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Abstract

Mitochondria have various roles in cellular metabolism and homeostasis. Because mitochondrial 

dysfunction is associated with many acute and chronic degenerative diseases, mitochondrial 

biogenesis (MB) is a therapeutic target for treating such diseases. Here, we review the role of 

mitochondrial dysfunction in acute and chronic degenerative diseases and the cellular signaling 

pathways by which MB is induced. We then review existing work describing the development and 

application of drugs that induce MB in vitro and in vivo. In particular, we discuss natural products 

and modulators of transcription factors, kinases, cyclic nucleotides, and G protein-coupled 

receptors.
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Mitochondria, the metabolic powerhouses of the cell, have diverse functions including ATP 

production, biomolecule synthesis, ionic homeostasis and antioxidant defense. As cells age 

and accumulate damage, mitochondria less readily meet ATP demands, thereby diminishing 

the cells’ functions and regenerative capacity. After toxicant exposure or cell stress, 

mitochondria can be damaged, and increased free radical production may be followed by 

persistent mitochondrial dysfunction. Diminished ATP and increased free radicals propagate 

injury and subsequent tissue and organ dysfunction (Figure 1). Indeed, many acute and 

chronic degenerative diseases across multiple organ systems are associated with a degree of 

mitochondrial dysfunction, often with suppression of electron transport chain proteins and 

activities.1–4

Because many diseases are associated with mitochondrial dysfunction, research is underway 

to develop therapeutics that target mitochondria to prevent disease progression. For example, 

numerous compounds have been studied that prevent cell death by interfering with the 

formation of the mitochondrial permeability transition pore (MPTP), reducing oxidative 

stress using mitochondrial-targeted antioxidants, or modulating mitochondrial dynamics by 

inhibiting mitochondrial fission or promoting mitochondrial networking.5 However, whereas 

many of these strategies are effective for preventing injury in animal models, they target 

events that occur early in cellular dysfunction and therefore may be less efficacious for 

facilitating recovery after an insult. To address this problem, some groups have investigated 

compounds that induce mitochondrial biogenesis (MB), or the generation of new, functional 

mitochondria within cells to promote repair and regeneration.1

This perspective will describe the role of the peroxisomal proliferation activated receptor 

coactivator-1α (PGC-1α) in MB and the role of mitochondrial dysfunction in acute and 

chronic degenerative diseases. We will also describe existing compounds that induce MB, 

signaling pathways responsible for their effects, and finally, potential utility of these 

compounds for treating human acute and chronic degenerative diseases for which there are 

presently limited therapeutic options.

Regulation of MB

MB requires the activation of a complex transcriptional and translational program 

integrating both nuclear and mitochondrial genomes.6–7 Nuclear encoded mitochondrial 

genes, such as the mitochondrial transcription factors and the mitochondrial DNA (mtDNA) 

replication complex, facilitate transcription, replication, and proofreading of the 

mitochondrial genome.6 Integrity of mtDNA replication is particularly important in aging 

and chronic degenerative diseases, where deleterious mtDNA mutations and deletions can 

lead to dysfunctional mitochondria.8–9 For example, the nuclear transcription factors 

estrogen receptor (ER) and estrogen related receptor-α (ERRα), nuclear respiratory factors 

1 and 2 (NRF-1 and NRF-2), peroxisome proliferator-activated receptor (PPAR) family of 

transcription factors, thyroid hormone receptor (TR), cAMP-responsive element binding 

protein (CREB), and yin yang-1 (YY-1)10 increase expression of genes of the electron 

transport chain, mitochondrial transporters, antioxidant proteins, and other mitochondrial 

transcription factors. However, these transcription factors are pleotropic with effects on 

genes unrelated to MB. Selective induction of MB is typically regulated through 
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transcriptional co-activation proteins such as the PGC-1 family (Figure 2). PGC-1 proteins 

activate transcription and translation of mitochondrial genes and increase energy production 

in healthy cells, whereas in injured cells PGC-1 activation often normalizes overall 

mitochondrial function as measured by ATP production, mitochondrial membrane potential, 

and reactive oxygen species (ROS) generation.11–13

The PGC-1 family, composed of PGC-1α, PGC-1β, and PGC-1 related coactivator (PRC), 

facilitate the formation of complexes capable of activating the transcription of nuclear genes 

related to MB.14 PRC is thought to play a role in redox-sensitive inflammatory responses 

and MB during cellular proliferation, whereas PGC-1β appears to contribute more to 

maintenance of mitochondrial mass. In contrast, PGC-1α has been shown to drive MB in 

response to various environmental cues. Because PGC-1α tends to be the most inducible and 

responsive member of the PGC-1 family, its activation has emerged as a key therapeutic 

strategy for MB induction. However, it is important to note that PGC-1α-independent 

mechanisms of MB have been reported.15–18 Such mechanisms include compensatory 

activation of PGC-1β or PRC and direct activation of transcription factors that induce 

mitochondrial genes.

Through activation of PGC-1α and its associated transcription factors, multiple signaling 

pathways have been shown to regulate MB. PGC-1α can be directly activated by silent 

mating type information regulation 2 homolog 1 (SIRT1)-mediated deacetylation,19 

methylation by protein arginine methyltransferase 1 (PRMT1),20 or phosphorylation by 

kinases such as p38,21 protein kinase A (PKA),22 and AMP-dependent kinase (AMPK).23 

Additionally, PGC-1α and other transcription factors associated with MB can be activated 

by NO/cGMP and calcium-dependent signaling.24 In summary, these diverse signaling 

inputs allow exquisite control of mitochondrial homeostasis to meet cellular energy demands 

and to maintain proper cellular function.

The Importance of MB in Disease

Because mitochondria regulate many processes within cells, mitochondrial dysfunction or 

disruptions in mitochondrial homeostasis lead to severe deficits in cellular functions.1–2 

Injury to mitochondria following ischemia reperfusion injury, toxicant exposure, or severe 

inflammatory response leads to deficient ATP and disruption of ion homeostasis. 

Additionally, mitochondrial stress increases superoxide anion production and which causes 

damage to proteins and lipid membranes. These mitochondrial derangements disrupt cellular 

repair, proliferation, and differentiation status and increase cell death.

Mitochondrial dysfunction has been implicated in numerous acute and degenerative disease 

processes, such as myocardial infarction,25 stroke,26 and acute kidney injury (AKI).27 These 

disease states may be attributed in part to the role of mitochondria and oxidative metabolism 

in cellular differentiation as observed in neurons,28 myocytes,29 and immune cells.30 

Chronic conditions causally linked to such acute insults (such as chronic kidney disease and 

heart failure) are also characterized by persistent mitochondrial dysfunction,31–32 suggesting 

that the lack of mitochondrial recovery after an acute injury can also lead to chronic 

degenerative disease. For example, deficits in PGC-1 family proteins have been associated 

Cameron et al. Page 3

J Med Chem. Author manuscript; available in PMC 2017 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with the development heart failure in both animal models and human patients.33–34 

Interestingly, mice that overexpress PGC-1 proteins also exhibit abnormal cardiac 

function,35 indicating that a tight control over mitochondrial content is necessary for normal 

organ function. Similarly, animal models of chronic kidney disease demonstrate diminished 

renal mitochondrial function,36 and animal models of mitochondrial dysfunction 

demonstrate chronic kidney disease.37 Finally, human patients with chronic kidney disease 

have decreased mtDNA in skeletal muscle and peripheral mononuclear blood cells,36 

suggesting that mitochondrial defects in a single organ can lead to global mitochondrial 

dysfunction.

Other chronic diseases also have been associated with disruption of mitochondrial 

homeostasis. Type II diabetes mellitus and metabolic syndrome are characterized by 

mitochondrial dysfunction associated with insulin resistance.38 In metabolic syndrome, 

pancreatic beta cells exhibit increases in UCP2, decreased ATP synthesis, and increased 

levels of ROS.39–40 Additionally, reductions in complex IV of the electron transport chain 

have been associated with the development of diabetes in obese mice and patients.41 

Furthermore, epigenetic silencing of electron transport chain genes and mtDNA,42–44 along 

with genes associated with MB such as PGC-1α and TFAM,45–46 lead to decreased 

mitochondrial content and a greater proportion of dysfunctional mitochondria, thereby 

causing sustained deficiencies in cellular respiration.

Multiple neurodegenerative diseases also have been associated with decreased mitochondrial 

mass, altered mitochondrial dynamics, and dysregulation of MB. Parkinson disease has been 

linked to a panoply of mutations that lead to mitochondrial dysfunction. Defects in PINK1 

and Parkin disrupt clearance of damaged mitochondria, permitting accumulation of oxidative 

damage in dopaminergic neurons and suppression of PGC-1α and decreased cellular 

respiration.47–50 Mutations in DJ-1 increase ROS while decreasing anti-oxidant defenses,51 

leading to decreases in mitochondrial membrane potential, poor mitochondrial quality 

control, and altered mitochondrial morphology. Similarly, mutations in mTDNA,52–55 

TFAM,56 mortalin,57 and α-synuclein58 lead to increased susceptibility to ROS and 

subsequent mitochondrial dysfunction. Additionally, huntingtin mutants associated with 

Huntington’s disease bind to the PGC-1α promoter and prevent its transcription and the 

transcription of other nuclear transcription factors associated with MB, including 

CREB.59–60 Huntingtin mutations also cause impaired mitochondrial calcium handling,61 

reduced respiration,62–63 and disrupted mitochondrial dynamics.64–65 Finally, genetic and 

toxicant-induced models of Alzheimer disease and samples from human patients confirm the 

suppression of mitochondrial proteins and the MB transcriptome in Alzheimer disease,66–67 

along with mtDNA damage and disruptions in mitophagy and mitochondrial 

morphology.68–70 Thus, compounds that induce MB may alleviate cellular dysfunction 

associated with acute and chronic degenerative diseases and promote organ repair and 

recovery that leads to improvements in patient health.71

Natural Products

Because mitochondria and oxidative stress are associated with aging, populations with 

longer lifespans have been studied to identify a potential means for preventing deleterious 
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effects of aging. These studies have identified multiple chemicals capable of inducing MB 

(Figure 3), and these compounds have shown efficacy in multiple disease models by 

modulation of multiple signaling axes. Nonetheless, their therapeutic applicability in many 

cases is limited by poor absorption and low oral bioavailability.

Resveratrol

A widely studied nutritional activator of MB is the polyphenol resveratrol (1).72 Compound 

1 has been shown to induce MB by activating SIRT1 directly or indirectly through AMPK.73 

SIRT1 in turn deacetylates PGC-1α and allows it to exert its transcriptional effects. In 

particular, 1 activates AMPK by inhibiting components of the electron transport chain such 

as complex I and F1/F0 ATPase.74–75 Docking studies with complex I suggest that 

resveratrol binds to the NAD+ binding site of complex I through pi stacking interactions 

with its aromatic components and by hydrogen bond interactions through its hydroxyl 

group.75 When binding F1/F0 ATPase, 1 prevents rotation of the ATP synthase complex 

through a network of hydrophilic and hydrophobic interactions.74 Compound 1 can also 

directly activate PPARα via interactions with the 4′-hydroxyl group.76 It also activates 

PPARγ by interactions between R280 and its 4′-hydroxyl group near the opening of the 

ligand binding pocket as well as Van der Waals interactions with F264, H266, and R288.77 

Together, protein-ligand interactions trigger signals that induce MB.

In models of diabetic cardiovascular disease, 1 induces MB and restores vascular reactivity 

in vitro and in vivo.78 In cellular and animal models of neuronal radiation damage,79 

Alzheimer disease,80 Parkinson disease,81 and Huntington’s disease,82 1 normalizes 

mitochondrial function and rescue cellular viability and function. Compound 1 also 

attenuates oxidative stress in fibroblasts from patients with Complex I deficiency by 

increasing SOD2 in a SIRT3-dependent manner.83 Human clinical trials using 1 
demonstrated improved lipid profiles, antioxidant defenses, and vascular reactivity in 

diabetic and obese subjects;84–89 however, there are conflicting data regarding the effect of 1 
on insulin sensitivity,84, 88, 90 and 1 had no effect in non-obese subjects.91

Epicatechins

(−)-Epicatechin (2),92 primarily found in cocoa, has been shown to induce MB through 

multiple signaling pathways, including Akt-dependent nitric oxide (NO) generation,93–94 

CREB phosphorylation, and δ-opioid receptor activation.95 The epicatechin 

epigallocatechin-3-gallate (3),96 promotes cAMP-dependent signaling to increase SIRT1 and 

PGC-1α.97 Although there are limited data regarding the structural basis for 2 activation of 

cAMP-dependent signaling, Akt-dependent signaling is mediated by the 3″-, 3′-, and 4′-

hydroxyl groups.98 Following oxygen-glucose deprivation, neuronal viability is rescued by 2 
via the Akt-eNOS pathway and CREB activation.94 In a mouse model of diabetes, 2 reduces 

oxidative stress in cardiac tissue by inducing MB.99 Similarly, in mouse models of 

cardiovascular disease, 2 acts through the δ-opioid receptor to prevent mitochondrial 

swelling and to increase respiration;95, 100 it can also decrease cardiac ischemia-reperfusion 

injury through NO and cGMP generation. Even in aged mice, epicatechin increases 

expression of mitochondrial and antioxidant proteins.101 Through its cAMP-dependent 

activation of SIRT1 and PGC-1α, 3 enhances MB in Down’s syndrome patient fibroblasts 
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and enhances mitochondrial calcium handling by modulating mitochondrial tethering to the 

rough endoplasmic reticulum.97 Compound 2 also induces MB in human diabetic patients to 

improve skeletal muscle metabolism.102

Curcumin

Curcumin (4),103 a diarylheptanoid found in turmeric, has shown promise for promoting MB 

and improved function in several disease models. By activating multiple signaling 

molecules, including p38, PKA, AMPK, SIRT1, and NRF2, 4 can induce MB and protect 

cells against injury.104–106 The o-methoxy group in compound 4 is important for increasing 

p38-mediated HO-1 expression, which confers cytoprotection in endothelial cells.104 The 

unsubstituted 5′- and 5″-positions and its olefinic system allow 4 to inhibit NF-κB and 

activate the NRF2 pathway.107 In cellular models of metabolic syndrome, 4 rescues hepatic 

mtDNA, NRF1, and TFAM and reduces inflammation and NFκB activity.108 In white 

adipose tissue, 4 increases browning and markers of MB via increases in norepinephrine and 

β3 adrenergic receptor expression.109 Pretreatment with 4 improves mitochondrial 

membrane potential, oxygen consumption rates, and survival in cellular models of Parkinson 

disease.110 Compound 4 attenuates neuronal death and reduces infarct size following 

cerebral ischemia-reperfusion injury with concomitant increases in mitochondria and 

improvements in neurological function.111 In animal models of metabolic syndrome, 4 
restores hepatocyte mitochondrial function to reduce hepatosteatosis.112 Following 

gentamicin-induced nephrotoxicity, 4 can increase PGC-1α and NRF2, thereby elevating 

mitochondrial protein expression and improving mitochondrial structure.105 In rat skeletal 

muscle, 4 increases mtDNA content and mitochondrial protein expression following 

endurance training via PKA-dependent activation of AMPK, SIRT1, and PGC-1α.106

Phytoestrogens

Phytoestrogens, such as genistein (5),113 daidzein (6),114 pyrroloquinoline quinone(7),115 

coumestrol (8),116 and equol (9),117 are natural products often found in legumes such as 

soybeans. They have been shown to exert their effects in part by modulation of estrogen 

receptors and partly via activation of SIRT1.118–120 5-hydroxyl groups prevent SIRT1 

activation, whereas 7-hydroxyl groups are necessary for SIRT1 activation. Similarly, a 3-

phenyl group appears to drive increased SIRT1 expression.120 Compounds 5–8 have been 

shown to induce MB in vitro.120–122 Additionally, through their biogenic effects, 5 and 6 
rescued cultured renal proximal tubule cells from oxidant injury.120 In vivo, 5 and 9 induce 

MB to improve bioenergetics in ovariectomized mice.123–124 Both 5 and 6 increase 

mitochondrial markers with associated improvements in insulin sensitivity and glucose 

metabolism in diabetic mice.125–126 Compound 5 also reduces the size of a myocardial 

infarct in mice by rescuing mitochondrial function.118 Finally, 7 stimulates MB in both wild 

type mice and transgenic models of Alzheimer disease;127–128 in the latter model, 

improvements in synaptosomal bioenergetics are correlated with cognitive improvement.

Transcription Factor Modulators

Although natural products have been useful in identifying biological targets for MB, their 

poor pharmacokinetic parameters limit their therapeutic potential. Modulators of the 
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transcriptional machinery responsible for MB can potently and efficaciously induce MB; 

however, because they activate transcriptional programs other than MB, these compounds 

can have severe side effects that limit their clinical utility. Thiazolidinediones

The thiazolidinediones (TZDs) are a class of hypoglycemic drugs used to treat diabetes 

mellitus that includes rosiglitazone (10),129 pioglitazone (11),130 troglitazone (12),131 and 

ciglitazone (13) (Figure 4).132 Classically, they act as agonists of the transcription factor 

peroxisome PPARγ, leading to increased insulin sensitivity. These effects are primarily 

mediated by the acidic head group, which engages in necessary hydrogen bonding 

interactions with PPARγ to stabilize its active conformation.133–134 More recently, acute 

PPARγ-independent effects of TZDs have been discovered, including inhibition of the 

electron transport chain, which reduces the ATP/AMP ratio, leading to AMPK activation and 

subsequent MB.135–137 TZDs have also been shown to exert anti-inflammatory effects and 

to upregulate the mitochondrial stress-response, leading to increased anti-oxidant 

defenses.135 Although they upregulate multiple signaling pathways, the capacity of TZDs to 

sensitize tissues to the effects of insulin has been shown to correlate with increased 

expression of mitochondrial proteins, suggesting that induction of MB may be central to the 

clinical efficacy of these drugs.138

In vitro, 10–13 increase cell viability and improve neuronal function in models of ischemic 

injury,139 Alzheimer disease,140 Huntington’s disease,141–142 and multiple sclerosis.143 

Similarly, in animal models of neurodegenerative diseases, 10 and 11 improve both cellular 

and behavioral markers of neurological function.144–145 In animal models of cardiac disease, 

10 can rescue cardiac mitochondrial function following septic injury;146 however, other 

studies indicate that 10 increases cardiac ROS and can be arrhythmogenic.147–148 In models 

of metabolic syndrome, 10–13 induce MB in adipose tissue,15, 149 pancreatic beta cells,150 

and skeletal muscle137, 151 to enhance insulin sensitivity. In humans, 11 induces MB in 

subcutaneous adipose tissue,152 and 10 can do so in skeletal muscle.153

Estrogens

To understand the underlying processes responsible for sex-dependent differences in lifespan 

and oxidative stress, multiple groups reported that estrogens can be protective in various 

tissues. Furthermore, reduced levels of estrogens, such as in ovariectomized mice, lead to 

increased ROS production.154 Estrogens (Figure 5) can bind to the transcription factors 

estrogen receptor α (ERα) and estrogen receptor β (ERβ) to directly influence gene 

expression. 17β-Estradiol (14)155 and progesterone (15)156 are the principle biologically 

active estrogens. 14 and 15 interact with nuclear estrogen receptors by hydrogen bonding 

interactions between the ligands’ hydroxyl groups and the receptors’ polar residues and by 

hydrophobic interactions with the receptors’ binding pockets.157 ERα-selectivity, such as by 

the selective ligand 4,4′,4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (16),158 is 

mediated by steric bulk to interact with a residue found in ERα but not ERβ.158 Selectivity 

for ERβ by diarylpropionitrile (17)159 is mediated by phenolic groups, while its efficacy is 

improved by its nitrile group.159 Recently, it has also been shown that estrogens activate 

plasma membrane-bound estrogen receptors such as the G protein-coupled estrogen receptor 

(GPER). The GPER-selective ligand G-1(18)160 is structurally similar to 14 but is unable to 
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form hydrogen bonds in the nuclear estrogen receptors;160 however, 18’s acetyl group and 

pseudosymmetry allows engagement of specific residues of the GPER to stabilize the active 

conformation.161–162

Compound 14 has been shown to induce MB in immortalized cell lines and in a cellular 

model of Leber hereditary optic neuropathy, a mitochondrial disease. 163–164 In animal 

models, 14 normalizes ROS production, increases antioxidant defenses, and enhances 

respiratory capacity in the heart and brain.154, 165 Furthermore, 15 and synthetic estrogen 

receptor agonists such as 16 and 17 have been shown to enhance respiratory capacity in the 

brain and promote clearance of lipid peroxidation products.166 Of note, the use of receptor 

subtype selective agonists suggests that ERα and ERβ differentially regulate the expression 

of electron transport chain proteins. Additionally, at least a portion of the cardioprotective 

effects of estrogen are mediated through the GPER, as shown by stimulation with the GPER-

selective agonist 18.154 Despite the clear protective potential of estrogens, their proliferative 

and endocrine effects limit their use as a long-term therapy for chronic degenerative 

diseases. However, the development of selective ER and GPER ligands that drive specific 

signaling and transcriptional programs may improve the utility of such therapeutics.

SIRT1 activators

The identification of SIRT1 as a common target of natural product-induced increases in 

PGC-1α led to the development of multiple SIRT1 activators, such as SRT1720 (19),167 

SRT1460 (20),167 SRT2183 (21),167 and SRT2104 (22) (Figure 6).168 In the initial synthesis 

of SIRT1 activators,169 the basic methylamino ring at C-3 of the imidazothiazole ring of 19 
and 20 enhanced water solubility, while derivatization of the amide group (such as with the 

2-quinoxaline group of 19) improved potency and efficacy. Interestingly, both 19 and 20 
share a methylamino ring and have greater efficacy, whereas 19 and 21 have a 2-quinoxaline 

group and more potency,167 suggesting that the two groups may play distinct roles in the 

pharmacodynamic qualities of these compounds. The direct mechanisms of action for the 

sirtuin class have been controversial. Assays with isolated fluorescent peptides were used for 

optimization, but direct proteomic assays indicate that 19–21 do not directly activate SIRT1 

and, rather, act promiscuously to activate or inhibit numerous targets;170 however, other 

work has shown that these compounds directly activate SIRT1 by binding to amino acid 

E230.171

Due to numerous SIRT1 targets, these activators can affect various cellular processes, 

including inflammation, lysosomal trafficking, and metabolism. Among its targets, SIRT1 

deacetylates PGC-1α, facilitating nuclear import of and transcriptional regulation by 

PGC-1α, leading to MB. In models of type II diabetes mellitus, SIRT1 activators have been 

shown to improve lifespan, normalize pancreatic morphology, improve insulin, glucose, and 

fatty acid metabolism and increase mitochondrial markers;167, 172–174 however, other studies 

have shown a lack of efficacy in diabetic mice, calling into question the beneficial effects of 

these compounds.170 With respect to neurodegenerative diseases, SIRT1 activators prevent 

neurodegeneration and restore MB in animal models of Huntington’s disease and multiple 

sclerosis.175–176 SIRT1 activation has shown promise in renal disease, restoring renal 

function after AKI and preventing renal medullary damage in obstructive 

Cameron et al. Page 8

J Med Chem. Author manuscript; available in PMC 2017 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



nephropathy.177–179 In models of cardiovascular disease, 19 reduces the size of myocardial 

infarction and preserves contractility,180 as well as reducing ROS and improving 

contractility in mice with enhanced ALDH2 activity.181 Compound 19 also preserves 

endothelial function in aged mice.182 Even in healthy animals, 19 and other SIRT1 activators 

have been shown to extend lifespan and “healthspan” by preventing the development of age-

associated diseases in multiple organ systems.183 In human trials, 22 improved lipid profiles 

in diabetic patients but did not affect plasma glucose or insulin, likely due to large 

pharmacokinetic variability.184 Additionally, 22 reduces cholesterol, LDL, and triglycerides 

in otherwise healthy smokers,185 suggesting that SIRT1 activation is important to the human 

healthspan.

Kinase Modulators

Kinases either phosphorylate target proteins or function as scaffolds to co-localize other 

kinases and targets to regulate cellular signaling. Phosphorylation of specific targets can 

either activate or inhibit cellular signaling pathways in response to environmental cues. 

Because they are central signaling molecules, kinases are attractive therapeutic targets. In 

particular, activators of kinases that induce MB, such as AMPK, can be useful in multiple 

diseases. Unfortunately, inhibitors are easier to develop, and most kinase modulators are 

inhibitors. However, inhibitors of kinases that negatively regulate MB, such as extracellular 

signal-regulated kinases 1/2 (ERK1/2), also provide promise as therapeutics.

AMPK

AMPK is an energy sensing kinase involved in the modulation of metabolism through the 

cellular AMP/ATP ratio. AMPK activation is increased during exercise and induces MB, and 

it is decreased with aging and during multiple chronic degenerative diseases.186 AMPK 

activation has been shown to be an upstream regulator of sirtuins and therefore PGC-1α.187 

Furthermore, pharmacologic activation of AMPK has been observed with multiple natural 

products that induce MB. Activators of AMPK (Figure 7), including the indirect activators 

AICAR (23),188 metformin (24),189 phenformin (25),190 R419 (26),191 and C24 (27),192 and 

the direct activator A769662 (28),193 have been developed and induce MB in multiple cell 

lines. Additionally, 23 has been shown to enhance proliferation and increase ATP in models 

of complex I deficiency and MELAS.194–195 Compound 23 is biotransformed via 

phosphorylation within the cell and acts as an AMP mimetic to activate AMPK and other 

AMP-dependent processes.188 The biguanides 24 and 25 activate AMPK in a LKB1-

dependent manner and through inhibition of complex I;191, 196 by inhibiting the electron 

transport chain, the AMP/ATP ratio is increased, leading to AMPK activation. Compound 26 
also indirectly activates AMPK via complex I inhibition,191 and 28 activates AMPK by 

binding to an allosteric site between the alpha and beta subunits of AMPK. 28 both 

allosterically activates and prevents Thr172 dephosphorylation.197

In models of diabetes and metabolic syndrome, 23 mimics high intensity exercise in skeletal 

muscle with accompanying increases in SIRT1 activation and PGC-1α activity. These 

improvements in MB decrease oxidative stress in both renal and endothelial cells,198–200 

preventing common comorbidities such as diabetic nephropathy and poor wound healing. 
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Compound 23 can also improve pancreatic morphology via AMPK activation to enhance 

insulin sensitivity and GLUT4 expression,201 thereby decreasing plasma glucose. In hepatic 

cells, 27 reduces lipid biosynthesis to prevent lipid accumulation and preserve hepatic 

function.192 In humans with gestational or type II diabetes, 23 and 25 prevents insulin 

resistance in multiple tissues.202–204 In the heart, 23 reduces oxidative stress and improves 

contractility,181 and it is associated with improvements in insulin sensitivity in diabetic mice 

as well as reductions in cold ischemic injury in mouse models of heart transplant.205

AMPK activators have also shown promise for treating neurodegenerative diseases. 

Neuronal activity has been shown to drive PGC-1α and NRF-1 expression in an AMPK-

dependent manner,206 leading to MB, and pharmacologic activation of AMPK has been 

shown to mimic these effects. Compound 23 has also been shown to impact neuronal 

development by promoting mitochondrial accumulation at axonal branch points, thereby 

facilitating branch formation and retention.207 In models of Alzheimer disease, 23 
ameliorated mitochondrial dysfunction and prevented neurotoxicity and tau 

hyperphosphorylation.208–209 Compound 23 decreased amyloid beta, a protein implicated in 

Alzheimer disease, in a PPARγ dependent manner.210 Compound 23 has also been shown to 

decrease inflammation in models of multiple sclerosis, attenuating pathological and 

behavioral changes. Furthermore, in models of ischemic brain injury, 23 diminishes 

ischemic neuronal damage.211

ERK1/2

Another means of inducing MB is the inhibition of negative regulators of MB, such as 

ERK1/2. Following its activation by MEK1/2, ERK1/2 regulates a variety of cellular 

processes, including differentiation, apoptosis, survival, proliferation, and motility.212 

Inhibition of MEK by U0126 (29)213 or trametinib (30)214 leads to a rapid suppression of 

ERK1/2 phosphorylation (Figure 7). Compound 29 can exist in the (Z,Z) or (Z,E) isomer; 

however, the (Z,Z) isomer provides better MEK inhibition, as does the presence of electron 

donating amino groups at o-positions of its phenyl groups.213 The iodo- and cyclopropyl 

groups of Compound 30 improve potency for cancer cell growth inhibitory activity over its 

lead compound JTP-70902 (31)214, while its methyl groups improve stability and its 

acetamide group improves solubility.214 ERK1/2 has been shown to suppress PGC-1α in 

melanoma cells.215 Additionally, in models of Parkinson disease ERK1/2 activation leads to 

phosphorylation of TFAM, impairing its ability to bind to mitochondrial DNA.216 MEK1/2 

inhibitors, such as 29 and 30, have been developed for cancer chemotherapy. In vitro models 

of renal oxidative stress indicate that ERK1/2 is a mediator of oxidative damage in proximal 

tubule cells, and that its inhibition by 29 prevents oxidative damage.217 Our laboratory has 

shown that ERK1/2 activation increases after AKI and that pre-treatment with the MEK1/2 

inhibitor 30 rescues mitochondrial function and restores renal function in a mouse model of 

AKI.218 These data indicate that inhibition of suppressors of MB can induce MB and restore 

organ function following injury.
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Cyclic Nucleotide Modulators

The cyclic nucleotides cGMP and cAMP are cellular second messengers that are generated 

in response to extracellular signals. They activate downstream kinases or are hydrolyzed by 

phosphodiesterases (PDE). NO increases cGMP synthesis by binding to a heme group on 

soluble guanylate cyclase (sGC), while cAMP is increased through activation of adenylate 

cyclase by the stimulatory G-protein Gαs. Because cyclic nucleotide generation is disrupted 

in multiple pathological states, cyclic nucleotide modulators are attractive targeted therapies 

for the induction of MB in various diseases.

NO-cGMP-PKG Axis

The NO-cGMP-PKG pathway can be modulated by: 1) nitric oxide (NO) donors, such as 

sodium nitroprusside (32), (±)S-nitroso-N-acetylpenicillamine (SNAP, 33),219 diethylamine 

NONOate (DEA-NONOate, 34),220 and diethylenetriamine-NONOate (DETA-NONOate, 

35)220 which increase cellular NO (Figure 8); 2) sGC stimulators and activators, such as 

cinaciguat (36),221 riociguat (37),222 and BAY 41-2272 (38)223 which directly increase 

cGMP production (Figure 8); and 3) phosphodiesterase (PDE) inhibitors, such as zaprinast 

(39),224 sildenafil (40),225 udenafil (41),226 tadalafil (42),227 and vardenafil (43)228 which 

increase cGMP by preventing its hydrolysis (Figure 9). Clinically, these compounds are used 

to induce vasodilation to treat hypertension or erectile dysfunction. Activation of this 

pathway has been shown to increase PGC-1α and stimulate MB both through the activation 

of PKG and nitrosylation of transcription factors to increase their binding to the PGC-1α 
promoter.229–230

As their name implies, all NO donors have a group, usually a nitrate or a furoxan group, that 

can be liberated to form NO. Because the NO donating group is small, NO donors can be 

“fine-tuned” for multiple clinical uses and to slow the rate of NO release.231–232 However, 

because NO generation causes such a dramatic drop in blood pressure, NO donors are of 

limited clinical use. However, these compounds readily confirm the importance of NO for 

preventing metabolic derangements and cell death, particularly in skeletal muscle. In 

hypoxia, dietary nitrate (a natural NO donor) prevents PGC-1α suppression, leading to 

increases in fatty acid oxidation and respiration. Even under normoxic conditions, nitrate 

stimulates MB in a cGMP/PKG-dependent manner.233 Compound 33 has also been shown 

to induce MB in myoblasts and reduce the effects of caspase-dependent and –independent 

apoptotic molecules,234 and 34 also improves synaptic conduction in models of Alzheimer 

disease in a cGMP-dependent manner.235

sGC activators and stimulators increase the activity of sGC in the absence of NO. 

Stimulators such as 37 and 38 increase sGC activity with a non-oxidized heme group, 

whereas activators increase sGC activity even if the heme prosthetic group is oxidized. Both 

classes of compounds have been approved for clinical use to treat pulmonary hypertension. 

Compound 38 was optimized for vasorelaxation through the addition of a 2-fluoro-phenyl 

group, a pyrazolo[3,4-b]pyridine ring, and a cyclopropyl group.223 Compound 37 was 

optimized to increase oral bioavailability and half-life, and to reduce clearance via amino 

and N-methylcarbamate substitutions on the pyrimidine group.222 On the other hand, sGC 

activators have shown greater utility beyond blood pressure control, likely due to their 
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capacity to activate sGC even under high oxidative stress. Compound 36 was identified 

using a high-throughput screen and was confirmed to displace the heme of sGC by 

interacting with its YXSXR motif through carboxylic acid moieties.236 In pre-clinical 

studies, compounds 36–38 improve cardiac, renal, and neurological function across multiple 

disease models including ischemia reperfusion injury, sepsis, diabetes, and Alzheimer 

disease.237–241 However, despite the efficacy of cGMP in promoting MB, few studies have 

examined the role of MB in these functional improvements. Compound 36 protects against 

myocardial infarction by increasing H2S, a known inducer of MB,242 suggesting that further 

investigation is warranted into the role of MB in these compounds’ protective effects.

Inhibition of cGMP-selective PDEs prevents cGMP hydrolysis, promoting its accumulation 

in the cell and facilitating stimulation of MB. Compound 40 was designed from 39 by 

mimicking the guanosine dipole moment, adding an ethoxy group to improve potency, and 

adding a piperazine sulfonamide to improve solubility, selectivity, and potency.243 However, 

both 40 and 41 discriminate poorly between PDE5 and PDE6, leading to visual side 

effects.226 Compound 42 has better selectivity for PDE5 over PDE6 with the addition of 

more electron donating groups; however, relative to 40 and 43, 42 is less selective for 

PDE11.227, 244–245 Although these compounds have been extensively developed for treating 

pulmonary hypertension and erectile dysfunction, they also have been tested for treating 

other diseases.

Because cGMP-selective PDE inhibitors were designed to reduce blood pressure via 

increased vasodilation, it is reasonable that they have been tested for conditions 

characterized by endothelial dysfunction, such as diabetes. As expected, in models of 

diabetes, 40 improves endothelial function as measured by flow-mediated dilation.246–247 In 

addition to their effects on vascular reactivity, 40, 42, and 43 reduce plasma markers of 

diabetes, such as lipids, serum glucose, and HbA1c, and are associated with improvements in 

mitochondrial content.248–251 In adipocytes and hepatocytes, 40 enhances lipid oxidation 

and increases insulin tolerance and cellular morphology.248 cGMP-selective PDE inhibitors 

also reduce diabetic complications in other organs, such as the kidney and heart. In models 

of diabetic nephropathy, 40 reduces microalbuminuria, a predictor of renal and cardiac 

dysfunction.249 Additionally, in diabetic mice, 42 rescues the expression of cardiac 

cytoskeletal and redox proteins to improve cardiac morphology and function.251–252

In addition to beneficial reductions in the development of diabetic cardiomyopathy, cGMP-

selective PDE inhibitors also ameliorate non-diabetic cardiac dysfunction. In ischemic 

cardiomyopathy and myocardial infarction, 40, 42, and 43 increase survival and decrease 

infarct size by reducing cell death and preserving mitochondrial function.253–255 Compound 

42 also prevents cardiac remodeling and hypertrophy, stabilizing contractility rather than 

allowing progression to heart failure and pulmonary edema.256 Similarly, in models of mitral 

regurgitation and doxorubicin toxicity, 40 inhibits cell death and preserves mitochondrial 

function by upregulating anti-apoptotic proteins and maintaining the mitochondrial 

membrane potential.257–258

Cameron et al. Page 12

J Med Chem. Author manuscript; available in PMC 2017 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cAMP-PKA-CREB axis

CREB regulates PGC-1α activity and expression to promote MB and is down-regulated in 

multiple disease states characterized by mitochondrial dysfunction. In Alzheimer disease, 

CREB phosphorylation is diminished due to impaired activation by PKA. This loss of 

activity leads to a downregulation of PGC-1α and an imbalance in tau protein, a driver of 

Alzheimer disease.259 A similar decrease in CREB activity has been observed in 

Huntington’s disease.260 Additionally, ethanol decreases cellular cAMP, thereby reducing 

CREB activity to suppress PGC-1α and thereby exert its toxic effects.261 Taken together, 

these data indicate that activation of the cAMP-PKA-CREB signaling pathway can promote 

MB and protect against neurodegenerative diseases.

The primary therapeutic approach for activating this signaling axis is with phosphodiesterase 

(PDE) inhibitors such as rolipram (44)262 and cilostazol (45)263 (Figure 9). Compound 44 
inhibits PDE4, a cAMP-selective PDE, whereas 45 inhibits PDE3, a PDE capable of 

hydrolyzing both cAMP and cGMP; however, PDE3’s Vmax for cAMP is substantially 

higher than that of cGMP. Compound 44’s selectivity arises in part from its optimized 

potency for PDE4 and the unfavorable orientation of a conserved glutamate residue in other 

PDEs.264 In contrast, the lactam group of 45 engages in hydrogen bonding interactions with 

multiple receptor residues to promote PDE3 selectivity.265 Both 44 and 45 can increase 

PGC-1α in vitro, indicating that they induce MB,266 and both have shown potential for 

therapeutic use in pre-clinical disease models. However, in humans, 44’s narrow therapeutic 

window limits its application, whereas 45 is approved for clinical use in the treatment of 

diabetic vascular complications.

Restoration of the cAMP-PKA-CREB pathway substantially reduces the effects of 

neurodegenerative diseases. In animal models of Huntington’s disease, 44 improves 

neuronal function, morphology, and survival and decreases neurological impairment.260, 267 

Compound 44 also reduces synaptic conduction abnormalities associated with Alzheimer 

disease, improving cognition.268–269 Interestingly, these effects and increased CREB 

phosphorylation lasted beyond the cessation of treatment. In ischemic brain injury, 45 
reduces neuroinflammation, reducing infarction size and decreasing apoptosis and free 

radical production.270–271 In models of Alzheimer disease, 45 increases SIRT1 expression, 

reducing symptoms and improving cognitition.272 Furthermore, in a retrospective study, 45 
improved cognition in human patients,273 suggesting that PDE3 inhibition holds promise for 

treating Alzheimer disease.

Used clinically to treat claudication, the beneficial effects of 45 in models of diabetic 

cardiovascular disease are well studied. In models of limb ischemia, 45 increases 

angiogenesis by rescuing PPARγ, increasing angiogenic factors vascular endothelial growth 

factor (VEGF) and hepatocyte growth factor (HGF);274–275 this normalization of PPARγ 
also occurs in other tissues, such as the retina and the kidney.276 Compound 45 also prevents 

endothelial cell senescence by increasing cAMP, leading to SIRT1 activation. In the heart, 

45 reduces oxidant-induced mitochondrial dysfunction and significantly reduces myocardial 

infarction size.277–279 Furthermore, 45 improves insulin sensitivity and reduces blood 

glucose and HbA1c in diabetic mice and human subjects,280–282 as well as reducing the 
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urinary excretion of albumin and renal inflammation, indicating that 45 improves diabetic 

nephropathy.

Despite these promising data, controversy exists regarding use of cAMP-selective PDEs in 

chronic degenerative diseases of the liver and kidney. On the one hand, 45 improves hepatic 

function after ischemic insult by inducing MB;283 however, in models of lipotoxicity, 

increased cAMP acts synergistically to induce cell death despite concurrent stimulation of 

MB.284 Additionally, despite the promising work in diabetic nephropathy described 

previously, we found that cAMP-selective PDE inhibitors do not induce MB in proximal 

tubule cells,285 suggesting they are poor therapeutic options for treating AKI.

GPCR Ligands

G protein-coupled receptors (GPCRs) are well characterized plasma membrane receptors 

that are the target of a substantial portion of currently available drugs. By coupling to G 

proteins, GPCRs can modulate cAMP, calcium, and NO and activate various kinases and 

signaling pathways. Additionally, different ligands of the same receptor can cause activation 

of distinct signaling programs, a phenomenon known as “functional selectivity” or “biased 

agonism.”286 By stabilizing different receptor conformations, different ligands can alter 

receptor interactions with G proteins, G protein-coupled receptor kinases (GRKs), and 

scaffolding proteins such as arrestins. One such scaffolding protein, GRK interacting protein 

1 (GIT1), regulates MB in the heart, likely in an eNOS-dependent manner.287–288 Biased 

agonism allows for the development of ligands that selectively stimulate signaling pathways 

that lead to MB while inhibiting negative regulators of MB. Many GPCRs are modulated by 

endogenous molecules, a fact which has facilitated the development of potent and selective 

agonists and antagonists for various receptors. Despite the potential of GPCRs to activate 

pathways known to induce MB and the availability of clinically approved GPCR ligands, 

little investigation has occurred to explore the potential of such compounds to induce MB.

Cannabinoid-1 receptor

Cannabinoid-1 receptor (CB1R) antagonists such as taranabant (46)289 and rimonobant 

(47)290 were studied for anorectic effects (Figure 10). Despite the lack of a cyclic linker, 46 
binds in a similar mode to 47; however, the amide group on 46 is able to engage in an extra 

hydrogen bonding interaction, leading to its enhanced affinity for the CB1R.289, 291 By 

inhibiting CB1R activity in the brain, these compounds can suppress appetite and cause 

weight loss with concomitant improvements in plasma lipid profiles. Both 46 and 47 were 

efficacious for inducing weight loss in wild type mice, mice fed a high fat diet, and ob/ob 

mice.292–293 Inhibition of CB1R by 47 or by genetic ablation induces MB in adipose tissue 

and MB in a cAMP- and eNOS-dependent manner, leading to decreases in body weight and 

fat content.292 Interestingly, 47 increased mitochondrial energy consumption did not 

increase mitochondrial mass in rat livers, indicating improved mitochondrial efficiency.294 

Although both 46 and 47 were efficacious in animal models, investigation of 46 was halted 

in Phase III trials, and 46 was withdrawn from the market in the U.S. after initial approval as 

an anti-obesity drug. In humans, 47 reduced food intake and increased energy consumption 
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to promote weight loss but caused serious side effects such as suicidal ideation and severe 

depression.295296

5-Hydroxytryptamine receptors

Endogenous serotonin binds to the 5-hydroxytryptamine (5-HT) class of receptors (48, 

Figure 11)297. 5-HT receptors are primarily GPCRs that have been identified as therapeutic 

targets for neuropsychiatric, neurologic, and cardiac diseases. The synthetic ligand alpha-

methyl-5-hydroxytryptamine (49)298 possesses an extra methyl group that prevents its 

metabolism by monoamine oxidase.299 The 5-HT2 receptor agonist DOI (50)300 has 

enhanced selectivity due to its primary amine, with the iodo-group adding to its potency.301 

Much work has been done to identify and characterize the pharmacophore of 5-HT2C 

receptor agonists (e.g., CP809101, 51)302 and antagonists (e.g. SB242084, 52)303 and 

optimize their selectivity.301–303 5-HT2C receptor agonists stabilize the TM6 domain of the 

receptor through its aromatic group, whereas antagonists interact with Asn331, Val354, and 

Ser334 through a positively ionizable group.304

In addition to direct 5-HT receptor antagonists, serotonin reuptake inhibitors such as 

fluoxetine (53)305 prevent the uptake and degradation of 48 and prolong its actions at its 

receptors. The p-trifluoromethyl group of 53 confers selectivity for the serotonin reuptake 

transporter by binding to I172 in its transmembrane domain.306–307 Treating rat pups with 

53 improves mitochondrial membrane potential, respiratory capacity, and antioxidant 

defense in the heart, implicating 48 in mitochondrial health during development.308

Our laboratory identified multiple ligands that induce MB through various 5-HT receptors. 

In renal proximal tubule cells, we have shown that the non-selective 5-HT receptor agonist 

49 induces MB.309 The 5-HT2 receptor agonist 50 increased cellular respiration in vitro and 

improved recovery from oxidant injury by tert-butyl hydrogen peroxide (TBHP); 

interestingly, induction of MB did not reduce initial injury by TBHP.310 The 5-HT2C 

selective ligands 51 and 52 induce MB in vitro and in naïve mice; interestingly, siRNA 

studies and work in knockout mice indicate that the ligands exert these effects through the 5-

HT2A receptor.311

In contrast to 5-HT2 receptors, the 5-HT1F receptor has few selective ligands-namely, 

LY334370 (54) and LY344864 (55) and limited data regarding its pharmacophore. 

Nevertheless, the selective 5-HT1F agonists 54 and 55 induced MB in vitro, and 55 also 

improved recovery from ischemia-reperfusion-induced AKI in vivo.309 Additionally, 

preliminary data suggest that 55 stimulates MB through the Gβγ-dependent activation of 

Akt and eNOS (Gibbs, W.; Beeson, C.C.; Schnellmann, R.G., unpublished results). These 

data indicate that the induction of MB by 5-HT agonists could be clinically useful for 

treating AKI and other acute organ injuries as they effectively promote recovery and 

regeneration even after initial injury.

Beta adrenergic receptors

The beta adrenergic receptor family is activated by endogenous stress hormones epinephrine 

(56)312 and norepinephrine (57, Figure 12)312 and the family comprises three receptors. 
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First, the beta-1 adrenergic receptor, primarily expressed in the heart, is targeted by drugs 

that affect cardiac contractility and heart rate. The beta-2 adrenergic receptor, which is 

ubiquitously expressed, is a target of bronchodilators to treat asthma and COPD. The beta-3 

adrenergic receptor, which is primarily expressed in adipose tissue and the urinary bladder 

and is targeted to treat overactive bladder.313

Beta-adrenergic agonists contain distinct structural features, specifically a catechol or 

phenethanolamine core, whereas antagonists have a 3-aminophenoxypropan-2-ol core. 

However, while beta-adrenergic agonists have been extensively studied to optimize 

pharmacodynamics and pharmacokinetic parameters, there are few studies relating structural 

features to the induction of MB. Compounds 56, 57, and the non-selective beta adrenergic 

receptor agonist isoproterenol (58)314 increase PGC-1α in brown adipose of naïve mice and 

in models of obesity in a cAMP- and p62-dependent manner.315 Interestingly, in models of 

cardiac dysfunction, beta-1 adrenergic receptor stimulation by dobutamine (59)316 increases 

cell death and inflammation,317 but its blockade by the beta-1 selective antagonist 

metoprolol (60)318 enhances PGC-1α activation and improves cardiac metabolism and 

function.319–320 Our laboratory has studied beta-2 adrenergic receptor selective agonists in 

renal MB. In particular, formoterol (61),321 fenoterol (62),322 and procaterol (63)323 induced 

MB in vitro at pharmacologically relevant doses.324–325 Compound 61 has been confirmed 

to induce MB in vivo in naïve mice as well as in mice subjected to AKI,326 and this was 

associated with improvements in renal function, indicating that formoterol has therapeutic 

promise for treating AKI. However, other beta-2 adrenergic receptor agonists such as 

clenbuterol (64)327 and isoetharine (65)328 did not induce MB in vitro,324 suggesting that 

biased agonism can be exploited to develop more effective mitochondrial biogenic beta-2 

adrenergic receptor agonists. Because both MB-inducing and non-MB-inducing beta-2 

adrenergic receptor agonists increase cAMP, we suggest that the classical Gαs-signaling 

pathway is not responsible for beta-2 adrenergic receptor-induced MB in the kidney. 

Preliminary data suggests that 61 but not 64 activates the Akt-eNOS pathway in a Gβγ-

dependent manner (Cameron, R.B.; Beeson, C.C.; Schnellmann, R.G., unpublished results). 

In addition to its renal effects, 61 induces MB in multiple other tissues, including the heart 

and skeletal muscle.325, 329 Together, these data indicate that certain beta-2 adrenergic 

receptor agonists such as 61 can be used to treat multiple diseases and improve 

mitochondrial function and ameliorate symptoms.

Perspectives

Because MB can arise from diverse signaling pathways, a number of drug classes have been 

identified to induce MB. The earliest identified inducers of MB are natural products, such as 

1–9, which are efficacious,73, 97, 111, 120 but MB induction often occurs through multiple 

signaling pathways and these compounds may activate signaling programs unrelated to MB. 

Such promiscuity means that these compounds are poor therapeutic agents, particularly for 

chronic degenerative diseases for which a more targeted approach may be required.

Transcription factor activators such as TZDs (10–13), estrogens (14–18), and SIRT1 

activators (19–22) induce MB by activating transcription factors that act on mitochondrial 

genes.139, 163, 173 This selectivity facilitates the induction of relatively small gene sets. 
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Furthermore, transcription factor modulation can drive the recruitment of a select set of 

transcriptional machinery, increasing the specificity of the resulting transcriptome. However, 

ligands with that degree of specificity, particularly for MB, have not yet been designed. 

Thus, currently, activation of these transcription factors upregulates unwanted genes and 

causes detrimental neurological and hyperproliferative effects.

Similar to transcription factor modulators, kinase modulators such as 23 and 30 have been 

developed with a high activity for their targets. Although some kinase activators are 

available, many kinase inhibitors have been developed and are utilized clinically. These 

inhibitors will be of particular use as more negative regulators of MB, such as ERK1/2, are 

identified. Kinase signaling is fairly well-characterized, so acute downstream effects of such 

modulators are usually predictable. Nonetheless, because kinases have central roles in 

cellular processes, predicting longer-term effects of such drugs is not straightforward.

Cyclic nucleotide modulators such as sGC stimulators and activators and PDE inhibitors 

have recently been shown to be efficacious inducers of MB.242, 266, 285, 330 However, as with 

kinase modulators, these drugs influence central signaling processes, often in a manner that 

prevents physiological feedback loops to prevent pathological signaling. Additionally, cyclic 

nucleotides can have tissue-specific effects that can give rise to either injurious or curative 

effects to different organ systems.

GPCR modulators are the most widely developed and prescribed drug class. Although few 

of these compounds have been tested for MB induction, several promising classes, have been 

identified to induce MB, such as cannabinoid, serotonergic, and adrenergic 

ligands.292, 309–311, 324 These compounds can act through a single target and activate a 

particular signaling program. 286 Unlike the above-mentioned compound classes, GPCR 

ligands act at surface receptors and can retain cellular feedback mechanisms to limit 

signaling if necessary, so GPCR ligands represent promising chemical space for the 

induction of MB.

In vitro, in vivo, and human studies indicate that induction of MB promotes recovery from 

disease states among many organ systems due to myriad roles played by mitochondria in 

both physiological and pathophysiological states. However, relatively few drugs have been 

identified to induce MB, and much chemical space remains untested for MB. One domain of 

chemical space that may be promising for phenotypic screens to identify lead compounds is 

the so-called “dark chemical space,” as compounds derived from this space tend to have 

high specificity for a given target.331 As more chemical space is investigated for MB, we 

will gain a better understanding of the role of mitochondria in health and disease and will 

provide researchers and clinicians with better tools for treating debilitating acute and chronic 

degenerative diseases.
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ABBREVIATIONS

ATP adenosine triphosphate

AMP adenosine monophosphate

MPTP mitochondrial permeability transition pore

MB mitochondrial biogenesis

PGC-1α peroxisomal proliferation activated receptor coactivator-1α

mtDNA mitochondrial DNA

ER estrogen receptor

ERRα estrogen related receptor-α

NRF-1 nuclear respiratory factor 1

NRF-2 nuclear respiratory factor 2

PPAR peroxisome proliferator-activated receptor

TR thyroid hormone

CREB cAMP-responsive element binding protein

YY-1 yin yang-1

ROS reactive oxygen species

PGC-1 peroxisomal proliferation activated receptor coactivator-1

PGC-1β peroxisomal proliferation activated receptor coactivator-1β

PRC PGC-1 related coactivator

PKA protein kinase A

NO nitric oxide

AMPK growth stimulatory AMP-dependent kinase

SIRT1 silent mating type information regulation 2 homolog 1

AKI acute kidney injury

Tfam mitochondrial transcription factor A

UCP2 uncoupling protein 2
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PINK1 PTEN-induced putative kinase 1

NAD+ nicotinamide adenine dinucleotide

SOD2 superoxide dismutase 2

SIRT3 silent mating type information regulation 2 homolog 3

eNOS endothelial nitric oxide synthase

TZD thiazolidinedione

PPARγ peroxisomal proliferation activated receptor-γ

ERα estrogen receptor α

ERβ estrogen receptor β

GPER G protein-coupled estrogen receptor

ALDH2 aldehyde dehydrogenase 2

LDL low density lipoprotein

ERK 1/2 extracellular signal-related kinases 1/2

MEK 1/2 mitogen-activated protein kinase kinase 1/2

sGC soluble guanylate cyclase

PDE phosphodiesterase

PKG Protein kinase G

VEGF vascular endothelial growth factor

HGF hepatocyte growth factor

HbA1c glycated hemoglobin

GPCR G protein-coupled receptor

GRK G protein-coupled receptor kinase

GIT1 GRK interacting protein 1

CB1R cannabinoid-1 receptor

5-HT 5-hydroxytryptamine

TBHP tert-butyl hydrogen peroxide
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Figure 1. 
Multiple insults converge upon the mitochondria, leading to mitochondrial dysfunction and 

subsequent organ injury and disease.
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Figure 2. 
PGC-1α integrates extracellular and cytosolic signaling inputs to selectively upregulate 

mitochondrial biogenesis.
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Figure 3. 
Naturally occurring polyphenols capable of inducing MB.
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Figure 4. 
Thiazolidinedione inducers of MB.
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Figure 5. 
Estrogen inducers of MB.
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Figure 6. 
Activators of SIRT1 that induce MB.
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Figure 7. 
Kinase modulators that induce MB.
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Figure 8. 
Activators and stimulators of the NO/cGMP pathway.
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Figure 9. 
Phosphodiesterase (PDE) inhibitors associated with MB.
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Figure 10. 
Cannabinoid-1 Receptor antagonists.
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Figure 11. 
5-Hydroxytryptamine receptor modulators that induce MB.
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Figure 12. 
Beta adrenergic receptor modulators tested for the induction of MB.
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