Skip to main content
. 2017 Aug 18;16:1176935117725727. doi: 10.1177/1176935117725727

Table 4.

AUC performance for the CPTAC colon cancer data using NNMF for unimodal data and Adaptive Multiview NNMF method for multimodal data (top 50-60 components and 3764 genes).

CPTAC colon cancer Tumor stage Residual tumor ≥1 y ≥2 y ≥3 y
Copy number (CN) 0.67 (0.01) 0.78 (0.02) 0.67 (0.01) 0.70 (0.03) 0.79 (0.04)
Transcript (T) level 0.67 (0.01) 0.76 (0.03) 0.68 (0.01) 0.70 (0.03) 0.78 (0.03)
Protein (P) level 0.72 (0.02) * 0.82 (0.02) * 0.67 (0.02) 0.70 (0.03) 0.79 (0.03)
CN, T 0.68 (0.02) 0.66 (0.03) 0.66 (0.01) 0.69 (0.01) 0.79 (0.02)
CN, P 0.71 (0.02) 0.72 (0.03) 0.66 (0.01) 0.69 (0.01) 0.79(0.03)
GE, P 0.71 (0.02) 0.73 (0.03) 0.67 (0.02) 0.69 (0.02) 0.79 (0.02)
CN, T, P 0.71 (0.02) 0.71 (0.03) 0.66 (0.01) 0.69 (0.02) 0.76 (0.02)

Abbreviations: AUC indicates area under receiver operating characteristic curve; CPTAC, Clinical Proteomic Tumor Analysis Consortium; NNMF, nonnegative matrix factorization algorithm.

Bold values indicate the best unimodal performance. The numbers in parentheses indicate standard error.

*

P < .05.