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Abstract

The pervasive expression of circular RNAs (circRNAS) is a recently discovered feature of gene
expression in highly diverged eukaryotes. Numerous algorithms that are used to detect genome-
wide circRNA expression from RNA sequencing (RNA-seq) data have been developed in the past
few years, but there is little overlap in their predictions and no clear gold-standard method to
assess the accuracy of these algorithms. We review sources of experimental and bioinformatic
biases that complicate the accurate discovery of circRNAs and discuss statistical approaches to
address these biases. We conclude with a discussion of the current experimental progress on the
topic.

In 2012, a surprising feature of gene expression programmes that had been overlooked for
decades was discovered: the pervasive expression of circular RNAs (circRNAS) in
eukaryotic genes, with circRNAs constituting the dominant isoform in hundreds of human
genes?. circRNAs are RNA molecules in which a covalent and canonical linkage termed a
“packsplice” has formed between a downstream 3" splice site and an upstream 5 splice site
in a linear pre-messenger RNA (FIG 1). Most backsplices reported so far occur at annotated
exon boundaries or at locations that contain canonical splice signals that are recognized by
the spliceosome. The size of a spliced circRNA molecule can range from smaller than 100 nt
to larger than 4 kb (REF 2), although the most common size in human cells seems to be a
few hundred nucleotides3->. They can be formed from spliced introns or from one or more
exons (they are most commonly formed from two or three exons in humans?), sometimes
with retained introns (the characterization of circRNA types is reviewed elsewhere?). Most
genes with circular isoforms produce only one or two distinct circRNAs, although some
produce tens of distinct circular products*-2. In addition to their topology, circRNAs are
distinguished from mRNAs in that they lack poly(A) tails and 5” caps. Although not
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essential, long flanking introns that contain inverted repeat sequences seem to promote exon
circularization34.9.10,

Genome-wide statistical analysis of splicing led to the discovery, in 2012, of transcripts with
exons arranged in a scrambled order (compared with the reference genome) for
approximately 10% of the genes expressed in human leukocytes. In hundreds of these events
the scrambled exons were expressed at levels that were comparable to those of the linear
isoforms of the genel. Further statistical and biochemical tests revealed that these splicing
events were contained in topologically circular RNA molecules?, a finding that was
subsequently confirmed by other groups31L. Prior to this work, the expression of circRNAs
was an almost completely uncharacterized component of eukaryotic gene expression, owing
to the depletion of circRNAs by a poly(A) selection step in most RNA sequencing (RNA-
seq) library preparations at the time, as well as bioinformatics filters imposed by the most
widely used algorithms that detect unannotated splicing events. Initial rare observations of
circular RNA were serendipitous in the context of the indepth study of a particular gene and,
with the exception of SRY12 and CDRI antisense RNA (CDR1as)13, were generally
dismissed as anomalies owing to their low abundance (DLL4, ET7S-1 (REF 15), MLL1S,
sodium/calcium exchanger 1 (NCXD)Y, dystrophir8, Mbnh® and ANRIL20). Current
estimates suggest that the abundance of circRNA is approximately 2-4% of the total mMRNA
in cells and can be much higher in some cell types, such as platelets®6:21.22,

During the past few years there has been a considerable increase in interest in circRNA
expression, where it has been most extensively studied in metazoans: from humans to mice,
flies and worms3-7:11.21.23-29 The expression of circRNAs is an ancient genomic feature
that has either been conserved over billions of years of evolution or independently evolved
multiple times. circRNAs are expressed from the genomes of very simple organisms such as
Saccharomyces cerevisiae and other fungi, amoeba and Plasmodium falciparun®. circRNAs
are also expressed in plants, which may not be surprising given that they have extensive
alternative splicing programmes (reviewed in REFS 31-33). The discovery of circRNAs
provides additional evidence that ‘protein-coding genes’ and their post-transcriptional
regulation and processing may have functions that are completely independent of protein
coding. Although an engineered circRNA mini-gene that contains an internal ribosome entry
site (IRES) can be efficiently translated34, all current evidence points to a non-coding
function for naturally occurring circRNA. If true, this could have a substantial impact on our
view of the evolution and function of genes and genomes. However, with the exception of
CDR1asand SRY, which are abundant circRNAs that are now known to function as
microRNA sponges!123 the functions of most circRNAs remain unknown.

The pervasive expression of circRNAs that comprise annotated exons from protein-coding
genes challenges a broad range of assumptions: first, the sufficiency of algorithms to analyse
RNA-seq data — although several algorithms have since been “patched’ to allow the
discovery of circRNA, no current algorithm provides estimates of false-positive and false-
negative rates for the isoforms that are detected; second, the perspective that the field has an
adequate mechanistic model of splice site selection and RNA processing; and third, the
characterization of long non-coding RNA (IncRNA) as mostly distinct from protein-coding
genes.
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In this Review, we focus on computational approaches used to characterize the potential
functions of circRNAs, which hinge on experimental, bioinformatic and statistical
approaches to identify them. We begin with a brief discussion of the current state of RNA-
seq algorithms for linear splice detection, which predate circRNA algorithms and are more
mature. We then highlight sources of error and bias in both RNA-seq experiments and
downstream analysis that complicate the genome-wide discovery of circRNA, discussing the
approaches used by published circRNA algorithms, and underline the need for improved
standards to evaluate their accuracy. Finally, we consider the evidence for circRNA
functionality on the basis of the published results of existing algorithms. In contrast to
benchmarking these algorithms, this Review provides insight into the sources of false-
positive circRNAs, both experimental and bioinformatic, which will inform the development
of improved algorithms and will guide users of current algorithms in the interpretation of
their data.

Challenges in detecting splicing

The advent of RNA-seq initially suggested that a complete and precise reconstruction of
transcriptomes, with low false-positive splice site identification, would be feasible and
straightforward. A plethora of algorithms capable of detecting spliced (linear) alignments
were developed, and were quickly followed by algorithms that use these spliced alignments
to identify and quantify full-length transcripts. Although much progress has been made on
both of these tasks, objective benchmarks that are based on simulated and experimental data
by numerous groups demonstrate that substantial conceptual and computational
improvements are needed to improve accuracy3®-40, The field now has a much better
appreciation of the fact that the accurate detection of spliced alignments is an important
unsolved problem, even before the additional challenges of detecting circRNAs or other
novel classes of RNA are considered.

Even in the ideal scenario in which the sequenced genome is essentially identical to the
reference genome, as is the case for the mouse strain C57BL/6NJ, algorithms do not agree
on the expressed isoforms and have striking differences in recall and false-discovery rates3.
One explanation for this discrepancy is that each algorithm implements a distinct set of
heuristics designed to minimize a particular known source of false positives or false
negatives and each uses distinct methods to achieve reasonable run-time or memory usage to
deal with the ever-increasing size of RNA-seq data sets. Another factor that distinguishes
algorithms is whether they carry out splice-junction discovery before final alignment or
directly assign final alignments for each read, which also influences accuracy, as evidenced
by comparing the output of algorithms that can run in either mode?1.

Sequence homology and degenerate sequences at exon boundaries can complicate the
assignment of a read to the correct splice junction. Distinct approaches to handling
mismatches and indels (insertions and deletions) lead to an even greater variation in
accuracy, with different aligners preferentially reporting indels with specific features and
preferentially assigning indels either to the middle or to the ends of reads3®.
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Spliced-alignment algorithms can be either annotation dependent, thus identifying splice
junctions that occur between annotated exons, or annotation independent, thus identifying
splice junctions from read alignments to a reference genome independently of gene
annotations. For published algorithms that provide the option to run in either mode, using
annotations improves accuracy3®, but there is a need for improved annotation-independent
algorithms to enable the genome-wide discovery of novel types of RNA and the
comprehensive characterization of all of the transcripts that are expressed in a cell.

This need is exemplified by circRNAs, which had until recently ‘flown under the radar’ of
all published algorithms?. Like other classes of RNA that lack poly(A) tails, circRNAs are
generally depleted by the poly(A) selection step that is commonly used in library
preparation. The development of biochemical protocols for RNA purification during library
preparation, such as ribosomal RNA (rRNA) depletion and poly(A) depletion, resulted in
RNA-seq libraries in which circRNAs were more prevalent, and such libraries are now
regularly used in the study of non-coding RNA. However, some non-coding RNAs,
including circRNAs, are present, usually at low levels, in poly(A)* (poly(A)-enriched)
libraries because the selection step is not completely efficient and because some abundant
circular RNAs contain A-rich sequences. Thus, circRNAs should have been detected in
poly(A)* RNA-seq libraries by algorithms along with lowly expressed mRNA isoforms.
Because existing algorithms had previously failed to detect circRNAs, several groups have
developed algorithms specifically for the detection of circRNAs since their initial discovery
(TABLE 1). Although there has been extensive work in this area, how to achieve highly
sensitive and specific genome-wide detection of circRNAs remains an unsolved problem.
Like algorithms for detecting linear splicing, circRNA detection algorithms implement
distinct alignment methodologies and heuristics, leading to highly divergent results*1.

Challenges for circRNA detection

Experimental challenges

Many variations in RNA-seq library preparations exist, significantly affecting the abundance
of circRNAs in the resulting RNA-seq data sets. Biochemical steps in library preparation
that have the most important influence on circRNA detection are, first, RNA purification;
second, size selections at the RNA or the cDNA level; and third, RNA fragmentation,
method of priming and/or adaptor ligation (FIG 2Aa—Ac). Currently, RNA-seq libraries from
eukaryotic cellular RNA are typically either poly(A)-selected or depleted of rRNA before
library preparation. For studies that aim to identify protein-bound or ribosome-bound RNA
(small RNA libraries), RNA may be biochemically purified using affinity purifications or a
sucrose gradient. The only purification that is predicted to significantly deplete a sample of
circRNAs is a poly(A) enrichment step, as circRNAs lack a poly(A) taill. By contrast,
circRNAs are retained in rRNA-depleted libraries and are enriched in libraries treated with
RNase R to digest linear RNA. Because the size selections that are used in RNA-seq
typically exclude molecules that are under 200 nt (REF 6), they are likely to influence
circRNA detection only by excluding very small circRNAs, if they exist. Random priming,
unlike oligo (dT) priming, does not require a poly(A) stretch, such as a poly(A) tail, and will
thus result in an RNA-seq library that is not biased against circRNAs. Finally, small RNA
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libraries will be biased against circRNAs only if the RNA is not fragmented before either
adaptor ligation or priming, as circRNAs do not have free ends unless they are nicked /in
vivo or in Vvitro.

Common RNA-seq protocols also introduce technical artefacts that can result in spurious
identification of circRNA isoforms. As has been appreciated for some time, technical
artefacts can be introduced during the ligation and reverse transcription steps of RNA-seq
library preparation (FIG 2Ba—Bc). Reverse transcriptase (RT) can introduce substantial
template-switching artefacts, in which two distinct RNA molecules are joined by RT (FIG
2Ba), which can confound RNA-seq analyses that attempt to discover novel RNA
isoforms*2-46, Template switching can mimic linear splicing or backsplicing.

Long homologous sequences promote template switching®®, so this is particularly
problematic for genes that produce multiple isoforms that share identical constitutive exons.
In fact, such artefacts can dominate the results for some genes, with specific examples
suggesting that these artefacts can account for 34-55% of the isoforms detected, sometimes
with specific artefactual isoforms detected at higher levels than any of the truly expressed
isoforms#4. As such artefacts can be generated at high levels, filtering out the circRNAs that
are supported by only a few reads is not sufficient to eliminate the false positives generated
due to template switching, and can result in true isoforms being overlooked. Additionally,
RNA-seq library preparation that involves ligation steps can produce chimeric cDNAs and,
therefore, can generate artefactual circRNAs at a low rate*’ (FIG. 2Bb). It is important for
algorithms that aim to detect circular and linear RNA to test and account for these artefacts,
as they can lead to false positives in algorithmic prediction; examples of approaches to
account for these artefacts can be found in REF. 46.

In addition to introducing template-switching artefacts, RT is known to have the potential to
strand displace?8, thus artificially inflating quantitative estimates of abundance (FIG. 2Bc).
This can influence both circular and linear isoform detection, but it may be especially
relevant for circRNA detection in which multiple cDNA copies of a single small circRNA
could be generated through rolling circle amplification if RNA is not fragmented before
cDNA synthesis or if cDNA molecules are not tagged at the 3" or 5" ends (as in the
ScriptSeq protocol4?). Because RT has limited processivity®0, this consideration is likely to
have little effect on large circRNAs.

Statistical approaches can be used to determine whether the above biases significantly
influence circRNA ascertainment. Methods that have previously been used include
estimating the read count depth inside and outside exonic boundaries defined by a circular
junction, and testing whether circRNA counts are enriched or depleted in libraries that
should be depleted of the linear isoform (for example, RNase R* libraries). Each of these
methods provides a computational test of whether detected circRNASs can be explained by
biochemical artefacts. However, a recent study has highlighted the inaccuracy of exon-
density-based estimates of isoform expression®l. Some methods have been developed to
address this issue, but more work is needed®2.
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Bioinformatic challenges

circRNAs constitute a small fraction of reads in common cell lines, approximately 1-3% of
the level of MRNAS, and although this level is higher in some primary tissues such as
platelets?2, most circRNAs are expressed at low levelsl:>11.26_|n single-end RNA-seq data,
circRNAs can only be identified by reads aligned to the backsplice junction, as all other
reads may have been generated by either a linear or a circular isoform. In addition to
reducing the sample size compared with linear isoforms, relying on junctional reads is
problematic because read density in any fixed window can have significant biases that are
not yet understood®?. Furthermore, the degenerate sequence motifs at exon boundaries mean
that a convolution of homology and sequencing errors can lead to false-positive alignments
(FIG. 2C). Given the large number of publicly available transcriptome high-throughput
sequencing experiments, even low technical error rates can generate false-positive
alignments to backsplice junctions at sufficient levels that they seem to represent truly
expressed circRNAs.

Biases in the algorithms that have been designed to minimize common sources of false
positives can cause systematic ‘blind spots’ that lead to incorrect conclusions about the
production and regulation of circRNAs®. Common strategies to reduce false positives
include the use of gene annotations or a requirement for canonical U2 (major) splice signals.
However, such restrictions reduce sensitivity, as gene annotations are incomplete and a small
fraction of genes are known to use non-U2 splice signals. As most algorithms do not control
false positives that occur at canonical sequence motifs, many algorithms additionally apply
(high) thresholds on absolute read count347:27.28 or on counts relative to linear reads from
the host geneZ6. However, many essential genes are expressed at a low level (for example,
SMO (Smoothened)) and read count is not highly predictive of whether a junction is truly
expressed.

An important study>3 of the accuracy of splice junction classification into true-positive and
false-positive junctions for a training set using several scoring metrics that did not include
read count compared these metrics with the read count. Importantly, this study found that
read count was the least reliable metric and yielded the worst performance in terms of
junction classification. For this reason, other algorithms take statistical approaches to reduce
reliance on read count thresholds!->:6:53, In a comprehensive benchmark3®, the statistical
algorithm for linear splice detection®® was ranked among the top performers across several
evaluation metrics, including highest accuracy for novel splice detection. The benefit of
statistical approaches for circRNA detection was highlighted in a recent paper® in which
several apparently highly expressed circRNA junctions that contained exons from different
but homologous genes, discarded post-facto as probable RT or alignment artefacts by other
algorithms, were flagged as false positives by their statistical score.

Additionally, a statistical approach to discover unannotated splice sites used in circRNAs
allowed the authors to relax the requirement of U2 splice signals typically imposed to
minimize false-positive rates and to discover the first examples of circRNAs that are spliced
by the U12 (minor) spliceosome®. One such example occurs in the gene RANBPI7, the
mRNA of which codes for a GTPase that is thought to be a nuclear transport receptor®?.
However, further development of statistical techniques for the de novo discovery of
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circRNAs is necessary, as multiple distinct splice sites within close proximity are still
discarded as probable artefacts, underestimating splicing diversity, as exemplified by the
splicing of RANBP17(REF. 12) (FIG. 3). ‘Hotspot’ genes that produce multiple circRNA
isoforms using U2 splice signals were initially identified using a statistical strategy® and
have also recently been reported8 using find circ!?, although only one group® has
experimentally validated some of these predictions. Notably, before selecting hotspot
circRNA candidates for validation, additional stringent filters were imposed because the
authors believed that 10 of the 50 most highly expressed circRNAs reported were likely to
be errors due to homology. Improved statistical approaches that eliminate the need for such
stringent post-filtering of results are thus needed to further explore the genome-wide
prevalence of circRNA hotspots and their functional implications.

The use of RNase R, a highly processive 3’ to 5" exonuclease that digests nearly all linear
RNA that contains at least seven unstructured nucleotides at the 3" end®®, to enrich for
circRNAs before sequencing?® is becoming more common. However, as has already been
noted with respect to linear splice detection, increased coverage improves sensitivity but
actually results in a higher false-positive rate36:53:56 and longer reads do not sufficiently
address this issue6. Thus, improved enrichment strategies and sequencing technologies
cannot be expected to eliminate the need for further algorithm development to increase
specificity. Moreover, many known circRNAs are sensitive to RNase R under some
regimes3:4.7.26.57

Comparison of circRNA algorithms

Some circRNA algorithms are specifically limited to single-end (SE)11:25 or to paired-end
(PE) datal 6.7, but most algorithms provide options to use either. In all cases, PE data
increase the sensitivity, and in some cases also the specificity, reported by algorithm
developers. Higher read coverage also improves sensitivity®8. With the exception of
segemehl?®, all pipelines use an external aligner, with Bowtie and STAR being common
choices, and begin by filtering out reads that contiguously align to the genome and/or to the
transcriptome. Subsequent processing of the unaligned reads identifies reads that align to a
backsplice junction. As for linear spliced alignment algorithms, some carry out splice-
junction discovery before final alignment, whereas others directly assign final alignments for
each read. Algorithm-specific criteria for the types of back-splice junctions considered and
for what constitutes a junction-aligned read or a true-positive junction based on the features
of aligned reads are applied to limit false positives. Read counts, detection in multiple
samples, RNase R resistance, lack of good linear explanation and statistical scores have been
used by various algorithm developers to reduce false positives. However, these filters all
inevitably result in the inability of the algorithms to detect some circRNA isoforms (blind
spots) (TABLE 1).

Hypotheses about genome-wide circRNA regulation and function must be based on the
accurate quantification of circular and linear RNA to avoid the propagation of these errors in
downstream bioinformatic analyses. Before testing a genome-wide hypothesis, many authors
define criteria to select a subset of high-confidence circRNAs reported by an algorithm
(TABLE 2). A combination of the algorithm-specific filtering criteria used to identify
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circRNAs and the criteria for selecting a high-confidence subset can lead to very different
conclusions about circRNA regulation. For example, the length of single-exon circRNAs has
been examined using three algorithms3->. CircRNAseq? reported an average length of 690 nt
for circRNAs that comprise a single exon in human fibroblasts, which is three times longer
than the average expressed exon, suggesting that longer exons are more easily circularized.
By contrast, CircExplorer® reported a median length of 353 nt in H9 cells, and KNIFE®
reported a median length of 260 nt from the same data. The inference for the conservation of
circRNA expression is also algorithm-dependent, even when based on an analysis of the
same RNA-seq data sets®.

An obvious limitation of the initial method? that demonstrated the prevalence of circRNAs
was its reliance on gene annotations, so most subsequent algorithms have focused on
annotation-independent discovery. In an effort to reduce false positives, these algorithms
only count uniquely mapped reads and require canonical splice signals — a filter that
excludes some known circRNA isoforms. For example, current third-party evaluations have
reported that the most commonly used algorithm, find circl?, is less sensitive than other
algorithms and can report many false positives®:8:27:41.58,

Although there are limitations (discussed in detail below) to the methodologies that were
used in two recent benchmarking studies, their findings provide insights into the current
state of circRNA algorithms#148. Both studies reported little overlap between predictions
from different circRNA detection algorithms, with as many as 40% of circRNAs reported by
only a single algorithm. Analyses based on the expected enrichment of circRNAs in rRNA~
libraries that have been treated with RNase R or that have been poly(A)-depleted, revealed a
high level of predicted false positives; 31-76% of circRNAs detected in an rRNA™ library
were not detected by the same algorithm in either of the enrichment libraries®®, and 12-28%
of detected circRNAs were depleted by RNase R*1, indicating that they were in fact false-
positive circRNAs. Using simulated data, all algorithms demonstrate improved sensitivity
with increased read count as expected, and specificity improved by increased read count to a
much lesser degree, but the algorithms with the highest specificity had the lowest sensitivity
and vice versa®®. The trade-off between sensitivity and specificity was also observed in the
analysis of real data, in which RNase R sensitivity was used to measure false positives*!

Finally, a distinct biochemical species, known as a lariat, can be detected by many
algorithms that identify circRNAs. Lariats are circular by-products of linear splicing that
form through a5” — 2" linkage as opposed to the 5 —3” linkage of circRNAs. Similar to
circRNAs, lariats can be stable®® and are resistant to RNase R3. They can be distinguished
from circRNAs in RNA-seq data by a characteristic decreased coverage of the backsplice
owing to inefficient RT traversal of the 5 —2” junction and the insertion of a T residue at
this junction3. Fewer than 0.17% of the circRNAs reported by all algorithms so far seem to
be lariats*L.

Despite the poor agreement between circRNA algorithms reported by these benchmarks,
some genome-wide observations relating to circRNASs have been consistently made
regardless of the algorithm used, reflecting a signal robust to variation in current algorithms.
These observations include the ubiquity of circ-RNA expression, a lack of correlation
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between linear and circular RNA levels from the same gene, an enrichment of longer
flanking introns and no global enrichment of microRNA binding sites in circRNAs.

Benchmarking circRNA detection

Targeted validation of the accuracy of a circRNA algorithm is accomplished by PCR using
outward-facing primers and Sanger sequencing for a semi-random selection of tens of
predicted circRNAs and testing for RNase R resistance. However, there is currently no gold
standard to assess genome-wide sensitivity and specificity of circRNA algorithms.
Developers have used a variety of methods to benchmark new algorithms, some that are
specific to circRNASs and others that are more broadly applicable to algorithms that detect
novel linear or circular splicing. We discuss below the benefits of each method, as well as
important biochemical and computational limitations that must be taken into account when
interpreting results. TABLE 3 summarizes this discussion.

Method 1: RNase R treatment

RNase R treatment followed by RT-quantitative PCR (qPCR) is the most widely used
experimental approach to validate the circRNAs identified from rRNA-depleted samples,
and is a method for targeted confirmation of true positives. Extending this methodology, the
false-positive rate of some algorithms has been estimated by the fraction of circRNAs
detected in a control sample that are not detected after RNase R treatment34.27:41,

However, this probably provides an inaccurate estimate of the genome-wide false-positive
rate due to the biochemical variability of RNase R. qPCR validation has shown that some
experimentally validated circRNAs are depleted by RNase R, including human CDR1as, a
CAMSAPI isoform with intron retention, MAN1IAZ, NCX1 and Drosophila melanogaster
Pangolinand Ank2 (REFS 3,4,7,26,57). Some circRNAs may be prone to being nicked
during library preparation, allowing them to be degraded by RNase R, although it is unclear
whether there are specific features of some circRNASs that systematically result in RNase R
sensitivity. In addition, there can be a high variability in results between RNase R-treated
replicates, with fewer than 50% of the circRNAs that are resistant in one replicate also
resistant in the second replicate prepared by the same laboratory3-27. Therefore, the list of
true circRNAs is typically presented as the union of all the circRNASs that are resistant in any
replicate when multiple replicates are carried out. This obscures the statistical variation that
would reduce confidence in ‘true-positive’ circRNAs defined by RNase R resistance in any
RNA-seq experiment.

Read count fold change for a candidate circRNA between RNase R™ and RNase R* samples
to determine genome-wide true-positive and false-positive rates, as used in REF. 41, has
known statistical issues®0. Simple cut-offs will inevitably lead to widely discrepant results
for the same algorithm. This is due to inherent variability when sampling read counts for a
given circle (a Poisson variable): observing fewer reads for this circle in an RNase R*
sample does not imply that the species was depleted. Basic statistics show that the 95%
confidence interval (CI) for the ratio of RNase R*/RNase R~ reads is larger for genes that
are sampled at a lower depth, which is illustrated using simulated read counts from circular
junctions representing two libraries sequenced at an equal depth in FIG. 4a. For example, if
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100 reads are observed for a given circle in each of the libraries, the 95% CI for the true
RNase R*/RNase R~ ratio assuming Poisson counts is [0.75-1.33], whereas the 95% Cl is
[0.23-4.34] when five reads are observed in each library.

Other quantitative considerations are also required when comparing RNase R-treated and
mock-treated control libraries. Naive comparison of read count fold change without
controlling for different sequencing depths in the libraries can clearly lead to inaccurate
inferences, either an overestimation or an underestimation of RNase R enrichment. As a
quantitative example, in simulated data in which a circle is known to be fivefold enriched in
the RNase R library compared with the control, the expected value for the ratio of observed
reads in the two libraries is 5/1 when both libraries are sequenced at equal depth. But the
expected ratio of observed counts drops if the control library is more deeply sequenced than
the RNase R library, with the true ratio not even included in the 95% CI if the control library
contains twice as many reads as the RNase R library (FIG. 4b). Therefore, normalization of
the counts in the two libraries is needed to make a meaningful comparison.

Controlling for sequencing depths is not sufficient, and statistical methods are required to
use RNase R resistance to assess the genome-wide false-positive rate of circRNA
algorithms. Intuitively, because RNase R libraries contain fewer distinct RNAs, even if the
two libraries contain the same number of reads, circRNAs remaining after RNase R
treatment will be more deeply sampled than in the mock treatment, despite having no
absolute increase in abundance. The fact that normalization procedures are essential for
drawing genome-wide conclusions from RNA-seq data is well documented51-65, pbut such
procedures have not been applied to matched RNase R* and RNase R~ libraries.

Finally, circRNAs are also expected to be enriched in libraries that are both rRNA™ and
poly(A)~ relative to rRNA™ libraries, although to a much lesser degree than after RNase R
treatment. On this basis, it has been proposed that circRNAs only detected in rRNA™ and not
in matched rRNA" libraries that are poly(A)-depleted are likely to be false positives®8. The
statistical concerns discussed here with respect to RNase R enrichment are relevant to any
circRNA detection methodology that uses expected enrichment profiles between libraries.

Method 2: depletion in poly(A)* libraries

circRNAs are not expected to be found in poly(A)* libraries because they lack poly(A) tails.
Therefore, depletion in poly(A)* libraries has been used as evidence that the circRNAs
identified in matched rRNA-depleted or poly(A)™ libraries are truly circular®726, and,
conversely, the number of circRNAs detected after poly(A) selection has been used as a
proxy for false-positive rates.

As with all RNA isolation protocols, poly(A) selection is not perfect, and some circRNAs
remain in poly(A)* libraries, usually at low levels®727, Furthermore, some circRNAs that
are expressed at low levels may be absent from a poly(A)~ library but present in a matched
poly(A)* library by chance, just as there are differences between technical replicates. Care
must be taken while interpreting results, as the simple presence or absence of a putative
circRNA in a poly(A)* library does not necessarily reflect its status as a false positive or a
true positive.
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Although relative depletion or enrichment by poly(A) selection, as opposed to absence or
presence in poly(A) libraries, may be a meaningful proxy for the genome-wide accuracy of
circRNA algorithms, the statistical and quantitative limitations discussed with respect to
RNase R resistance also apply here. Normalization procedures for matched poly(A)* and
poly(A)~ libraries are needed, and Cls must be evaluated when assessing whether the read
counts observed for a given circle in the two libraries support depletion by poly(A) selection.

Method 3: decoy reads

If a read is truly generated from a splice junction, for paired-end RNA-seq the mate read
should align such that mates are consistent with being generated from the ends of a single
RNA fragment. Inconsistent ‘decoy’ reads are typically discarded as experimental or
alignment artefacts. For circRNA, decoys include reads for which one mate mapped to a
backsplice junction and the other mapped outside the genomic region defined by the
backsplice. These decoy reads have been hypothesized to be due to experimental artefacts or
genomic rearrangements’ and a convolution of sequencing errors and exon homology®. The
proportion of decoy reads aligning to a putative circRNA has been used along with other
evidence to assess the quality of the prediction of an algorithm?.

It is well appreciated that experimental and alignment artefacts can produce RNA-seq reads
that are consistent with circRNA. With this in in mind, decoy reads have also been used to fit
models that provide a statistical score to filter false-positive circRNAs that have many
mapped consistent reads1->6. A limitation to this methodology is that ‘decoy’ reads under
one model (in this case circRNA versus artefact) may be consistent with a different model
that has not been considered, such as exon duplication. Using reads truly generated from a
splice junction between duplicated exons as examples of experimental or alignment artefacts
would produce an inaccurate statistical model. Even so, models that incorporate decoy reads
can detect known false-positive circRNAs that are detected in RNA-seq owing to exon
homology. Additional development of statistical models that extend upon this methodology
may be useful for independent unbiased benchmarking of the genome-wide false-positive
rates of circRNA algorithms.

Method 4: RT specificity

Apparent circRNA reads can be generated from template-switching artefacts (FIG. 2Ba—Bc).
These artefacts are often reproducible in independent libraries created using the same RT®6,
so cannot be ruled out on the basis of replicability. One group“® suggested that circRNAs
amplified only by either AMV (avian myeloblastosis virus) or MMLV (Moloney murine
leukaemia virus) RT (that is, those displaying RT specificity) are false positives, reporting
that only six of the 13 candidates amplified by both RTs could be validated. However,
another group?? indicated that four of the remaining seven candidates are also true
circRNAs; all four are enriched in platelets and one was RNase R resistant and amplified by
both RTs in their hands. On the basis of these reports, although lack of RT specificity can
provide an additional line of evidence to support true-positive circRNA, it does not seem to
be a reliable experimental method to distinguish circRNAs from artefacts and may result in a
high false-negative rate, although additional work is required for confirmation.
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Method 5: simulated data

Simulated data are also commonly used to assess sensitivity and specificity on the basis of a
known ground truth, and are valuable for identifying systematic limitations of particular
algorithms. Several tools for simulating data exist, with a common choice being BEERS®,
which simulates human or mouse paired-end RNA-seq from the Illumina platform with
varying levels of gene expression, splicing, sequencing error, single-nucleotide variants
(SNVs) and indels. Simulation provides a means to examine the trade-off between
sensitivity and specificity for an algorithm, enabling algorithm developers to better
understand the types of splicing that are identified as false positives and false negatives, and
enabling users to select the tool that best meets their needs. However, it is important to note
that experimentally generated RNA-seq data are more complex than simulated data, owing
to biochemical events that are not fully understood. It remains unclear how closely
performance on simulated data reflects performance on real data. Although one group3®
observed general agreement between results on simulated and real data sets, another group36
found that the linear splice algorithms that performed best on simulated data were not the
same as those that did best in the /n vitro transcription (IVT) data.

Suggested statistical practice

In light of the convolution of experimental and informatic biases and errors that we have
discussed, further statistical method development is required before a gold-standard method
to assess the genome-wide accuracy of circRNA algorithms in real data can be achieved.
Therefore, evaluation on the basis of a combination of benchmark methods, including
simulated data, is necessary.

Two groups?7-58 have provided simulated circRNA data sets that will be valuable for
benchmarking algorithms when used in combination with simulated negative data sets that
contain only linear reads, such as those provided by the RNA-seq Genome Annotation
Assessment Project (RGASP)3®, or a mixture of linear and circular isoforms, to more
accurately reflect the circRNA detection task.

In order to conclude that circRNASs have been enriched or depleted in matched libraries, Cls
must be computed rather than basing inference on a simple comparison of read counts. As
normalization methods remain to be developed for tests of enrichment or depletion in
matched libraries, an alternative approach is to compare the circular-to-linear splicing ratio
for a given exon in the two libraries, as this method does not rely on normalization. For
identifying genome-wide false-positive circRNAs in real data, we consider the depletion of a
circRNA in poly(A)* libraries to be a more appropriate metric than failure to be enriched by
RNase R for two reasons: first, only a few validated circRNAs have been detected with more
than a few reads in poly(A)™ libraries, whereas some validated circRNAs, such as CDR1as,
have been reported to be depleted by RNase R3; and, second, circRNAs naively identified by
some algorithms with high read counts in poly(A)* libraries are often known common false
positives due to sequence homology.

General statistical principles hold for the analysis of circRNA expression: when multiple
replicates are carried out for any test for enrichment or depletion in matched libraries, each
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replicate must be separately analysed and the standard error reported as for any experiment
in which multiple replicates are performed. Statistical principles and empirical findings
support using PE RNA-seq data to discover and quantify circRNA expression.

Functionality: circumstantial evidence

One of the most convincing and classic arguments for the biological functionality of gene
expression is genetic conservation: when a feature of gene expression is conserved, this
suggests that an evolutionary fitness pressure has maintained it. Early work showed that the
ubiquitous expression of circRNAs is conserved from humans to mice, which also suggested
that it was a shared feature of more distantly related metazoans. This was later confirmed in
worms and flies by several groups®711.25 and subsequently extended to a much more
divergent group of eukaryotes, including yeast, plants and parasites, the last common
ancestor of which existed more than a billion years ago3°.

High circRNA expression from many genes is also conserved across evolution, including the
microRNA sponge CDR1asand hundreds of other examples?t. However, whether there is
significant genome-wide enrichment of conserved circRNAs is a hypothesis that is still
debated in the literature. Some studies have found significant conservation in genes that host
circRNA isoforms between humans and mice but other studies have not11:26, Tests of
genome-wide conservation are always subject to confounding by Simpson’s paradox®8: it
could be the case that genes that host circRNAs expressed in the brain are statistically
conserved between humans and mice, whereas, after collapsing over all organs, conservation
of gene sets is lost; the converse is also possible.

Another computational test for evolutionary selection on circRNAs is whether wobble bases
in exons that are circularized have greater conservation than control exons. This would be
expected if circRNAs served as microRNA sponges, RNA-binding protein sponges or had
other functions, including those that depend on structure. This point has also been debated in
the literature. Some studies found negative evidence of this regulation?5, whereas other
studies have reported significant evolutionary pressure on wobble bases1:26, Future studies
will clarify this issue, and will be dependent on appropriate statistical controls. Of course,
evolutionary conservation is not a requirement for genetic function, so whatever consensus is
achieved will not conclusively determine whether circRNAs have a function in the cell.

Multiple groups have studied the expression profiles of circRNA in cell culture and in
primary cells to find circumstantial evidence of function. circRNAs have been found to be
enriched in the ageing fly brain’, and multiple groups have found that circRNAs are
regulated in fetal development, including in humans®8. circRNAs also exhibit cell type-
specific and tissue-specific expression patterns that are independent of linear isoform levels,
which also suggests that they are actively regulated®8:69, although a competing explanation
is that linear RNA abundance is actively regulated, whereas circRNA abundance is not, as
has been suggested to be the case for platelets?2.
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Conclusions

With little agreement between the predictions of the different circRNA detection
algorithms#1:58 and in the absence of a gold standard that can be used to assess the accuracy
of the predictions from these algorithms, current hypotheses on the regulation and function
of circRNA are based on a subset of the identified circRNAs considered to be high
confidence. Both the choice of algorithm and the thresholds used to select the high-
confidence set of circRNAs for further analysis can greatly alter these conclusions. As read
count is a poor predictor of whether a junction (linear or circular) is truly expressed®8:53, an
important first step will be the continued development of methods that provide a statistical
test that can be used to estimate the false discovery rate and to select appropriate thresholds
for high-confidence circRNA detection. Normalization procedures for assessing enrichment
or depletion in matched libraries are necessary in order to allow researchers to accurately
interpret genome-wide results from these experiments. Additional work on methods to test
for biochemical artefacts in common RNA-seq protocols will also be essential to reduce the
need for adhoc filtering of bioinformatic results. Importantly, such improvements will also
be beneficial to linear splice detection algorithms that are also negatively influenced by such
artefacts.

Although many tools exist for simulating linear reads with a variety of error and splicing
profiles, these tools will need to be extended to enable the simulation of different ratios of
circular and linear isoforms using both annotated and unannotated exons. Appropriately
designed /n vitro transcribed circRNA libraries providing a ground truth would be
instrumental both for informing the development of statistical methods and for presenting a
more realistic alternative to simulated data for evaluating the trade-off between sensitivity
and specificity. Methods for /n vitro circularization are reviewed in REF. 70.

Finally, the very recent revelation of the widespread existence of circRNAs raises the
question: are there other classes of linear or circular RNA isoforms that are still being
overlooked? This question is difficult to answer because novel isoform detection is
confounded by many factors, and perhaps no single biochemical approach may be
comprehensive. Completely reference-free approaches to determine and quantify expressed
RNAs are needed and present challenges and opportunities for biological insight into the full
repertoire of RNA expressed by cells.
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Splice signals Conserved sequences delineating introns in pre-mRNA and
recognized by the spliceosome. Nearly all introns contain a
GU at the 5" end of the intron and an AG at the 3" end
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Figure 1. Circular RNA

Circular RNA (circRNA) is produced from both protein-coding genes and non-coding
regions of the genome. Linear RNAs are formed by a covalent linkage between an upstream
3’ splice site and a downstream 5” splice site of pre-messenger RNA (pre-mRNA), whereas
CcircRNA is characterized by a covalent and canonical linkage between a downstream 3
splice site and an upstream 5" splice site in a process known as backsplicing. circRNAs lack
poly(A) tails and can contain a single exon or multiple exons, as well as introns. Exons are

numbered. Adapted from REF. 6.
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Figure 2. Challenges for circRNA detection in RNA-seq
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Aa—Ac | Variations in preparation protocols alter the amount of circular RNA (circRNA) in a
library. Poly(A) RNA is shown in pink, non-poly(A) RNA is shown in green and circular
RNA is shown in blue. Aa | Common RNA purification methaods, in order of increasing
relative amounts of circRNA. circRNAs are depleted by poly(A) selection and retained in
ribosomal RNA (rRNA)™ libraries. They constitute a large proportion of reads in an rRNA~
library that has also been depleted of poly(A) RNA, and are the primary RNA in RNase R-

treated libraries. Ab | Size selection excludes very small circular and linear RNA. Ac |
Oligo(dT) priming biases against circRNA. Ba-Bc | Known sources of artefacts from

common RNA-seq protocols. Ba | Reverse transcriptase (RT) can join two distinct RNA

Nat Rev Genet. Author manuscript; available in PMC 2017 August 21.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuep Joyiny

Szabo and Salzman

Page 21

molecules in a non-canonical order, particularly when the two RNAs contain a common
sequence. Bb | Two distinct cDNAs may be ligated together in non-canonical order during
adaptor ligation. Bc | RT can displace cDNA from the template, generating a single cDNA
that contains multiple copies of a circRNA. C | A convolution of homology and sequencing
errors can lead to false alignments to a backsplice junction. In this case two fragments
generated from a linear exon 2—exon 3 splice junction are sequenced with an error and
incorrectly aligned to an exon 3—exon 2 backsplice. If the mate aligns outside the genomic
region defined by the backsplice junction it is correctly discarded as a false positive, but if
the mate aligns within the presumed circle it is incorrectly considered evidence of circRNA.
For clarity, the mRNA sequence shown is the DNA equivalent.
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U12 s - “--U12
—17} 18 Lo 19 o 20 —
Genome  ttEETTERATCCTTTTAAAAAAACTTGTGARNEA TREATGCTGTGAAATTCATGCTAAAAAACCACACGEAA . . .GCTACACCATGCTGTTTGACTGGATE@atcctt

ATCCTTTTAAAAAAACTTGTGAAGATAGATGCTGTGAAATTCATGCTAAAAAACCACACG .. .GCTACACCATGCTGTTTGACTGGAT
ATAGATGCTGTGAAATTCATGCTAAAAARACCACACG
ATGCTGTGAAATTCATGCTAAAAAACCACACG

Circle 1 Circle 3

Figure 3. Multiple circRNAs can be generated from a single locus
The RANBP17 locus is shown at the top, with the circularized region expanded below. The

boxes represent annotated exons, with the location of the U12-type splice signal labelled.
Three circular isoforms of RANBPI7, formed by splicing of the 5” end of exon 20 into
three distinct locations within exon 17, were validated by PCR and clone sequencing; only
circle 1 and circle 2 were algorithmically predicted®.
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Figure 4. Statistical considerations when using RNase R enrichment to assess genome-wide
accuracy

Read counts were simulated in R (code available at https://github.com/lindaszabo/NRG) and
confidence intervals were computed using rateratio.test (https://cran.r-project.org/web/
packages/rateratio.test). a | Upper and lower bounds of the 95% confidence interval for the
estimated RNase R fold enrichment when the same number of reads is observed for a given
circular RNA (circRNA) in RNase R-treated and mock-treated control libraries sequenced at
the same depth. b | Density distributions for the ratio of observed read counts for a given
circRNA in RNase R*/control (that is, fold enrichment by RNase R) when the underlying
true ratio is 5/1. When the two libraries have equal number of reads (red line), the expected
value is 5. If the control library sequenced more deeply, then the expected observed fold
enrichment decreases although the underlying rate parameter has not changed.
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Table 2

Filtering criteria for selection of high-confidence circRNAs

Algorithm Criteria™

Novel findingsI Refs

Salzman 2012 =1 junctional reads

circRNAs from 481 genes expressed at similar level to linear 1
transcripts and additional 399 genes with circRNAs
constituting >10% of transcripts in leukocytes

circRNAs in 10% of expressed genes in leukocytes
circRNAs are not polyadenylated
circRNAs are enriched for exon 2 and longer flanking introns

Cytoplasmic localization

CircRNAseq . Enriched by RNase
R in 2/2 samples

. Three stringency
levels from =1 read
t0 10 SRBPMSin
RNase R~ libraries

Long flanking introns and complementary A/uelements are 3
highly correlated with circularization

Single circle exons are ~3x longer than average
>25,000 circRNAs detected in fibroblasts
circRNAs are more stable than linear isoforms
Introns are spliced out of most circRNAs
circRNAs in 14% of expressed genes in fibroblasts

Mouse and human circRNAs in homologous genes use the
same exons more often than expected by chance

No evidence of circRNA translation
siRNA can target circRNAs

circRNA-producing genes are enriched for protein kinases

find_circ >2 junctional reads

CDR1as acts as mir-7 sponge in brain 11
Tissue- and development-specific expression
circRNA enriched in conserved nucleotides

Most circRNAs from CDS exons and contain 1-5 exons

Salzman 2013 FDR <0.025 and =1 junctional
reads for ENCODE or =2
junctional reads for Drosophila
melanogaster

Cell type-specific circRNAs and ratios of circular to linear 6
isoform expression

circRNA in humans ~1% of mRNA level, with most circRNAs
~5-10% of linear isoform from host gene

~47,000 isoforms from ~8,500 genes
Most circRNAs transcribed from same strand as linear isoforms

Linear and circular isoforms not correlated

Guo 2014 Circular isoform 210% of linear
RNA from gene in =2 samples

~20% of circRNAs have intron retention in CD34" cells 26

Identification of 57 circRNAs that are 250% of total circular
and linear transcripts across most cell types

Highly expressed circRNAs are not more cell type specific than
MRNA

Catalogue of 7,112 human circRNAs with expression 210% of
linear

circExplorer >5 reads in either poly(A)~ or
poly(A)~ and RNase R* libraries

Non-repetitive complementary sequences promote 4
circularization, >50% of genes with circRNA produce multiple
circular isoforms (alternative circularization)
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Algorithm Criteria”™ Novel findings¢ Refs

. Exons of single-exon circRNAs are larger than exons in multi-
exon circRNAs, most circRNAs contain 2-3 exons and usually
not the first or last exon of a gene

circRNA_Finder =10 reads; >2 reads for gene-level . circRNA accumulates in the ageing D. melanogaster brain 7
conservation analysis . . . .
. D. melanogaster circRNA is enriched for conserved microRNA
seeds
. 2,500 high-confidence D. melanogaster circRNAs
. Gene-level conservation of circRNA in heads of three
Drosophila species
. Last exon in circRNA biased to 5" end of gene
. circRNAs are flanked by long introns but circularization in D.

melanogaster is not driven by flanking intronic sequences

CIRI =5 junctional reads . Prevalence of intronic or intergenic circRNAs (estimated as 27
20% and 5% of circRNAs from ENCODE data, respectively)
. Greater variation in circRNAs than in linear isoforms in cancer
cell lines
. More highly expressed circRNAs detected in more cell lines
KNIFE Annotation -dependent: 21 or =2 . Global and tissue-specific circRNA induction detected in 5
junctional reads depending on human fetal development
sequencing depth and statistical . i i . .
score . circRNA is spliced by minor (U12) spliceosome
. NCXZ induction in hES cells recapitulated
DCC =5 reads, detected in at least 6/18 . Catalogue of 72 circRNAs in mouse brain with temporal 28
samples expression during development independent of host gene
expression

CDR1as, CDR1 antisense RNA; CDS, coding DNA sequence; circRNA, circular RNA; ENCODE, Encyclopedia of DNA Elements; FDR, false
discovery rate; hES cells, human embryonic stem cells; NCXZ, sodium/calcium exchanger 1; siRNA, small interfering RNA; SRPBM, spliced
reads per billion mapped.

*

Criteria used to select the subset of high-confidence circRNA from all circRNAs reported based on the criteria listed in TABLE 1.

iGenome—wide novel findings reported based on these circRNAs in the original publication for each algorithm.

§Ca|culated as (spliced reads/total mapped reads) x 109,
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