Skip to main content
. 2017 May 18;8(29):47816–47830. doi: 10.18632/oncotarget.18001

Table 4. The performance of WEKA SMO classifier using different c and kernel.

Accuracy/AUC c=2-5 c=2-4 c=2-3 c=2-2 c=2-1 c=20 c=21 c=22 c=23 c=24 c=25
LGG vs. HGG NormalizedPoly-Kernel 0.030/0.030 0.705/0.705 0.735/0.735 0.760/0.760 0.810/0.810 0.865/0.865 0.920/0.920 0.940/0.940 0.950/0.950 0.950/0.950 0.950/0.950
PolyKernel 0.920/0.920 0.940/0.940 0.945/0.945 0.945/0.945 0.945/0.945 0.945/0.945 0.945/0.945 0.945/0.945 0.945/0.945 0.945/0.945 0.945/0.945
RBFKernel 0.390/0.390 0.725/0.725 0.745/0.745 0.795/0.795 0.865/0.865 0.930/0.930 0.955/0.955 0.960/0.960 0.960/0.960 0.960/0.960 0.960/0.960
PUK 0.295/0.295 0.310/0.310 0.300/0.300 0.265/0.265 0.235/0.235 0.765/0.765 0.745/0.745 0.745/0.745 0.745/0.745 0.745/0.745 0.745/0.745
Grade II, III, and IV NormalizedPoly-Kernel 0.103/0.141 0.456/0.632 0.436/0.626 0.613/0.732 0.775/0.852 0.843/0.900 0.922/0.957 0.941/0.965 0.966/0.981 0.966/0.981 0.966/0.981
PolyKernel 0.946/0.966 0.956/0.977 0.961/0.979 0.956/0.975 0.956/0.975 0.956/0.975 0.956/0.975 0.956/0.975 0.956/0.975 0.956/0.975 0.956/0.975
RBFKernel 0.186/0.310 0.456/0.629 0.598/0.732 0.770/0.846 0.848/0.909 0.917/0.955 0.956/0.977 0.966/0.983 0.971/0.986 0.971/0.986 0.971/0.986
PUK 0.162/0.350 0.172/0.326 0.152/0.321 0.152/0.309 0.176/0.319 0.745/0.822 0.735/0.819 0.735/0.819 0.735/0.819 0.735/0.819 0.735/0.819