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SUMMARY

Robust biological oscillators retain the critical ability to function in the presence of environmental 

perturbations. Although central architectures that support robust oscillations have been extensively 

studied, networks containing the same core vary drastically in their potential to oscillate, and it 

remains elusive what peripheral modifications to the core contribute to this functional variation. 

Here, we have generated a complete atlas of two- and three-node oscillators computationally, then 

systematically analyzed the association between network structure and robustness. We found that, 

while certain core topologies are essential for producing a robust oscillator, local structures can 

substantially modulate the robustness of oscillations. Notably, local nodes receiving incoherent or 

coherent inputs respectively promote or attenuate the overall network robustness in an additive 

manner. We validated these relationships in larger-scale networks reflective of real biological 

oscillators. Our findings provide an explanation for why auxiliary structures not required for 

oscillation are evolutionarily conserved and suggest simple ways to evolve or design robust 

oscillators.

INTRODUCTION

Biological oscillators drive essential physiological and developmental processes in all forms 

of life, from bacteria through vertebrates. These biological oscillators span a wide range of 

periods and molecular forms, including neural spikes (1 ms–10 s), cell cycles (10 min–24 

hr), somitogenesis (25 min for zebrafish and 2 hr for mice), and circadian clock (24 hr), etc. 

Despite the complexity and diversity of these oscillators, their central network architectures 
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are highly conserved (Bell-Pedersen et al., 2005; Cross et al., 2011), suggesting that network 

topology is a key factor in determining the properties of biological oscillations. Studies have 

focused on the core topologies of oscillators, to understand the systems-level characteristics 

such as periodicity and robustness (Castillo-Hair et al., 2015; Lomnitz and Savageau, 2014; 

Nguyen, 2012; Novak and Tyson, 2008; Woods et al., 2016).

In principle, a single negative feedback is required and sufficient to generate self-sustained 

oscillations (Friesen and Block, 1984; Ingolia and Murray, 2004; Lomnitz and Savageau, 

2014; Novak and Tyson, 2008; Ferrell et al., 2011). However, known biological oscillators 

are organized into more complex network structures. Some of the additional structures, such 

as positive feedback loops, are not required for generating oscillations but are evolutionary 

conserved, which has raised a question of what functional role they may play. An appealing 

hypothesis is that they improve robustness, which is defined by likelihood of remaining self-

sustained oscillations under a perturbation in the parameter space. It is an important 

characteristic for biological oscillators to function properly in a noisy environment. Studies 

on several biological oscillators such as cell cycles have supported this notion by showing 

that adding a self-positive feedback loop, in which a node can activate itself, to a core 

oscillatory circuit can increase the oscillator’s robustness, while adding a self-negative 

feedback loop to the same core cannot (Ananthasubramaniam and Herzel, 2014; Gerard et 

al., 2012; Tsai et al., 2008). However, whether positive feedback is necessary or sufficient to 

increase robustness has remained controversial. A recent study using synthetic circuits 

(Chen et al., 2015), has shown that adding a negative feedback to an oscillator could also 

increase its robustness. In addition, while both Wee1 and Cdc25 form positive feedbacks in 

embryonic cell cycles, only the one from Cdc25 is critical for the robustness of the 

oscillation period (Tsai et al., 2014). Moreover, a recent study on the p53 oscillation 

dynamics (Moore et al., 2015) demonstrated that only one out of the three microRNA-

mediated positive feedbacks increases the robustness of the oscillator. These studies, each 

focusing on a specific set of biological oscillators, did not yield a converging conclusion. 

Importantly, it reveals the difficulty of identifying generalizable mechanisms through 

analyzing only a subset of oscillators. To obtain a complete picture beyond any chosen 

systems, a comprehensive mapping from the entire topology space to the function space is 

necessary.

Here we systematically analyzed the robustness of all oscillatory topologies with no more 

than three nodes, to search for structures that are most significantly associated with high 

oscillation robustness. In agreement with previous work (Castillo-Hair et al., 2015; 

Goldbeter, 2002; Novak and Tyson, 2008), we found that certain core network topologies are 

essential for robust oscillations. However, we also found that local modifications on a node 

of the network have a significant impact on the global network robustness. Specifically, we 

identified local motifs such that nodes receiving incoherent inputs (both positive and 

negative inputs) significantly increase the robustness of the network, while nodes with 

coherent inputs (only positive or negative inputs) decrease the robustness. The effect can be 

general as it is conserved in networks with higher node numbers and in various real 

biological oscillators whose models and parameters are experimentally supported. Nullcline 

analyses demonstrate that incoherent or coherent inputs differentially influence the 

robustness by extending or narrowing a node’s span of steady states. In addition, we found 
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that incoherent inputs are enriched in almost all known natural and synthetic oscillators, 

suggesting that incoherent inputs may be a generalizable design principle that promotes 

oscillatory robustness.

RESULTS

Systematic Enumeration to Build a Complete Map of Oscillatory Networks

To map out the entire design space of enzymatic networks capable of robust oscillations, we 

enumerated and analyzed all 3,325 unique topologies containing no more than three nodes 

(Figure 1A, left; STAR Methods). This approach, while computationally plausible, has 

allowed for exhaustive analysis of all possible network configurations.

Using a well-established enzymatic model (Tsai et al., 2008) describing each node by an 

ordinary differential equation (see the model derivations in STAR Methods), and the Latin 

hypercube sampling method, each topology was simulated independently with a collection 

of 1,000,000 parameter sets randomly sampled within a pre-defined parameter space that is 

considered to be biologically relevant (Table S1; STAR Methods). Each random sampling 

experiment was repeated five times. Hence, we analyzed a total of approximately three 

billion dynamical systems (3,325 × 1,000,000 parameter sets), each having five replicates. 

Each individual dynamical system was further simulated with five random initial conditions 

to detect if it yields a unique limit cycle, featuring self-sustained oscillations (Figure 1A, 

middle; STAR Methods).

To measure the robustness of each topology and map it from the topology space to the 

function space, we computed the Q value, a well-established metric of robustness that 

quantifies the volume of parameter space supporting oscillation (Ma et al., 2009). We also 

compute the rank percentage of the Q value among the topologies with the same number of 

edges, which gives insights into the relative robustness without the effects due to various 

network complexity (Figure 1A, right; STAR Methods).

This analysis generated a comprehensive atlas of 1,420 oscillators, all “connected” such that 

one topology can transform to the other by adding or deleting one edge or one node (Figure 

1B; STAR Methods). Such connectedness of all oscillators is an important prerequisite for 

the evolvability of robustness, suggesting that a robust solution can be found by changing 

one regulatory interaction at a time without losing the ability to generate oscillations. These 

oscillators all contain at least one negative feedback loop, confirming that the negative 

feedback is a general requirement for generating oscillations (Novak and Tyson, 2008). The 

atlas was laid out so that the topological complexity (scaled with number of edges) of the 

oscillators increased from bottom to top (Figure 1B). Oscillators of the same complexity 

were arranged within each row in decreasing order of Q values that spanned orders of 

magnitude, indicating a large variability of their ability to generate robust oscillations. The 

bottom-most eight topologies, which we define as “oscillatory cores,” serve as roots for all 

of the subsequent, more complicated, oscillators. They are minimized oscillatory networks 

that cannot be simplified further to another oscillatory network, and, thus, the simplest 

topologies that sustain oscillation.
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Oscillatory Cores Set the Basic Levels of Robustness

The oscillatory cores exhibit a large discrepancy in robustness among themselves, with the 

top three performing significantly better than the rest (Figure 1C). Affirming the validity of 

our methods, they match the three most well-known central structures of biological 

oscillators, namely the repressilator (core 1), activator-repressor (core 2), and delayed 

negative feedback (core 3).

To determine whether these oscillatory cores were responsible for the large range of 

robustness we observed for all networks, we clustered topologies based on oscillatory core 

composition. We first compared clusters of topologies that contained only one of the eight 

cores, and found that topologies containing cores 1, 2, or 3 were on average significantly 

more robust than topologies containing any of the other cores (Figure 1D). These results 

suggested that the core structures play an essential role in determining a network’s 

robustness. These differences were compromised if we allowed topologies to contain more 

than one oscillatory core (Figure S1A). To quantify how combining cores can affect the 

network robustness, we also clustered topologies that only contained two oscillatory cores 

(Figure S1B). We found that robust cores (e.g., cores 1 to 3) combined each other resulting 

in a more robust network, while adding any one of the non-robust cores (e.g., cores 4 to 8) to 

any other core had little change on the robustness of the network. We therefore clustered all 

topologies that contained any combinations of cores 1, 2, and 3 regardless of the presence or 

absence of all other less-significant cores. We found that the average robustness of a cluster 

increased with the number of the robust cores they contained, suggesting that multiple robust 

cores could combine to promote the robustness of the networks in which they are embedded 

(Figure 1E).

Despite the high dependence of the average robustness on oscillatory cores, we also 

observed a large variation of robustness within each of the clusters that cannot be explained 

by their cores alone. In addition, it was unclear what mechanisms underlie the major 

differences in robustness among the cores themselves (Figure 1C). For example, cores 2 and 

6 are both self-positive-plus-negative feedback loops except that core 2 has the self-positive 

feedback added onto the activator (node B), while core 6 is added onto the repressor (node 

A). This seemingly subtle difference resulted in a 45-fold change in robustness. Notably, 

core 2 is well conserved in natural and synthetic oscillators, while core 6 is rarely found in 

any biological oscillators. All these together, suggest that, in addition to the core 

architecture, certain auxiliary local structures may play a significant role in robust network 

performance.

Incoherent Inputs Enhance the Overall Robustness of an Oscillatory Network

We started by examining the influence of two auxiliary structures, namely a positive 

feedback and a negative feedback, both of which have been reported to improve the 

robustness of certain networks (Chen et al., 2015; Tsai et al., 2008). Our results, however, 

did not support a simple relationship between the addition of a positive or negative feedback 

and the increased robustness. Instead, the effect depended on the core structure and to which 

node of the core the feedback was added (Figure 2A). To systematically identify key 

structures that improve robustness independent of any specific oscillatory cores, we 
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compared all neighboring topologies that differ by only one regulatory interaction but share 

the exact same oscillatory cores. Specifically, for each pair of these neighboring topologies, 

we decomposed them into small network structures (e.g., two-edge motifs as shown in 

Figure 2B), and calculated the difference in their network structure compositions and the 

resulting difference in their levels of robustness (measured as rank percentages of Q values). 

To identify which of the network structure components best predict the change in network 

robustness, we used a least-absolute shrinkage and selection operator, a statistical linear 

regression technique (STAR Methods). While none of the one-edge motifs significantly 

increased oscillator robustness (Figures S1C–S1G), we discovered several two-edge motifs 

(Figure 2C) that had a major impact on robustness. Notably, all incoherent input structures 

(one node that receives both activation and inhibition) tended to increase the robustness, 

while the coherent input structures (one node that receives either two activations or two 

inhibitions) tended to decrease the robustness. To confirm these results, we also calculated 

Spearman’s rank correlation coefficients (Figure S2A) and partial rank collection 

coefficients (Figure S2B), both of which resulted in the same conclusion. Remarkably, this 

simple “incoherent inputs rule” accurately predicted the differential influence of adding a 

positive or negative feedback loop to a core on its robustness (Figure 2A), and therefore 

unified the apparently conflicting results in the literature where either positive feedback or 

negative feedback was reported to promote robustness in different contexts (Chen et al., 

2015; Gerard et al., 2012; Tsai et al., 2008). The rule also explained the divergent robustness 

levels we observed for the pairs of cores with similar designs (e.g., cores 2 and 6, cores 4 

and 8, cores 5 and 7) in Figure 1C.

To examine whether these motifs contribute additively to the robustness of a network, we 

clustered all topologies based on the numbers of incoherent and coherent inputs embedded. 

The results show that the more incoherent inputs and the less coherent inputs that a network 

has, the more robustly it behaves (Figures 2D, S2C, and S2D). The same trends were also 

observed using different sampling methods, such as linear sampling (Figure S2E), an 

alternative model function based on Michaelis-Menten kinetics (Figure S2F), and different 

sampling ranges (Figures S3E and S3F).

To test these findings in larger-scale networks that consist of four or five nodes, we utilized 

two complementary strategies. First, we enumerated all topologies that contained a core of a 

four- or five-node “delayed negative feedback” (Figures 2E and 2G). Second, we relaxed this 

constraint to randomly sample 50,000 topologies out of all configurations (Figures 2F and 

2H). Both approaches led to the same conclusion: the incoherent inputs and coherent inputs 

additively increased or decreased robustness in larger networks (Figures S2G–S2J).

To investigate which parameter is the most affected by adding incoherent input, we analyzed 

repressilator-derived networks in a generalized enzymatic model. We projected the 

parameter volume of each topology that supports oscillations onto one of its parameter axes, 

and then compared the projected distributions along all parameter axes for each pair of 

topologies. The results (Figures S3A–S3C) show that the distributions of thresholds, K, and 

Hill coefficients, n, changed significantly in response to incoherent inputs versus coherent 

inputs, and the most sensitive parameter is the K from the nodes with incoherent input. This 

result is confirmed by bifurcation analysis from the centroid of the parameter volume that 
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support oscillations of a repressilator core (Figure S3D), which shows that the incoherent 

input increases the oscillatory range of K of the node.

To intuitively understand why incoherent inputs could improve robustness, we performed 

nullcline analysis on a node with a pair of incoherent or coherent inputs, or with a single 

input as a control. This analysis revealed that the range of steady states of a node varied with 

its input logics (Figures 3A and S4A–S4C). Specifically, the nullcline range of a node, 

compared with the control (i.e., a node receiving only a single input), increased when it 

received incoherent inputs and decreased when receiving coherent inputs. The nullcline 

range seemed to increase most dramatically from the control when the two input signals had 

opposite signs but a comparable strength. Since the oscillation trajectory needs to cross the 

nullcline, a larger nullcline range leads to a larger freedom of oscillatory variables, which 

allows for more flexible parameter selections regarding those variables. Therefore, the wider 

a nullcline spans, the greater is the potential of a system to generate sustained oscillations. 

This explains why certain patterns of local interactions on a node impose a significant 

impact on the overall performance of a network.

Incoherent Inputs Increase Robustness in Real Biological Networks

To better understand the importance of incoherent inputs in “real-world” biological systems, 

we analyzed two well-known biological oscillators: embryonic cell cycles and the p53 

system, both of which are highly conserved among organisms and have been extensively 

studied with well-established mathematical models and experimentally measured parameters 

(Batchelor et al., 2011; Tsai et al., 2014). The embryonic cell cycle (Figure 3B) centers on a 

core delayed negative feedback that is modified by a double-positive feedback loop through 

phosphatase Cdc25 and a double-negative feedback loop through kinase Wee1. Although 

both are self-reinforcing loops, Cdc25 forms an incoherent input to Cdk1-cyclin B1, while 

Wee1 forms a coherent input. Thus, this provides an ideal system to test our prediction. By 

adopting a published model with experimentally estimated parameters (Tsai et al., 2014), we 

found that removal of the incoherent input disrupted the ability of the system to oscillate, 

while removal of the coherent input did not (Figures 3D and S4D). By random parameter 

sampling centered on the experimentally measured parameter values (see parameter ranges 

in Table S2), we found that, the robustness of the oscillator, measured as the percentage of 

parameters that yielded sustained oscillations, increased with the strength of the Cdc25 loop 

until it reached a plateau (Figure S4D). An opposite trend was observed for the Wee1 loop 

(Figure S4D). These results held for different sampling methods and sampling parameter 

ranges (Figures S3G–S3L). These results suggested that Cdc25, as an incoherent input 

modification, is essential to maintain a robust cell cycle. The impact of Cdc25 on the cell-

cycle robustness was further confirmed in both nullcline analysis and bifurcation analysis: as 

the strength of Cdc25 increased, so did the range of steady-state Cdk1-cyclin B1 activities 

(Figures 3F and S4G), and the ranges of several key bifurcation parameters (e.g., cyclin B1 

synthesis rate in Figure 3H; Hill coefficients in Figures S4E and S4F), within which 

sustained oscillations occurred. In contrast, the strength of Wee1, as a coherent input 

modification to the core negative feedback architecture, played an opposite role (Figures 3F, 

S4E, and S4F).
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In the second example, we studied the signaling network of the tumor suppressor p53, which 

cells utilize to respond to stresses such as DNA damage. Interestingly, the p53 network wires 

differently under different stimulations, leading to distinct dynamics and cell fates (Purvis et 

al., 2012). Explicitly, the p53 network oscillates in response to double-strand break (DSB), 

while it exhibits a single pulse under UV radiation. The key structure to sustain the 

oscillations is a negative interaction from Wip1 to ATM (Batchelor et al., 2011) (Figure 3C). 

This negative regulation from Wip1 (Shreeram et al., 2006), together with the positive 

regulation from the DSB-sensing complex (Mre11-Rad50-Nbs1) (Lee and Paull, 2005), 

form incoherent inputs to ATM. Removing either of the inputs terminated the oscillations 

(Figure 3E), while increasing the reaction rate constant of either input resulted in an 

extended nullcline range of ATM (Figures 3G and S4H). Similarly, through bifurcation 

analysis, the range of the DSB signaling input level that supports oscillations also widened 

with increasing rate constant of Wip1–|ATM (Figure 3I). Together, these results strongly 

demonstrated the significance of incoherent inputs in promoting robust biological 

oscillations.

DISCUSSION

So far, computational search for functional network motifs has mainly focused on the core 

topologies (Chau et al., 2012; Cotterell et al., 2015; Ma et al., 2009; Noman et al., 2015; 

Shah and Sarkar, 2011). Only a few studies (Chen et al., 2015; Gerard et al., 2012; Tsai et 

al., 2008) have highlighted the functional role of auxiliary structures. However, these studies 

have selectively examined the influence of one-edge structures, such as the self-positive and 

self-negative feedback loops, on a few pre-defined oscillatory cores, which may lack 

generality. In this present study, by analyzing all two- and three-node topologies through 

enumeration, we discovered key local motifs capable of improving the robustness of any 

oscillatory system. Notably, rather than the previously emphasized one-edge feedback loops, 

we found the most significant motifs are two-edge structures, namely the incoherent inputs, 

where a node is regulated by both positive and negative signals. This finding has implied the 

importance of how two signals interact, which in a way matters more than the absolute level 

of a signal itself. Its significance may be in line with that of an incoherent feedforward loop 

in signaling pathways, which can function as a robust fold-change detector (Ferrell, 2009).

Indeed, incoherent inputs are highly enriched in all well-known biological oscillators, 

ranging from circadian clocks to signaling networks (Figure 4A), as well as many robust 

synthetic biological oscillators (Figure 4B). The only exception is the repressilator (Elowitz 

and Leibler, 2000), the first synthetic gene oscillator, which did not show great robustness 

until recent modifications (Potvin-Trottier et al., 2016). Given the simplicity of forming 

incoherent inputs, and that such minor modifications do not immediately change the 

oscillatory core structures, it provides a valuable guidance for designing robust synthetic 

oscillators as well as a feasible strategy to improve the robustness of an oscillator through 

gradual evolution.

In the analysis, we have generated a complete map of three-node oscillators where any pair 

of topologies that differ by only one regulatory interaction are connected. A similar 

connection map has been reported in a study on the evolution of robustness in circadian 
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clocks by evolutionary search (Wagner, 2005). The high connectivity we observed in the 

oscillator design space suggests that a robust oscillator can be evolved by adding or deleting 

one regulatory interaction at each step without stopping oscillations. Furthermore, we have 

found the effects of multiple local motifs are additive. That is, the degree of robustness of an 

oscillator can increase or decrease with the numbers of nodes that receive incoherent or 

coherent inputs. This implies that natural evolution could repeatedly use the same strategy to 

develop a highly robust solution.

STAR★METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

Matlab R2016a The MathWorks https://www.mathworks.com

Boost C++ Libraries http://www.boost.org

Algorithms for network motif simulation and 
sustained oscillator detection

This paper https://github.com/zhengdali1990/netSearchPub

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Qiong Yang (qiongy@umich.edu)

METHOD DETAILS

Robustness Definition—Robustness was defined using a mathematical representation, 

, proposed by Hiroaki Kitano (Kitano, 2007), where the robustness (R) 

of a system (s) depends on function (a) under a set of perturbations (P). Here we assumed 

equal probability of perturbations of all parameters, which gives 1/N, where N is the total 

number of parameters.  is an evaluation function that determines to what degree the 

system still maintains function under a perturbation (p).  is 1 if the system maintains 

sustained oscillations, and otherwise 0. This definition is equivalent to Q value, defined as 

the number of sampled parameter sets that yield sustained oscillations (Ma et al., 2009; Tsai 

et al., 2008). A topology is more robust if there is a larger parameter volume to support 

oscillations. It also means that, under environmental perturbations on the parameters, such a 

system, having a higher Q value, is more likely to remain oscillatory.

The random sampling size is limited and the parameter-set range is finite, both of which may 

result in a Q value that is skewed by the dimension of a system (i.e. network complexity). 

For different purposes, studies have used different approaches, such as unscaled percentage 

of parameter sets (Ma et al., 2009; Tsai et al., 2008), or the probability distribution of the 

parameters based on Bayesian statistics (Woods et al., 2016), to restore the measure of 

robustness to some degree, so that it is less sensitive to dimension. In our study, to reconcile 

the dependence of robustness on network complexity (number of edges), we performed the 

normalization for the networks with the same complexity, and used the rank percentage of 
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the Q value of each network as a robustness measurement. This way we avoided a direct 

comparison of the Q values among networks with different complexity.

Topology Enumeration—Here we enumerated all topologies with no more than three 

nodes. Many biological oscillators are centered on three-node negative feedback loops 

(Gene, mRNA, Protein) (Jenkins et al., 2015), and large networks can be decomposed into 

smaller networks (Han et al., 2004; Milo et al., 2002, 2004). The role of incoherent inputs 

we revealed from three-node networks was shown applicable in four-node and five-node 

networks and is likely generalizable to larger networks.

In our study, each topology can be represented by a 3×3 matrix. Each edge can be assigned 

to value 0 (no interaction), 1 (positive interaction) or −1 (negative interaction). This gives a 

total of 39 =19683 networks. After removing all isometric equivalents by comparing 

networks in all possible permutations, the number becomes 3410. We then remove the 

network that has isolated nodes (only accepting input, giving output, or completely isolated), 

and the number of networks reduces to 3325. These include 2 one-node networks, 39 two-

node networks and 3284 three-node networks.

Generalized Models for Enzymatic Networks—We mainly used a protein interaction 

model to describe the networks. Many biological oscillators, including the cell cycles and 

circadian clock of cyanobacteria, are protein systems (Golden and Canales, 2003). In our 

model, each variable corresponds to a node in the network, the value of which indicates the 

activity level of the protein that the node represents. Each node has both active and inactive 

forms, and these two forms can transform to each other at a basal rate. The interaction 

between any two nodes is enzymatic. We used a well-established model system (Equation 1) 

to describe the protein interactions (Tsai et al., 2008), which can be derived from mass 

action kinetics (Equations 3–9). To verify that the choice of specific function does not affect 

our result, we also tested our system by using Michaelis-Menten kinetics to model the 

interaction (Equation 2).

Let the activity of a protein on node i be Ai, the interaction type from node j to i be δji and 

the interaction strength kji.

The ODE for node A can be represented as follows:

(Equation 1)
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To verify our result under different model conditions, we also applied a Michaelis-Menten 

kinetics model:

(Equation 2)

Derivation of the Enzymatic Reaction Models—The model we used in the main text 

(i.e., Equation 1) can be derived from the simple mass action kinetics with a few 

assumptions, as follows. Consider a node A, and when there is no input from outside, the 

equations are as below:

(Equation 3)

(Equation 4)

If protein B activate A through binding, then

(Equation 5)

Assume that the binding and unbinding of proteins are fast, we have

(Equation 6)

Assume that the binding between proteins are independent, we have

(Equation 7)

Then the interaction term can be represented by
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(Equation 8)

where  and the reaction rate of A is:

(Equation 9)

Models for Real-World Biological Oscillators—The models we used to investigate 

the role of incoherent inputs in real-world biological oscillators are adopted from published 

work (Batchelor et al., 2011; Tsai et al., 2014).

Cell cycle model:

p53-ATR model:

p53-ATM model:
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Parameter Range Selections—In general networks, the parameter ranges are 

predefined, as shown in Table S1. These parameter selections are consistent with a study that 

used the same model (Tsai et al., 2008). We mainly used logarithmic sampling in our study, 

and most parameters have a range of 4 in log10-space. Linear sampling was also used to 

verify the results. The parameter ranges in the cell-cycle model are shown in Table S2. We 

also tested different parameter ranges (not shown), and the result is not altered. In the 

simulation of biological oscillators with fixed parameters, the parameters are kept 

unchanged from previous publications (Batchelor et al., 2011; Tsai et al., 2014).

Description of Topology Map—We compared every possible pair of topology. Any two 

topologies are connected as a pair if both topologies contain the same number of nodes, and 

if one topology can produce another topology by adding one edge. Two topologies with 

different number of nodes can be connected if one topology can produce another topology 

by adding at least two edges (Figure 1B).

Effects of One Edge Motifs on Oscillatory Robustness—The possible one edge 

motifs on a node are: self-positive, self-negative, node-to-node positive interaction (with 

another node), and node-to-node negative interaction (with another node). The relationship 

between the number of one edge motifs and the robustness are shown in Figures S1E and 

S1F, where the node-to-node negative interaction seems to have a positive correlation with 

the robustness. To find out whether this correlation may come from the oscillatory cores or 

the modification itself, we did pairwise comparison of all searched topologies and performed 

LASSO on these four modifications. The results showed that while positive interaction 

seems to decrease robustness, no modification can significantly increase the robustness 

(Figure S1G). To investigate the effect of combined one-edge motifs, we clustered 

topologies with positive interactions (both self-positive and node-to-node positive) and 

negative interactions (both self-negative and node-to-node negative) together. The results 

show that the numbers of positive interactions and negative interactions embedded in an 

oscillator do not have a simple correlation with the oscillator robustness (Figures S1C and 

S1D).

QUANTIFICATION AND STATISTICAL ANALYSIS

Simulation and Oscillator Detection—We used Dormand–Prince method in Boost 

library to simulate the equation (with relative error 10−6 and absolute error 10−8). Each 

system was simulated from t=0 to t=2000, which was long enough to detect most of the 

oscillations. During simulation, if a system reaches steady states, then it is not an oscillator. 
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We monitored the recurrence of the states of nodes. The peak of a specific node is selected 

as reference. Let the time at peak i be ti, and the values of all nodes are (xi, yi, zi). If at least 

N consecutive (N=7 in our simulation) peaks that satisfy d((xi,yi,zi),(xi+1,yi+1,zi+1))<ε are 

found, and if the system satisfies: 1. Stable amplitude: , σ=10−2. 2. Stable period: 

, δ=10−2 then the system is considered an oscillator.

Motif Selection—To identify local structures that lead to significant changes in network 

robustness, we compared all eligible topological neighbors on the atlas shown in Figure 1B, 

for their differences in network compositions (as a set of one-edge or two-edge motifs) and 

performances (computed as the rank difference of the two oscillators) (Figure 2B). All pairs 

selected must meet two criteria: (1) Their topologies only had one edge difference. (2) They 

shared the exact same oscillatory cores. Thus, we obtained a list of N = 1831 entries, each of 

which were calculated from one pair of topologies and consisted of p covariates and a single 

outcome, yi. Then, we performed LASSO on this dataset to select the most significant motifs 

that are responsible for the changes of robustness, by solving:

Here, xi:=(x1,x2,…,xp)T is the covariate vector for the ith pair of oscillators, which contains p 

predictors, each as an integer. Each integer represents the difference between the pair with 

regards to their numbers of a certain motif (out of p=4 unique motifs for one-edge 

modifications and 21 for two-edge modifications). The outcome yi is their robustness rank 

difference. λ is a nonnegative free parameter, to control for the amount of regularization of 

the fitting. The fitted coefficients β0 and β are scalar and p-vector obtained at a certain λ 
value. We used ten-fold cross-validation and chose the largest λ such that generalization 

error (mean squared error) was within one standard error of its minimum value. The 

covariance test statistics was calculated, similar to a study (Lockhart et al., 2014), as a 

significance measurement for respective motifs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Enumeration Reveals a Complete Atlas of Two- and Three-Node Oscillators and Eight 
Oscillatory Cores
(A) Schematic of a computational workflow for topology-to-function mapping of biological 

oscillators. Left panel: a complete enumeration of topologies with three nodes or fewer. 

Each node can generate outputs to (analogous to enzymes) or receive inputs from (analogous 

to substrates) other nodes, leading to 3,325 unique topologies. Middle panel: each topology 

is simulated (using the Runge-Kutta Dormand-Prince, or RKDP method) with 106 parameter 

sets (×5 replicates) using Latin hypercube sampling (LHS) sampling in Log-space. The 

ranges of the parameter space are listed in Table S1. Each limit-cycle oscillator is detected 
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numerically (STAR Methods). Right panel: robustness of each topology is calculated as the 

number of parameters that support oscillations (Q value) or as the rank percentage of the Q 

value.

(B) A complete map of 1,420 oscillatory topologies, whose robustness values span orders of 

magnitude. Each node is one topology. All topologies are laid out such that the topological 

complexity, represented by the number of edges (E), increases from bottom to top. 

Topologies with the same complexity are color sorted within the same row, according to 

their Q values in a logarithmic scale. Each row contains a total number of N topologies. 

Eight “oscillatory cores” at the bottom of the atlas are highlighted by bordered boxes, the 

color of each matching to the color of the corresponding core topology in the table in (C). 

Any two topologies with one-edge difference are connected. The color of the connection 

between the two topologies of each pair matches the color for a certain combination of cores 

that the upper-layer topology contains. All possible combinations of cores with 

corresponding colors are shown in the Venn diagram in (C).

(C) Eight oscillatory cores are listed in a table in decreasing (or increasing) order of mean Q 

value (or mean rank percentage of the Q value), each calculated from five replicates. The top 

three most robust cores are colored in cyan, blue, and green, and the rest cores are all 

colored in black. The Venn diagram on the right panel clusters all 1,420 topologies based on 

which combinations of the top three cores they consist of. The number on each region of the 

Venn diagram indicates the number of topologies in the set. The black region is for all 

topologies that contain none of the top three cores, i.e., topologies that contain only any one 

or more of the five non-robust cores.

(D) Boxplots of mean rank percentage of topologies containing only one of each of the eight 

cores that are listed in the x axis, showing that topologies with cores 1 to 3 are significantly 

more robust than those with all the other cores. The red + symbols represent outliers, whose 

values are higher than 75 percentile + 1.5 × (75 percentile – 25 percentile) or lower than 25 

percentile − 1.5 × (75 percentile – 25 percentile). The number of topologies within each 

cluster is also listed at the bottom.

(E) Boxplots of mean rank percentage of topologies containing different combinations of 

robust cores (e.g., cores 1 to 3), regardless of the presence or absence of all other non-robust 

cores. The red + symbols represent outliers. The number of topologies within each cluster is 

listed in the Venn diagram in (C).
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Figure 2. Incoherent Inputs Significantly Increase the Overall Robustness of an Oscillator
(A) To test whether adding a positive or negative feedback to an oscillator increases its 

robustness, topologies of each of the eight pairs are compared regarding their robustness 

levels, measured as Q value (bar plots on top) or 1 – rank percentage (bar plots on the 

bottom). The left bar plot of each pair corresponds to the topology with an additional 

positive feedback (top row), and the right bar plot of each pair corresponds to the topology 

with an additional negative feedback (bottom row). The color of each bar plot indicates 

whether the topology contains a node with incoherent inputs (orange) or a node with 

coherent inputs (cyan). It shows that adding a positive feedback or a negative feedback does 
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not always result in a higher level of robustness. Instead, of each pair, the topology with 

incoherent inputs is unanimously more robust than the one with coherent inputs, regardless 

of whether a positive or negative feedback is added, indicating that the “incoherent inputs” 

principle can be a fundamental rule that unifies otherwise divergent results.

(B) Schematic comparing a pair of neighboring topologies by calculating the difference in 

their network structure compositions and the resulting difference in their levels of robustness 

(measured as R2–R1).

(C) LASSO analysis on the dataset generated from (B) to estimate the coefficients (y axis) 

for all two-edge motifs at a certain λ value (x axis). Applying the 1 SE rule, any curve with 

coefficients above 0 at 1 SE is for a motif that decreases the robustness, and below 0 for a 

motif that increases the robustness. Interestingly, all motifs with incoherent inputs 

(highlighted in an orange-bordered box) significantly increase the robustness, while all 

motifs with coherent inputs (highlighted in a cyan-bordered box) significantly decrease the 

robustness. The p values using covariance test statistics (Lockhart et al., 2014) are shown in 

tables on the right.

(D) Heatmap of the mean rank percentages of the Q value for all topologies that are 

clustered based on the number of nodes with incoherent inputs (x axis) and the number of 

nodes with coherent inputs (y axis) they contain.

(E–H) Incoherent inputs promote the robustness of larger-scale networks. Left panels: (E) 

contains a total of 6,561 four-node topologies with a core four-node delayed negative 

feedback loop, and each topology is simulated with 106 parameter sets; (F) contains 50,000 

topologies that are randomly selected from all four-node configurations, each of which is 

sampled with 100 K parameter sets; (G) contains a total of 59,049 five-node topologies with 

a core five-node delayed negative feedback loop, each sampled with 100 K parameter sets; 

and (H) contains 50,000 topologies that are randomly selected from all five-node 

configurations, each sampled with 100 K parameter sets. Right panels: all topologies are 

clustered based on the number of nodes with incoherent inputs that they contain, and the 

mean rank percentage of the Q value is calculated for each cluster. Error bars: the SEM 

based on five replicates.
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Figure 3. Incoherent Inputs Improve the Robustness of Biological Oscillators with 
Experimentally Estimated Parameters
(A) Compared with a single input, incoherent or coherent inputs increase or decrease the 

nullcline range of a node, respectively. Left panel: heatmap of the nullcline ranges of node A 

that receives both an input of strength k1 and a self-feedback of strength k2. The value of k1 

(or k2) can be positive or negative, representing activation or inhibition. The inset on the top 

shows the representative topologies for different combinations of k1 and k2 with positive or 

negative values. To eliminate any effect from parameters other than k1 and k2, the mean 

nullcline range is calculated from 100 simulations, with all parameters except for k1 and k2 

randomly sampled within the parameter ranges listed in Table S1. The inset on the left 

shows three examples of nullcline for a node with the same negative input on one leg, but 
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with an additional self-positive feedback, no additional input, or an additional self-negative 

feedback on the other leg (basal reaction rate = 0.1, self-regulation rate |k2| = 1, input rate |

k1| = 10, EC50 = 0.1, n = 2). Each nullcline is colored according to its nullcline range. Right 

panel: heat-map of the null-plane ranges of node A that receives both two inputs of strength |

k1| and of strength |k2|. All notations are the same as in the left panel. Examples of nullplane 

are showing in Figures S4A–S4C.

(B and C) Topologies of the cell cycle (B) and p53 oscillator (C), where the nodes that 

receive incoherent inputs are labeled in green and the interactions of interest in yellow.

(D and E) Time courses of active Cdk1 levels (D) and total p53 levels (E), either with 

(labeled with *) or without (labeled with ○) the interactions labeled in yellow in (B and C). 

The results show that incoherent input is necessary for oscillation. The rest of parameter 

values are unchanged from the literature values (Batchelor et al., 2011; Tsai et al., 2014).

(F and G) Heatmaps of the nullcline ranges of Cdk1-cyclin B (F) and ATM (G), indicating 

that the strength of any of the incoherent inputs, such as Cdc25, Wip1–|ATM, or DSB, is 

positively correlated with the nullcline range, while the coherent input strength of Wee1 is 

negatively correlated with the nullcline range. The points labeled with * and ○ correspond 

to the same systems as in (D and E).

(H and I) Bifurcation analysis. The shaded regions denote the parameters compatible with 

sustained oscillations. The parameter ranges of the cyclin B synthesis rate constant ksynth 

(H) and DSB signal input strength (I), both as the essential clock inputs, become wider as 

the incoherent input strength kCdc25 (H) and kWip1–|ATM (I) increase. These results indicate 

that incoherent inputs increase the parameter choice for oscillation, and thus increase the 

robustness of the system. The points labeled with * and ○ correspond to the same systems 

as in (D and E).
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Figure 4. Incoherent Inputs Are Enriched in Biological and Synthetic Oscillators
(A) Examples of biological oscillators with incoherent inputs. Networks are shown for 

mammalian circadian clock (Bell-Pedersen et al., 2005), cardiomyocyte calcium spike (Liu 

and Priori, 2008; Periasamy et al., 2008), zebrafish segmentation clock (Mara and Holley, 

2007), nuclear factor κB oscillation (Nelson et al., 2004; Zambrano et al., 2016), and p38 

oscillation (Tomida et al., 2015). The nodes with incoherent inputs are labeled in green.

The signal inputs are labeled in red. The dotted line represents intercellular interaction.

(B) Example of synthetic oscillators with incoherent inputs (Atkinson et al., 2003; Butzin et 

al., 2016; Chen et al., 2015; Fung et al., 2005; Hussain et al., 2014; Stricker et al., 2008; 

Tigges et al., 2009, 2010; Toettcher et al., 2010).
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