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Abstract

Rationale: Individuals with cystic fibrosis are at risk for prolonged
drops in lung function, clinically termed rapid decline, during
discreet periods of the disease.

Objectives: To identify phenotypes of rapid pulmonary decline and
determine how these phenotypes are related to patient
characteristics.

Methods:A longitudinal cohort study of patients with cystic fibrosis
aged 6–21 years was conducted using the Cystic Fibrosis Foundation
Patient Registry. A statistical approach for clustering longitudinal
profiles, sparse functional principal components analysis, was used to
classify patients into distinct phenotypes by evaluating trajectories of
FEV1 decline. Phenotypes were compared with respect to baseline
and mortality characteristics.

Measurements and Main Results: Three distinct phenotypes of
rapid declinewere identified, corresponding to early,middle, and late
timing of maximal FEV1 loss, in the overall cohort (n = 18,387). The
majority of variation (first functional principal component, 94%)
among patient profiles was characterized by differences in mean
longitudinal FEV1 trajectories. Average degree of rapid decline
was similar among phenotypes (roughly23% predicted/yr);
however, average timing differed, with early, middle, and late
phenotypes experiencing rapid decline at 12.9, 16.3, and 18.5 years
of age, respectively. Individuals with the late phenotype had the

highest initial FEV1 but experienced the greatest loss of
lung function. The early phenotype was more likely to have
respiratory infections and acute exacerbations at baseline
or to develop them subsequently, compared with other
phenotypes.

Conclusions: By identifying phenotypes and associated risk factors,
timing of interventionsmay bemore precisely targeted for subgroups
at highest risk of lung function loss.

Keywords: cluster analysis; epidemiology; functional data analysis;
nonlinear trajectories; pulmonary function

At a Glance Commentary

Scientific Knowledge on the Subject: Rapid lung function
decline during adolescence and early adulthood is a frequent
observation in the clinical course of patients with cystic fibrosis.
However, the heterogeneity in the timing of rapid lung function
decline remains unknown.

What This Study Adds to the Field: Using a novel statistical
approach to model lung function trajectories, this study
suggests that phenotypic variation in the clinical course of
cystic fibrosis is more strongly linked to the timing, as opposed
to extent, of rapid decline.
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Slowing lung disease progression is essential
to survival in individuals with cystic fibrosis
(CF). Decline in pulmonary function,
measured as percentage predicted FEV1, is
the strongest predictor of mortality in this
population (1). However, there is
substantial variation within each individual
patient’s FEV1 trajectory and between
patient trajectories observed over time (2);
this variation is evident on a week-to-week
basis (3). Many patient characteristics have
been linked to faster decline in lung
function (4, 5), but beyond the slope, there
has been limited information extracted
from the inherent shape of the FEV1

trajectory.
Recent studies using flexible modeling

approaches that allow for analysis of
nonlinear FEV1 trajectories have more
precisely characterized the timing of
rapid decline as occurring predominantly
during adolescence and early adulthood. In
a retrospective study using the U.S. Cystic
Fibrosis Foundation Patient Registry
(CFFPR), we found that the timing and
degree of rapid FEV1 decline were
variable between patients (6). Individuals
experienced most rapid decline at a
median (interquartile range) of 16.3
(13.5–21.0) years and the average degree
of maximal FEV1 loss was 2.0%
predicted/yr. In another recent
retrospective single-center analysis,
Moss and colleagues (7) used a random
change point model to fit FEV1 trajectories
of patients with CF, allowing the timing
of rapid decline to differ by individual.
In addition to variable decline, each
individual FEV1 trajectory exhibits
strong within-patient correlation. A
study of the Danish CF registry using
monthly data from 1969 to 2010
confirmed that individual FEV1

observations taken as much as 15 years
apart remain correlated (2).

Although these epidemiologic
studies have begun to shed light on the
complex nature of FEV1 decline by
using mixed effects models, clustering
approaches are needed to establish
phenotypes of rapid decline and appraise
their clinical relevance in CF. Clustering
curve data with strong temporal
correlation, like that of longitudinal FEV1

in CF, can be accomplished using a
functional data analysis technique
known as functional principal components
analysis for sparse longitudinal data
(FPCA) (8). This model allows individual

prediction of smoothed curves of nonlinear
FEV1 decline. It also accounts for
temporal correlation and use of profiles
with varying numbers of FEV1 values.
Thus, this methodology is well suited
to CFFPR analyses, where numbers of
values and trajectories of FEV1 vary
over time.

A better characterization of distinct
patterns or phenotypes of rapid lung
function decline would provide an
opportunity for more precise,
personalized treatment of patients with CF.
Thus, the purposes of this study were
threefold: first, to identify and characterize
phenotypes of rapid FEV1 decline for
adolescents and young adults with
CF; second, to identify predictors of
earlier rapid FEV1 decline; and third,
to determine the extent to which other
longitudinal characteristics are associated
with rapid FEV1 decline phenotypes.
A portion of the results of this study
has been previously reported in the form
of an abstract (9).

Methods

Population
Patients with FEV1 data recorded during
childhood and adolescence (age, 6–21 yr) in
the U.S. CFFPR between January 1, 1997,
and December 31, 2013, were eligible.
Patients younger than 6 years of age were
excluded because of potentially unreliable
pulmonary function testing. Because the
majority of relevant predictors of FEV1

decline were consistently documented in
the CFFPR beginning in 1997, we
considered available data from 1997
onward. A detailed description of this
registry and its contents is provided
elsewhere (10).

Design and Procedures
We performed a retrospective longitudinal
cohort study using the CFFPR, clustering
patients with CF into phenotypes according
to patterns of age-related lung function
decline. Observed FEV1 was expressed
as percentage of predicted using established
reference equations (11, 12). Baseline
was defined as the time at which the
first FEV1 was recorded during the
eligibility period. Data acquired after
lung transplant were excluded. The
institutional review board at Cincinnati

Children’s Hospital Medical Center
approved the study.

Statistical Analysis
Descriptive statistics, including mean (SD)
or median (range) as appropriate for
continuous variables and number (%) for
categorical variables, were used to
summarize cohort characteristics.
Chi-square tests or type 3 tests of
fixed effects from a linear model, as
appropriate, were used to examine
overall differences in phenotype groups
with respect to each variable. Details
of the statistical considerations and
implementation code are available in
the online supplement.

Longitudinal pattern classification.
FEV1 trajectories were classified using
FPCA for sparse longitudinal data. It is
similar to principal components analysis,
which finds linear combinations of a small
number of features to maximize variance
across data. By looking at these features as
functional data, FPCA can extract the
common temporal characteristics of a set of
curves. The longitudinal outcome variable
used in the FPCA was mean quarterly
FEV1. Before conducting FPCA, we fit each
patient’s FEV1 trajectory based on our
previous approach (13). For inclusion, each
patient had to contribute at least seven
FEV1 measurements over time, to fit
individual curves used as the unit of
information in the FPCA to identify
distinct patterns (see Section E1 in the
online supplement). The number of
functional principal components (FPCs)
retained in FPCA was based on the
standard eigenvalue criterion (>80% of
variance explained) (14).

Given the amount of variation
explained by the first FPC, we followed a
previously described approach (15) to
classify the fitted curves into three clusters
using the first and third quartiles (Q1 and
Q3, respectively) of scores from the first
FPC. Patients with scores less than Q1 were
classified into the first cluster; patients with
scores between Q1 and Q3 were classified
into the second cluster; patients with scores
greater than Q3 were classified into the
third cluster. Further details are provided in
Section E2. Rate of FEV1 decline for each
phenotype was estimated by taking the
derivative over age corresponding to the
fitted FEV1 trajectory; the approach is
detailed in Section E3. Sensitivity analyses,
also provided as supplemental material
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(see Section E4), were performed to assess
potential selection bias arising from
restricting FPCA to data from patients with
at least seven FEV1 measurements, and to
examine the extent to which FPCA findings
may be impacted by variation in the length
of follow-up across patients. Analyses were
implemented using R 3.0.2 (R Foundation
for Statistical Computing, Vienna, Austria).

Modeling predictors of phenotype with
early decline. To identify characteristics
predictive of the early phenotype of rapid
lung function decline obtained from FPCA,
we fit a logistic regression model, with early
decline phenotype membership (Yes or No)
as the primary outcome. Baseline predictors
that were included in the model as
covariates were birth cohort, age at first

FEV1, age at CF diagnosis, FEV1%
predicted, body mass index (BMI)
percentile, pancreatic enzyme use, number
of acute exacerbations within the year,
infection with methicillin-resistant
Staphylococcus aureus (MRSA),
Pseudomonas aeruginosa, Burkholderia
cepacia, nontuberculous mycobacteria
(NTM), Stenotrophomonas, allergic

Table 1. Baseline and Mortality Characteristics of Patients with Cystic Fibrosis, Overall and by Phenotypes of Lung Function Decline

Patient Characteristics Overall

Phenotype*

P ValueEarly Middle Late

N (%) 18,387 (100) 4,597 (25.0) 9,194 (50.0) 4,596 (25.0)
Men 9,524 (51.8) 2,142 (46.6) 4,854 (52.8) 2,504 (54.5) ,0.0001
D F508 copies ,0.0001
None 3,806 (20.7) 1,195 (26.0) 1,811 (19.7) 822 (17.9)
1 8,568 (46.6) 2,055 (44.7) 4,321 (47.0) 2,188 (47.6)
2 6,013 (32.7) 1,347 (29.3) 3,062 (33.3) 1,586 (34.5)

Age at diagnosis, yr 1.9 (3.3) 1.6 (3.0) 1.9 (3.3) 2.1 (3.4) ,0.0001
Age at baseline, yr 9.8 (4.1) 12.0 (4.6) 9.5 (3.8) 8.6 (3.2) ,0.0001
Birth cohort ,0.0001
,1981 2,427 (13.2) 1,315 (28.6) 965 (10.5) 244 (5.3)
1981–1988 6,454 (35.1) 1,958 (42.6) 3,255 (35.4) 1,282 (27.9)
1989–1994 4,505 (24.5) 772 (16.8) 2,317 (25.2) 1,365 (29.7)
.1994 5,001 (27.2) 556 (12.1) 2,657 (28.9) 1,705 (37.1)

FEV1, % predicted 86.1 (21.0) 62.7 (17.8) 87.5 (13.9) 105.2 (12.9) ,0.0001
BMI, percentile 45.0 (26.8) 30.3 (24.6) 45.3 (25.8) 57.2 (24.3) ,0.0001
Pancreatic enzyme use 17,137 (93.2) 4,417 (96.1) 8,569 (93.2) 4,159 (90.5) ,0.0001
Acute exacerbations ,0.0001
0 13,809 (75.1) 2,335 (50.9) 7,318 (79.6) 4,022 (87.5)
1 2,206 (12.0) 812 (17.7) 1,067 (11.6) 363 (7.9)
2 1,342 (7.3) 674 (14.7) 552 (6.0) 156 (3.4)
>3 1,030 (5.6) 766 (16.7) 257 (2.8) 55 (1.2)

Infections
MRSA

At baseline 846 (4.6) 280 (6.1) 414 (4.5) 165 (3.6) ,0.0001
Never infected during follow-up 12,099 (65.8) 3,043 (66.2) 5,912 (64.3) 3,139 (68.3) ,0.0001

Pseudomonas aeruginosa
At baseline 8,219 (44.7) 3,163 (68.8) 3,871 (42.1) 1,319 (28.7) ,0.0001
Never infected during follow-up 2,887 (15.7) 301 (6.55) 1,425 (15.5) 1,117 (24.3) ,0.0001

Burkholderia cepacia
At baseline 294 (1.6) 188 (4.1) 101 (1.1) 18 (0.4) ,0.0001
Never infected during follow-up 17,026 (92.6) 4,059 (88.3) 8,560 (93.1) 4,380 (95.3) ,0.0001

ABPA
At baseline 294 (1.6) 143 (3.1) 129 (1.4) 41 (0.9) ,0.0001
Not acquired during follow-up 16,493 (89.7) 3,875 (84.3) 8,275 (90.0) 4,302 (93.6) ,0.0001

NTM
At baseline 92 (0.5) 46 (1.0) 37 (0.4) 9 (0.2) ,0.0001
Not present during follow-up 17,247 (93.8) 4,243 (92.3) 8,596 (93.5) 4,394 (95.6) ,0.0001

Stenotrophomonas
At baseline 1,030 (5.6) 336 (7.3) 515 (5.6) 184 (4.0) ,0.0001
Never infected during follow-up 11,326 (61.6) 2,846 (61.9) 5,489 (59.7) 2,992 (65.1) ,0.0001

CFRD
At baseline 37 (0.2) 14 (0.3) 18 (0.2) 9 (0.2) 0.7
Ever during follow-up 2,850 (15.5) 1,048 (22.8) 1,388 (15.1) 455 (9.9) ,0.0001

Lower SES
At baseline 7,980 (43.4) 2,409 (52.4) 3,972 (43.2) 1,655 (36.0) ,0.0001
Ever during follow-up 11,565 (62.9) 3,342 (72.7) 5,737 (62.4) 2,551 (55.5) ,0.0001

Alive 17,615 (95.8) 3,861 (84.0) 9,111 (99.1) 4,582 (99.7) ,0.0001

Definition of abbreviations: ABPA = allergic bronchopulmonary aspergillosis; BMI = body mass index; CFRD = cystic fibrosis–related diabetes; MRSA =
methicillin-resistant Staphylococcus aureus; NTM= nontuberculous mycobacteria; SES = socioeconomic status.
Continuous variables are summarized as mean (SD); categorical variables are summarized as n (%). P values, obtained from chi-square tests for
categorical data and linear models for continuous data, reflect overall associations.
*Phenotype corresponds to late, middle, and early rapid lung function decline.
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bronchopulmonary aspergillosis (ABPA),
CF-related diabetes (CFRD), and lower
socioeconomic status as indicated by use
of Medicaid insurance. For each
infection/microbiology variable, presence was
indicated as “1,” whereas “0” or missing
entries were assumed an absence of infection.

Evaluating associations between
longitudinal markers and phenotypes. To
examine temporal associations between
other time-varying characteristics and
phenotype membership during follow-up, we
developed longitudinal models using
generalized estimating equations, each with an
appropriate link function for the categorical or
continuous outcome of interest. In each model,
phenotype membership was included as a
covariate. Longitudinal outcomes were BMI
percentile, detection of MRSA, P. aeruginosa,
B. cepacia, ABPA, NTM, Stenotrophomonas,
and diagnosis of CFRD. Longitudinal entries

with missing covariate information were
excluded from regression models.

Results

Cohort Characteristics
The analysis cohort data was comprised of
565,401 FEV1 observations on 18,387
patients with data from 1997 to 2013 in the
CFFPR (Table 1). The median (range)
number of FEV1 observations per
individual patient was 19 (7–55), with a
follow-up period of 6.8 (1.5–15.5) years and
a total of 178,635 person-years of follow-
up. There were 2,624 patients with less than
seven FEV1 observations excluded from the
primary analyses. Compared with their
counterparts in the analysis cohort, these
patients were slightly older at baseline, on
average, but typically belonged to the

youngest birth cohort (see Table E3 in the
online supplement). Both cohorts had
similar mean FEV1 and socioeconomic
status levels at entry, but the excluded
cohort had slightly lower prevalence of
infections and higher BMI percentile.

Longitudinal FEV1 Pattern
Classification
The first FPC, which characterizes how each
individual patient’s lung function trajectory
differs from the mean trajectory, explained
94% of the variation in FEV1. Each of the
three clusters, created using scores from the
first FPC (the distribution is shown in
Figure E1), corresponded to a late, middle,
or early phenotype of rapid decline. Based
on descriptive analysis, patients with the
late decline phenotype were, on average,
diagnosed later, had better nutrition status,
fewer acute exacerbations, less infections,
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Figure 1. Trajectories of FEV1 decline (expressed as % predicted) in patients with cystic fibrosis aged 6–21 years (left plot). Phenotypes of rapid decline
are segmented by functional principal components analysis with the solid black line as a reference to the population-level average decline in FEV1 over age
(middle plots); the average FEV1 progression for each phenotype is shown (right plot).
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and higher socioeconomic status than their
middle and early decline counterparts
(Table 1). Classifications that further
refined phenotypes based on the first FPC
and incorporated the second FPC are
reported as supplemental material (Section
E2). Including the second FPC, which
characterizes higher-order modes of
variation in FEV1 trajectories, was able to
explain roughly 97% of the variation in
FEV1. Although statistically significant,
bivariate associations between duration of
follow-up and FPC scores had relatively
small correlation coefficients (Pearson r,
20.17 and 0.04 for FPC scores from the
first and second components, respectively).

The FEV1 data exhibited substantial
variation among patients and also within
each patient over time (Figure 1, left).
Patient-specific trajectories obtained from
sparse longitudinal FPCA, regardless of
phenotype membership, demonstrated
progressive loss of lung function over age.
The late and middle phenotypes of lung
function decline (Figure 1, middle) seemed
to have similar between-patient variation in
FEV1 over age, but both phenotypes
exhibited less variation than the early
decline phenotype. Mean FEV1 trajectories
for the late and middle phenotypes had
similar shapes, but the middle phenotype
exhibited lung function that was
consistently lower. Of all the phenotypes,
patients with earliest decline had the lowest
FEV1 initially, with loss that tended to
progress more rapidly over time. These
phenotypes were further classified by
examining quintiles of the first FPC (see Figure
E2) and using the second FPC (see Figure E3).

Degree and timing of rapid decline
differed according to phenotype, with
patients who had the early decline
phenotype continually losing lung function
(the curve estimating the mean rate of
change was always below zero); average
maximal loss was 3.2% predicted/yr and
occurred at age 12.9 years (Figure 2, left).
Patients with the middle decline phenotype
experienced an average maximal FEV1 loss
of 2.8% predicted/yr but at an older age
(16.3 yr) (Figure 2, middle). Those who had
the late decline phenotype experienced an
average maximal FEV1 loss of 2.9%
predicted/yr at 18.5 years of age (Figure 2,
right). Although degrees of maximal loss
among phenotypes were similar, the group
exhibiting rapid decline later in life
experienced the greatest overall loss of lung
function. Age and degree of maximal loss
were more variable across classifications
based on quintiles of the first FPC (see
Figure E4), and those that included the
second FPC (see Figure E5); timing of most
rapid FEV1 decline ranged from 7.8 to 19.2
years, and maximal FEV1 loss ranged from
2.7% to 5.7% predicted/yr (see Table E2).

Performing FPCA on a larger cohort
that included data from patients with at
least two measurements yielded similar
results in terms of the distribution of FPC
scores and proportion of explainable
variance per component (see Section E4).
Although findings were similar, the model
required more complex curve-fitting
parameters. This is likely caused by the
additional uncertainty introduced by
including profiles with fewer FEV1

observations.

Predictors of Early Phenotype of Lung
Function Decline
Individuals at risk of earliest rapid lung
function decline tended to be females from
older birth cohorts who had lower FEV1,
BMI percentile, and more frequent acute
exacerbations at entry (Table 2). Of all
infections, B. cepacia at entry corresponded to
the highest odds of having an early decline
phenotype, followed by MRSA and P.
aeruginosa. ABPA and NTM infections were
not statistically significant predictors of early
phenotype membership. Although
Stenotrophomonas infection was associated
with higher odds of developing the early
decline phenotype, CFRD status and
pancreatic enzyme use were not significant
predictors in the model.

Associations between Longitudinal
Markers and Phenotypes of Lung
Function Decline
Individuals with the late decline phenotype
had the highest BMI percentile, on average,
followed by their middle and early decline
counterparts (Table 3). Prevalence of
infections with P aeruginosa and B. cepacia,
and diagnosis of CFRD, tended to have a
dose–response association with phenotypes,
increasing across late, middle, and early
phenotypes. MRSA infection prevalence
was significantly higher in individuals with
the early decline phenotype, compared with
those in the late decline phenotype.

Discussion

We have shown that a novel method well
suited for clustering longitudinal lung
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Figure 2. Trajectories of rate of lung function decline (expressed as % predicted/yr) over age classified according to early, middle, and late phenotypes of
rapid lung function decline. X marks the point of maximal FEV1 loss over age for each phenotype. Portions of the curve above and below the horizontal

dashed line at zero imply that FEV1 is increasing and decreasing over age, respectively.
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function measurements from a national
patient registry provides new insights into
the understanding of CF lung disease
progression. Advanced statistical models
have aided in predicting the natural history
of CF lung disease, bringing the field largely
to the consensus that rapid decline often
occurs sometime between adolescence and
early adulthood; however, the specific
timing of rapid decline varies across studies.
For example, Liou and colleagues (16)
report maximal decline in 14–15 year olds,
whereas Vandenbranden and colleagues (5)
found it to be during early adulthood.
Although discrepancies among these and
other studies could be caused in part by
differences in analytic approaches and
datasets, results of these studies
demonstrate the existence of substantial
heterogeneity among the FEV1 trajectories.
Our study illuminates phenotypes inherent
in these findings and characterizes their

respective clinical courses in CF. Results of
this study have implications for both CF
clinical care and research.

By understanding similarities and
differences among patterns of longitudinal
FEV1, our approach provides opportunities
for more timely and targeted intervention
for patients and phenotypes at risk of rapid
lung function decline. With the increased
emphasis on development of biomarkers to
detect early stage CF lung disease, having
defined phenotypes of lung function decline
may improve the understanding of
associations between novel markers, such as
imaging measures of lung structure and
function (17), and existing surrogates, such
as FEV1. Phenotypes of rapid lung function
decline may be used to identify individuals
with the greatest potential to benefit from
new therapeutics or to optimize use of
available interventions. For example,
individuals in the most severe phenotype

who experience early and sustained loss of
lung function from adolescence until early
adulthood may be better candidates for the
early initiation of specific interventions
compared with their late or middle decline
onset counterparts. In addition, proactive
indication of characteristics associated with
early decline, such as acute pulmonary
exacerbations, sex, BMI, and microbiology,
may inform caregivers of “highest risk”
patients who may require unique
approaches and monitoring to maintain
lung function and overall health; actions
could include increased visit frequency and
implementation of nocturnal feeding.

Although these additional
interventions are not currently part of CF
care guidelines for rapid decline, they
represent opportunities for discussions with
families and patients about optimizing their
own care. Future studies linking the rapid
decline phenotype to predictive molecular
biomarkers may allow caregivers and
patients to assess the relative benefit of
different interventions specific to their own
care plan. Cohort selection according to
mean lung function or slope may lead to
classifications that do not identify those at
risk of maximal loss of lung function, or
the timing at which decline becomes
established. This becomes increasingly
important in an era of personalized care in
which nonselective application may not
provide uniform benefit.

Results of this study further
substantiate a growing body of literature
that suggests lung function decline in CF is
nonlinear (18). This is evident in Figure 2,
where loss of lung function varies over time
within each group and between groups.
Konstan and colleagues (4), among others,
have helped us understand contributors to
lung function decline in CF, such as being
male or having P. aeruginosa infection.
Our evaluation of rapid FEV1 decline builds
on the most recent linear change-point
estimates reported by Moss and colleagues
(7). They identified a “relatively stable”
cluster of individuals with FEV1 loss of
0.5% predicted/yr and a majority of
individuals with a loss 4.4% predicted/yr
starting at 14.6 years of age. Although theirs
was a single-center study assessing change
points to estimate rate of decline, our FPCA
results assuming a smooth, continuous rate
of decline yielded a portion of clusters with
individuals exhibiting similar patterns of
decline to those identified by Moss and
coworkers (7) (see Figure E5). Furthermore,

Table 2. Baseline Characteristics as Predictors of Early Rapid Decline Phenotype

Variable OR* 95% CI P Value

Age at diagnosis 0.945 0.927 0.963 ,0.0001
Age at baseline 0.957 0.930 0.984 0.0023
D F508 copies
None 1.733 1.358 2.212 ,0.0001
1 0.991 0.802 1.225 0.0016
2 1

Birth cohort
,1981 3.962 2.789 5.629 ,0.0001
1981–1988 3.940 3.177 4.886 ,0.0001
1989–1994 1.606 1.318 1.957 ,0.0001
.1994 1

Male sex 0.773 0.693 0.863 ,0.0001
FEV1% predicted 0.909 0.905 0.913 ,0.0001
BMI percentile 0.993 0.990 0.995 ,0.0001
Pancreatic enzyme use 0.982 0.743 1.297 0.8
Acute exacerbations
0 0.432 0.348 0.536 ,0.0001
1 0.607 0.476 0.775 0.2
2 0.717 0.554 0.929 0.2
>3 1

Infections
MRSA 1.691 1.308 2.186 ,0.0001
Pseudomonas aeruginosa 1.658 1.476 1.861 ,0.0001
Burkholderia cepacia 2.067 1.431 2.985 0.0001
ABPA 1.360 0.950 1.948 0.07
NTM 1.392 0.715 2.711 0.3
Stenotrophomonas 1.282 1.028 1.599 0.0209

CFRD 0.881 0.270 2.877 0.8
Lower SES 1.198 1.073 1.337 0.0027

Definition of abbreviations: ABPA = allergic bronchopulmonary aspergillosis; BMI = body mass index;
CFRD = cystic fibrosis–related diabetes; CI = confidence interval; MRSA =methicillin-resistant
Staphylococcus aureus; NTM= nontuberculous mycobacteria; OR = odds ratio; SES =
socioeconomic status.
*For categorical variables, the estimate is the OR, expressed as the odds of having the rapid decline
phenotype for the indicated group versus the odds for the reference group (labeled by estimate = 0).
For continuous covariates, the OR is the change in odds of having the rapid decline phenotype when
the covariate increases by one unit. The last columns provide the 95%CI for each variable and corresponding
P value. An OR .1 indicates association with a higher risk of having the rapid decline phenotype.
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this study confirms the “ceiling effect”
previously found by Konstan and
colleagues (4) in analysis of another CF
registry; children and adolescents with the
highest initial FEV1 had demonstrated the
steepest decline.

Phenotypes of rapid decline onset
were identified from this study using a
functional data analysis method, as opposed
to traditional cluster analysis. We
considered the temporal information from
the FEV1 functional data, and have
classified the fitted FEV1 curves according
to early, middle, and late onset of rapid
decline. As shown in the online
supplement, the scores provided by this
analysis can be used to examine a range of
phenotypes further segmented than the
three groups shown. FPCA has also been
implemented in medical monitoring studies
to characterize variation in longitudinal
trajectories; applications range from
characterizing glycemic control (13) to
electroencephalographic activity during
sleep (19). Clustering of lung function data
has also been used to identify clinically
relevant asthma phenotypes (20–22).

Our study has some limitations that
should be considered, including potential
survivor bias (Table 1; see Figure E4). Given

the age range of the cohort studied (6–21 yr),
the impact of informative dropout should
be lessened, compared with studies across
the full age range that would be subject to
increased drop out because of death. Our
approach assumes that data are missing at
random (23). A broader age range could be
included to assess patient trajectories
according to later-stage lung function
decline, but would need to account for
survivor effects shown in previous work
(24). There is a clear birth cohort effect on
the model results, which has been noted in
other CF registry studies (2, 6, 25) and
could be reflective of advancements in care
that were largely unavailable to older
patients with the early decline phenotype.
To fully characterize rapid decline in the
most modern era of CF care would require
prospective data on the youngest
individuals in the cohort. Future studies
of rapid decline phenotypes should
incorporate race and ethnicity, considering
recent findings that Hispanic patients with
CF have higher mortality rates than their
non-Hispanic counterparts (26). Although
not studied here, phenotypes could be used
to further assess treatment selection bias
found in previous clinical effectiveness
studies of mortality and pulmonary decline.

Examples include longitudinal studies of
tobramycin effectiveness using the CF
registry (27–29). A portion of the results
could be attributable to incomplete data,
such as the lack of association between
ABPA or NTM infection and early
phenotype. FEV1 trajectories may differ
according to the type of spirometry
reference equation applied to the raw
FEV1 data (30). Using CFFPR data
for patients aged 8–17 years taken from
2013, Wang and Hankinson equations
yielded higher median FEV1% predicted
values, compared with values obtained
using the Global Lung Initiative Equations
(31). Monitoring changes in FEV1,
however, seem to be less susceptible to
this effect.

In conclusion, we have used novel
statistical modeling on a national registry to
identify phenotypes of CF adolescents at risk
for early, middle, and late onset of rapid lung
function decline. Key predictors of the early
decline phenotype included female sex,
airway microbiology (MRSA, P. aeruginosa,
and B. cepacia), a positive history of
pulmonary exacerbation and birth cohort.
Although the rate of maximal decline was
similar across early, middle, and late
phenotypes, lung function trajectories were
not. Phenotypes identified in this analysis
could be useful in prognostic care of
individuals with CF and research studies
aimed at targeting individuals who may
maximally benefit from particular
interventions at a certain point in their
disease progression. Understanding the
phenotypes of patients with CF with early,
middle, and late onset of rapid decline may
further pave the way to improved predictive
algorithms for CF clinical care and
research. n
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