicated that diagonal neigh-
bors could be effectively ignored, the same-column (inter-row)

neighbors were sometimes important depending on trait and age.
Weaker competition effects of diagonal neighbors have also been
reported for growth in eucalypt clones (Resende et al., 2016) and
Douglas-fir progenies (Cappa et al., 2016). The present study found
asymmetry in the effect of the same-column neighbor positions on the
DBH growth of a focal tree. Specifically, only the southern same-
column neighbor position (that is, K4; Figure 2) was identified as
contributing most to IGEs, and this did not become apparent until
after canopy closure (age 4 years). In forest trees, asymmetric
competition is expected with respect to size (Boyden et al., 2008)
and species (Canham et al., 2004; Boyden et al., 2005), but there is a
paucity of reports of spatial asymmetry as we have observed. In the
present case, the greater influence of the southern than the northern
same-column position is not consistent with a shading effect, as in the
southern hemisphere this position is the one which would be shaded
by the focal tree and not the opposite. However, with E. globulus
exhibiting a strong positive relationship between above-ground
biomass and below-ground fine root surface and biomass (O’Grady
et al., 2006), E. globulus fine roots reported to start occupying inter-
row planting space by 14 months of age (O’Grady et al., 2005) and
root systems of forest trees being often markedly asymmetric (Coutts
et al., 1999), there is a possibility that the asymmetry we have observed
in DBH for the same-column positions after age 2 years reflects some
form of below-ground root competition (Schenk, 2006). In this case,
competition for water is the most likely below-ground factor in this
Mediterranean climate, although nutrient competition alone or in
combination with water stress cannot be dismissed (White et al.,
2009).

Age trends in genetic parameters estimated for DBH growth
Consistent with Costa e Silva et al. (2013), our results suggest that
predictions of response to selection based on quantitative genetic
models ignoring IGEs may be overestimated for growth and under-
estimated for disease susceptibility. This conclusion holds regardless of
whether modeling IGEs as a combined effect was undertaken with the
full neighborhood or with just the most influential neighbors. In
particular, the significant variance due to IGEs and strong negative
correlation between direct and indirect genetic effects observed in the
latest 8-year DBH measurement were consistent with earlier-age
estimates, and they demonstrate strong genetic-based competitive
interactions for growth. Other studies with forest trees have also
reported such heritable competition for diameter growth (Resende
et al., 2005; Cappa and Cantet, 2008; Brotherstone et al., 2011; Cappa
et al., 2015, 2016). Heritable competition is of particular concern in
selection experiments, as strong competitors will appear better and
poor competitors worse than they would in a production environment
where genotypes are more similar in their competitive ability (Muir,
2005; Bijma et al., 2007; Muir et al., 2013). The competition observed
among neighbor trees is akin to the negative effects of social
interactions in animals (Ellen et al., 2014; Wilson, 2014), demonstrat-
ing the constraints imposed by the ‘social environment’ on response to
selection. High negative correlations between direct and indirect
genetic effects were reported for growth in Japanese quail (Muir,
2005) and for survival time in crossbreed laying hens (Peeters et al.,
2012). Strong negative social interactions were also observed in deer
mice (Wilson et al., 2009), red deer (Wilson et al., 2011) and fighting
cows (Sartori and Mantovani, 2013).
Competition is positively related to neighbor tree size in E. globulus

(Soares and Tomé, 1999), and it is expected to increase with age.
Although the results for DBH showed a marked impact of competitive
interactions on the heritable variance, this tended to stabilize after
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canopy closure as indicated by diminishing rates of change in genetic
parameters associated with IGEs. Nevertheless, the total heritable
variance for DBH was still declining between ages 4 and 8 years due to
the increasingly negative direct–indirect genetic covariance, although
both indirect and direct genetic variances increased with stand
development. This dynamic interplay between increasing expression
of genetic effects with age being countered by competition has
analogies in classical heritability studies of E. globulus (Stackpole
et al., 2010).

Genetic correlations
A multivariate approach is important to allow the identification of the
interacting phenotypes responsible for the IGEs affecting the expres-
sion of a given trait (Wolf et al., 2011; Bailey and Hoskins, 2014). For
example, in a QTL study where the same (standard) neighbor plant
genotype was interacting with different focal genotypes from a set of
Arabidopsis recombinant inbred lines, Mutic and Wolf (2007) and
Wolf et al. (2011) showed that not only did the QTL have pleiotropic
direct effects on multiple traits in the focal plant phenotype, but also
‘pleiotropic indirect’ effects on traits expressed in neighboring
individuals. These effects were reported for size and developmental
traits. Mutic and Wolf (2007) recognized both non-reciprocal and
reciprocal pleiotropic interactions, to differentiate cases where, respec-
tively: (i) the expression of a trait in an individual is influenced by
another trait in another individual, but the second trait is not affected
by the interaction; and (ii) a trait expression in an individual is
affected by a second trait in another individual and vice versa (see also
Moore et al., 1997). Wolf et al. (2011) further differentiated cases of
identified and unidentified pleiotropy, where there is and there is not a
functional/causal connection between the direct genetic effect on one
trait and the IGE on a different trait, respectively. In the latter case,
correlations between a direct genetic effect on one trait and the IGE on
another trait can arise through pleiotropic direct genetic effects
involving an unmeasured trait, which provides the mechanistic path-
way for the IGE. Bailey and Hoskins (2014) similarly identified such
interactions as cryptic IGEs in a study of Drosophila melanogaster,
where the direct and indirect genetic effects for the same trait (male
leg-tapping) were uncorrelated.
In the present study, a greater complexity to neighbor interactions

was revealed by the bivariate models involving disease damage and
diameter growth at various ages. For each trait, there were significant
correlations between direct and indirect genetic effects, with IGEs
reflecting an increased probability of neighbor infection and strong
competition (consistent with Costa e Silva et al., 2013). Although the
high direct–indirect correlation observed for MLD damage (that is,
r̂adi≈0.8; Table 2) suggests that these IGEs simply reflect variation in
neighbor disease exposure arising from genetic variation in focal tree
susceptibility, the possibility of genetic variation in infectivity per se
cannot be dismissed (Lipschutz-Powell et al., 2012; Anche et al., 2014).
At the time of infection (age 2 years), no significant direct genetic
correlation was observed between MLD damage and DBH growth.
However, later-age growth measurements revealed a significant
adverse, direct genetic correlation between MLD damage and sub-
sequent growth. For E. globulus, such genetic signatures of MLD
damage on subsequent growth have been reported previously (Milgate
et al., 2005), and are no doubt a pleiotropic direct effect of QTL
affecting disease susceptibility (Freeman et al., 2008). While the initial
MLD infection may favor faster growing plants in some cases (Milgate
et al., 2005), this was not evident in the present study, and all evidence
suggests that the direct, post-infection genetic correlations between
these two traits reflect an adverse, non-reciprocal pleiotropic effect of

disease damage on later-age growth. This functional conclusion
follows from the well-documented adverse effects of pests and diseases
on the growth of plantation-grown eucalypts (Eyles et al., 2013). MLD
infection can lead to varying levels of premature leaf defoliation in E.
globulus (Carnigie and Ades, 2003; Pinkard and Mohammed, 2006).
Diameter growth of E. globulus is reduced following canopy defoliation
(Carnegie and Ades, 2003; Quentin et al., 2011). In addition, leaves
retained after MLD infection exhibit reduced photosynthetic capacity
(Pinkard and Mohammed, 2006).
Despite adverse pleiotropic effects of disease damage on productiv-

ity at the direct genetic level, the IGEs arising from disease damage
were not associated with a reduction in the growth of neighbors.
Rather, increased disease damage on a focal tree (direct genetic effect)
was associated with increased neighbor growth (indirect genetic effect)
at a population level, despite the higher risk of neighbor infection. The
reduced IGEs due to competition from slower-growing focal trees
damaged by MLD thus appear to have over-ridden any adverse effects
on growth of the increased risk of disease infection in the neighbors.
This countering effect of IGEs for growth is sufficiently strong to result
by age 8 years in: (i) a positive but non-significant correlation between
the IGEs of MLD damage and growth; and (ii) a negligible correlation
between the total breeding values of MLD damage and growth. The
transient effect of the MLD damage on growth observed for the total
breeding values was not evident for the direct breeding values, and no
doubt will depend on the level of infection and strength of the adverse
direct genetic effects of disease damage on growth. For example, a
more enduring impact may be expected in outbreaks such as those
reported by Milgate et al. (2005), where the average level of disease
infection was higher (that is, 34% leaf area damaged compared with
23% observed in the present study) and the adverse direct genetic
correlation with growth was stronger (that is, − 0.77 versus our
estimate of − 0.44 at age 4 years).
Regardless of the dynamics associated with the interaction of IGEs

for disease damage and growth, for growth itself the correlations
involving indirect genetic effects remained relatively stable across ages.
At the phenotypic level, the onset of competition in E. globulus
plantings has been reported to occur between 21 and 31 months,
depending on factors such as spacing and site productivity, with a shift
from symmetric to asymmetric competition, as smaller trees become
suppressed with age (Soares and Tomé, 1996). As indicated from
univariate analyses of DBH, the increase in the relative importance of
IGEs observed between ages 2 and 4 years, and attributed to increasing
competition associated with canopy closure, appeared to stabilize at 8
years. In addition, the bivariate analyses of DBH across ages revealed
that IGEs established at age 2 years remained stable through stand
development. This is indicated by the age-to-age correlations between
the IGEs not differing significantly from one, and even being higher
than the genetic correlations between the direct genetic effects.
Although strong age-to-age genetic correlations for direct genetic
effects on growth are well established for forest trees (Stackpole et al.,
2010), this is the first report for IGEs. Our declining age-to-age
correlations for direct genetic effects and total breeding values are
consistent with the tendency generally observed with increasing age
difference. However, the absence of such an obvious decline for
correlations involving IGEs is noteworthy, and may reflect either a
time lag in their diminution or an inherent stability in competitive
effects. Such stability may arise from an inherent greater susceptibility
of smaller trees to competition reducing growth (Boyden et al., 2008),
thus buffering changes in genetic-based competition with age.
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Implications for wild populations
Although IGEs are clearly an important part of a tree’s environment in
plantations, the extent to which the observed IGEs impact the eco-
evolutionary dynamics of wild populations can only be inferred (Costa
e Silva et al., 2013). As with heritability (Andrew et al., 2005), studies
of IGEs in wild populations are rare (Wilson et al., 2011), but
increasingly possible using large-scale pedigree reconstruction with
molecular markers. Understanding the mechanisms, including inter-
action feedbacks, by which IGEs manifest (Trubenová et al., 2015) and
the demographic dynamics of IGEs (Wilson et al., 2011) will be
important. While some forest tree species grow in pure stands and
regenerate en masse, creating even-aged monospecific cohorts similar
to our planted population, in others recruitment is more continuous
(Ashton, 2000). In these cases, the strongest interactions are likely
across cohorts with pre-established, often related, phenotypes. The
extent to which indirect genetic effects at the intraspecific level (IGEs)
constitute a significant component of the biotic environment in the
wild must also be assessed against the multitude of interspecific
interactions (IIGEs) occurring at diverse trophic levels, from microbes
to predators (Whitham et al., 2008). Such studies are basic for our
understanding of the role of indirect genetic effects in shaping natural
patterns of genetic diversity and response to environmental change
(Bailey et al., 2014).
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