Table 4. The performance of WEKA SMO classifier using different c and kernel.
| Accuracy/AUC | c=2-5 | c=2-4 | c=2-3 | c=2-2 | c=2-1 | c=20 | c=21 | c=22 | c=23 | c=24 | c=25 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| LGG vs. HGG | NormalizedPoly-Kernel | 0.030/0.030 | 0.705/0.705 | 0.735/0.735 | 0.760/0.760 | 0.810/0.810 | 0.865/0.865 | 0.920/0.920 | 0.940/0.940 | 0.950/0.950 | 0.950/0.950 | 0.950/0.950 |
| PolyKernel | 0.920/0.920 | 0.940/0.940 | 0.945/0.945 | 0.945/0.945 | 0.945/0.945 | 0.945/0.945 | 0.945/0.945 | 0.945/0.945 | 0.945/0.945 | 0.945/0.945 | 0.945/0.945 | |
| RBFKernel | 0.390/0.390 | 0.725/0.725 | 0.745/0.745 | 0.795/0.795 | 0.865/0.865 | 0.930/0.930 | 0.955/0.955 | 0.960/0.960 | 0.960/0.960 | 0.960/0.960 | 0.960/0.960 | |
| PUK | 0.295/0.295 | 0.310/0.310 | 0.300/0.300 | 0.265/0.265 | 0.235/0.235 | 0.765/0.765 | 0.745/0.745 | 0.745/0.745 | 0.745/0.745 | 0.745/0.745 | 0.745/0.745 | |
| Grade II, III, and IV | NormalizedPoly-Kernel | 0.103/0.141 | 0.456/0.632 | 0.436/0.626 | 0.613/0.732 | 0.775/0.852 | 0.843/0.900 | 0.922/0.957 | 0.941/0.965 | 0.966/0.981 | 0.966/0.981 | 0.966/0.981 |
| PolyKernel | 0.946/0.966 | 0.956/0.977 | 0.961/0.979 | 0.956/0.975 | 0.956/0.975 | 0.956/0.975 | 0.956/0.975 | 0.956/0.975 | 0.956/0.975 | 0.956/0.975 | 0.956/0.975 | |
| RBFKernel | 0.186/0.310 | 0.456/0.629 | 0.598/0.732 | 0.770/0.846 | 0.848/0.909 | 0.917/0.955 | 0.956/0.977 | 0.966/0.983 | 0.971/0.986 | 0.971/0.986 | 0.971/0.986 | |
| PUK | 0.162/0.350 | 0.172/0.326 | 0.152/0.321 | 0.152/0.309 | 0.176/0.319 | 0.745/0.822 | 0.735/0.819 | 0.735/0.819 | 0.735/0.819 | 0.735/0.819 | 0.735/0.819 | |