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Abstract

Purpose—Physiological nuisance fluctuations (“physiological noise”) are a major contribution 

to the time-series Signal to Noise Ratio (tSNR) of functional imaging. While thermal noise 

correlations between array coil elements have a well-characterized effect on the image Signal to 

Noise Ratio (SNR0), the element-to-element covariance matrix of the time-series fluctuations has 

not yet been analyzed. We examine this effect with a goal of ultimately improving the combination 

of multichannel array data.

Theory and Methods—We extend the theoretical relationship between tSNR and SNR0 to 

include a time-series noise covariance matrix Ψt, distinct from the thermal noise covariance matrix 

Ψ0, and compare its structure to Ψ0 and the signal coupling matrix SSH formed from the signal 

intensity vectors S.

Results—Inclusion of the measured time-series noise covariance matrix into the model relating 

tSNR and SNR0 improves the fit of experimental multichannel data and is shown to be distinct 

from Ψ0 or SSH.

Conclusion—Time-series noise covariances in array coils are found to differ from Ψ0 and more 

surprisingly, from the signal coupling matrix SSH. Correct characterization of the time-series noise 

has implications for the analysis of time-series data and for improving the coil element 

combination process.
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Introduction

As the BOLD contrast increases with magnetic field strength, the sensitivity of functional 

MRI (fMRI) is increasingly restricted by signal fluctuations due to physiological processes, 

which modulate the measured brain signals. These fluctuations can include cardiac and 

respiratory pulsations, as well as spontaneous hemodynamic fluctuations in blood volume 

and oxygenation level. The variance of the physiological signal modulations has been seen 

to scale with the amplitude of the signal intensity in gradient echo, echo planar imaging 

(EPI) fMRI time-series (1), an effect which has been verified for various acquisition 

parameters and field strengths (2). These prior studies demonstrated that physiological noise 

fluctuations dominate and limit the time-series signal-to-noise ratio (tSNR) when the 

individual images have high image signal-to noise ratio (SNR0). Thus, physiological noise is 

especially limiting at higher field strengths [7 Tesla (7T)] and at lower spatial resolutions. 

The tSNR improvements in BOLD imaging with field strength or with improved detection 

coils are dependent on the balance between physiological and thermal noise. This ratio is 

itself dependent on the image acquisition parameters, such as flip angle, echo time (TE), 

(1,2), spatial resolution (2), and parallel imaging acceleration factor (3) since these 

parameters determine signal levels and thus the physiological noise variance.

The measurement of the thermal noise sources present in MR images has been well 

characterized (4,5) and the noise correlations between thermal noise in the individual 

receiver channels of a multi-coil image are well characterized by the thermal noise 

covariance matrix, Ψ0. The thermal noise covariance matrix represents the channel-to-

channel coupling of thermal sample noise and is now commonly included in the final array 

coil reconstructions to optimize SNR0 in the final channel-combined image. Conversely, 

ignoring thermal noise correlations in the array combination process can lead to reduced 

SNR0.

Previous work (3) has also characterized the temporal fluctuations, caused by physiological 

processes, in a voxel or region of interest (ROI) in the array-element combined image or in 

images from a single-channel coil, but does not address the potential case where channel-to-

channel covariances in the time-series fluctuations differ from those in the image noise.

In this work, therefore, we analyze the covariance of the time-series fluctuations between 

any two channels, to form the time-series noise covariance matrix, Ψt. In the case of 

phantom data with no physiological noise, this matrix is expected to be identical to the 

thermal noise covariance matrix, Ψ0. But we note that no studies, that we know of, have 

compared the time-series and individual image covariance matrices (Ψt and Ψ0). Therefore, 

in this work we additionally compare these two matrices and find them to differ. We then 

extend the Krueger-Glover model of physiological noise (1) to include these covariance 

matrices. We show that a non-zero matrix can be interpreted as a component of 

physiological noise that does not scale with signal strength but is unaccounted for, in the 

image noise. We also show that this type of noise source leads to a modification in the 

Krueger-Glover relationship between tSNR and SNR0 (1) and thus has consequences for the 

interpretation of where a given acquisition stands in the trade-off between thermal and 

physiological noise sources. The presence of this additional physiological noise source also 
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has implications for how array channels should be combined for fMRI. Finally, we test the 

proposed model with non-accelerated EPI time-series at 3T and 7T in Gray Matter (GM), 

White Matter (WM) and Cerebrospinal Fluid (CSF) for a range of imaging coil arrays, in-

plane spatial resolutions, and echo times.

Theory

Because thermal noise and physiological noise sources are statistically independent, the total 

noise standard deviation (σt) for each voxel in the fMRI time-series is a combination of the 

Gaussian-distributed thermal image noise standard deviation (σ0), which is MR signal 

independent, and the physiological noise standard deviation (σp) (i.e. σp includes 

hemodynamic induced fluctuations, cardiac, respiratory, and system instabilities). The above 

relationship is given by,

[1]

Krueger and Glover have examined the relationship between the fMRI tSNR and SNR0 in 

gradient-echo EPI acquisitions when a single-channel coil was used and introduced a model 

where the physiological noise standard deviation (σp) is proportional to the amplitude of the 

MR signal (S) σP = λS, where λ is the proportionality constant. In other words, as the signal 

level increases, the physiological noise becomes dominant. Time-series SNR and SNR0 are 

defined for a voxel in the time-series as:

[2]

[3]

where S̄ is the mean MR signal intensity across the time-series. This leads to the relationship 

between tSNR and SNR0 :

[4]

In this case, for large SNR0, tSNR is asymptotically limited to 1/λ. In the current study, we 

will refer to Eq. 4 as the KG-model (Krueger-Glover model). The constant λ has an echo 

time (TE) dependence, as previously reported (1). Breaking σp into a BOLD and non-BOLD 

components,  and using the differing TE dependence of these two contrasts, 

 and σNB = c2·S, then
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[5]

where c1 and c2 are constants determining the relative contributions of the two components.

The relationship in Eq. 4 assumes that the SNR0 is measured in a way that renders it 

comparable to the tSNR, as described by Kellman & McVeigh (4,5). This calculation 

requires (a) access to the complex-valued, uncombined image data from the individual 

receivers before their combination to form the final image, (b) measurement of the thermal 

noise covariance matrix describing how the noise is coupled among the receivers and, of 

course, (c) knowledge of how the individual receivers’ data are combined to form the final 

image. Additionally, if the image SNR is low, the altered noise distribution of the 

magnitude-valued data comprising the final image must be accounted for. If this procedure is 

not followed, the relationship in Eq. 4 will be altered. The comparison between tSNR and 

SNR0 for array coils has previously been performed following this procedure (3).

In an array coil, the correlations between the channels must be considered for each noise 

source (if they differ) as well as the complex-valued weights used to combine the multi-

channel data. This is commonly done for the thermal noise component of the array coils (7), 

but the potentially different covariance matrix of the physiological noise has been previously 

overlooked. Here we extend the existing treatment of the channel-to-channel noise 

covariances to include the physiological sources as well as the thermal noise.

Thermal image noise in the array components is described by the thermal noise covariance 

matrix Ψ0. It is typically measured by digitizing the thermal noise present when no 

radiofrequency (RF) excitation is given (S=0). The covariance matrix Ψ0 is then used in the 

calculation of the complex-valued weights used to combine the coil data into a single image 

with maximum SNR0 (7). Forming a vector, w, of these complex-valued weights for each 

pixel, the thermal SNR (SNR0) in a pixel of the final image is given by (7, 8):

[6]

where S is the vector of mean signals across all channels for that pixel. Both S and w are 

therefore vectors of length Ncoils (number of coils) and SH as its Hermitian transpose of S.

The tSNR of a particular voxel in the time-series, formed from the combined channels, is 

expected to take a similar form:

[7]

where Ψt is the total channel noise covariance matrix for the time-series fluctuations from 

physiological and thermal sources. Thus each element (i, j) in the time-series noise 
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covariance matrix Ψt corresponds to the covariance measured between coils i and j at a 

given pixel, and is estimated via the unbiased sample covariance estimate:

[8]

where Si is a Ntp×1 vector of time samples for coil i of the measured resting-state fMRI 

signal, and  is the scalar-valued mean signal across time for coil i. Ntp represents the 

number of time-points acquired in the time-series data set.

In analogy with the Krueger-Glover model, which separates the total time-series variance 

( ) into two components (image noise variance,  and physiological noise variance, ), 

we analyze Ψt as a sum of Ψ0 (thermal noise covariance matrix) and a physiological noise 

covariance matrix, Ψp, across channels. Assuming that thermal noise and physiological 

noise are statistically independent, the total noise covariance matrix is given by,

[9]

The tSNR can be expressed in terms of the SNR0, as

[10]

In the KG-model, the physiological noise standard deviation is proportional to the amplitude 

of the MR signal, σP = λS. This implies that, given the value of λ, the physiological noise 

variance can be predicted for a given tissue class from the signal level alone. In order for Eq. 

10 to reduce to the KG-model for the multi-channel case, the Ψp must be proportional to an 

outer product of the mean signal vectors, as is shown in the following. Explicitly, it must be 

the case that Ψp = λ2SSH. Each entry (i, j) in the Ncoils × Ncoils outer-product matrix SSH at 

a particular voxel captures the product of the mean signal levels between coils i and j at that 

voxel, thus SSH represents the signal coupling between the coil channels. If this relationship 

holds, then wHΨpw = λ2w2SSH and Eq. 10 becomes,

[11]

Eq. 11 corresponds to the KG-model of Eq. 4.
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If Ψp = λ2SSH then the standard KG-model applies to multi-channel data, otherwise the 

physiological noise covariance may be expressed as

[12]

where Cα is a symmetric matrix (because Ψp and SSH are both symmetric by definition). 

Then Eq. 10 becomes:

[13]

Here we define the new term as alpha, α:

[14]

Based on the above theory, a more general model is introduced, denoted as Physiological 

Noise Covariance model (PNC-model), for acquisitions performed with multi-channel coils. 

Thus, Eq. 13 corresponds to the PNC-model.

Methods

Data Acquisition

Data acquisition was performed on a Siemens 7T whole-body scanner equipped with a head 

gradient insert (AC84, 80 mT/m maximum gradient strength and maximum slew rate of 400 

T/m/s) and a Siemens 3T MAGNETOM Trio, a Tim System, (Siemens Healthcare, 

Erlangen, Germany). On the 7T system, data were acquired using a custom made 32-channel 

(32Ch) receive-only array coil (similar layout to the 3T product 32Ch array coil) (9). On the 

3T system, data were acquired using three head coils (Siemens Healthcare, Erlangen, 

Germany); 1Ch birdcage volume coil, 12Ch array and 32Ch array coils with the system’s 

body coil for transmission. A home-built transmit-only birdcage coil was used at 7T.

Data from the same four healthy volunteers were acquired on the 3T and 7T scanners, across 

all RF coils and spatial resolutions. Two additional subjects were imaged on both systems 

using a multi-echo EPI sequence to examine the TE dependence of the model parameters. 

Written informed consent was obtained from all the subjects using an experimental protocol 

approved by institutional review board. To control subjects’ movement, foam pads were used 

for head immobilization. All subjects were asked to relax while in the scanner with their 

eyes closed. Automatic slice prescription, based on alignment of localizer scans to a multi-

subject atlas, was used in the 3T acquisitions to achieve a consistent slice prescription across 

different RF coils at the 3T (10). Agar gel phantom data also acquired using the same 

protocols as the human data.
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To evaluate the signal and noise characteristics of the single-echo EPI acquisitions using 

multi-channel coils, resting-state time-series were collected using a single-shot gradient echo 

EPI sequence. Prior to each scan, two “dummy” scans were acquired and discarded to allow 

longitudinal magnetization to reach equilibrium. Data from each coil and at each field 

strength were collected at six different in-plane resolutions: 1×1 mm2, 1.5×1.5 mm2, 2×2 

mm2, 3×3 mm2, 4×4 mm2 and 5×5 mm2, using TR/flip = 5400 ms/90°, 60 time-points and 3 

mm thick slices with orientation parallel to the anterior commissure-posterior commissure 

line. For the 7T data an additional high spatial resolution (1 mm isotropic) time-series was 

acquired to sample data at a resolution where thermal noise dominates. The TE was set to 

values commonly used to optimize BOLD contrast at each field strength: 30 ms and 20 ms at 

3T and 7T, respectively. Acquisition protocols were optimized for each resolution and field 

strength (see Supporting Table S1 and Supporting Table S2). No parallel imaging 

acceleration was used (see Discussion).

Multi-echo EPI acquisitions were performed on both 3T and 7T at three different resolutions 

of 2 mm, 3 mm and 4 mm isotropic with TR=3 s, 10 slices. Multiple runs were acquired to 

obtain time-series with echo times in the range between 10 ms and 150 ms with increments 

of 5 ms. For all EPI acquisitions, images with no RF excitation were also acquired to 

determine the thermal image noise (σ0 and Ψ0).

Data Reconstruction

For all the above experiments, k-space data were saved for offline reconstructions, which 

was performed with custom software written in Matlab, (MathWorks Inc., Natick, MA, 

USA), to account for all image reconstruction steps that might affect the final image SNR, as 

described previously (3).

The data from the multiple receive coils were combined using standard procedures such as 

the root Sum-of-Squares (rSoS) method which uses weights derived from the measured 

intensity level itself (i.e. the Nchan×1 vector S̄ is used as the weights). Additional weight 

vector choices were assessed such as the ‘birdcage’ combination where the complex-valued 

weight vector, w, is the signal values averaged over a small ROI in the center of the FOV 

and is used as the weighting vector for all pixels. This combination causes phase cancelation 

between neighboring elements, which reduces SNR (especially for voxels at the periphery of 

the brain), but mimics the flat spatial profile achieved by a volume coil.

tSNR and SNR0 Calculation

To ensure a stable EPI time-series, subject head movement and linear trends were removed 

from the data prior to data analysis. Time-course SNR (tSNR) maps were then generated 

from the mean pixel value across time-points divided by their temporal standard deviation. 

SNR0 was calculated using the method of Kellman and McVeigh (4,5), which includes 

several correction factors to allow direct comparison between SNR0 and tSNR when multi-

channel arrays are used. Our implementation of this approach to quantifying SNR0 was 

previously described in detail (3) and a summary is presented here for completeness. In 

particular, to generate the SNR0 maps in absolute SNR units, this method utilizes four 

correction factors to account for the (a) effective noise bandwidth, (b) the number of samples 
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contributing to each image pixel during the Fourier transform (accounting for any 

oversampling in the readout direction), (c) the signal-level-dependent magnitude bias 

correction provided by the non-central Chi distribution (which is the generalization of the 

Rician distribution (11) to multiple-channel array coil data combined via root-sum-of-

squares (6)) and (d) the complex-valued thermal noise contribution to the measurement. The 

last correction arises from the fact that thermal noise is complex-valued; the sample noise 

covariance matrix must be normalized by  since the standard observation model assumes 

that the signal is real-valued while the noise is complex-valued with independent and 

identically distributed real and imaginary parts (i.e., drawn from a zero-mean Gaussian 

distribution with equal variances) (4,5).

The standard deviation of the thermal noise (σ0) and the thermal noise covariance matrix 

(Ψ0) estimated from a pure noise measurement with no RF excitation. Note that here this 

term is calculated from raw complex-valued noise data prior to any Fourier transformation.

Data Processing

Measurements of tSNR and SNR0 were evaluated in ROIs of cortical GM, WM and 

ventricular CSF and values averaged across subjects. To accurately account for voxels only 

in the specific brain components, segmented masks of GM, WM and CSF, were generated 

using the FSL FAST segmentation tool (12) from the high-resolution anatomical data (1mm 

isotropic MPRAGE). Subsequently the spatial registration and transformations of these 

segmentations were computed and applied from the anatomical space to the EPI space for 

each subject and each spatial resolution. This registration and mapping was performed using 

the FSL FLIRT tool with a linear 12 parameter model (13). The probability masks for each 

tissue class were next manually edited by removing obviously misclassified voxels and 

thresholding out voxels with lower probabilities of belonging to a particular tissue class 

(t<0.3). These masks were next applied to the tSNR and SNR0 maps to determine GM, WM 

and CSF averages for the subject. Measurements were performed on each slice, each subject 

and each resolution. The final SNR values were averaged over all subjects.

Data Analysis

The relationship between tSNR and SNR0 for all brain classes was examined by fitting to 

the data the two different models (KG-model and PNC-model) using a Matlab built-in non-

linear least squares algorithm.

By plotting tSNR as a function of SNR0 for different resolutions (Figs. 1 and 2), the 

parameter α was estimated from the result of fitting the PNC-model to the data. The 

parameter λ was similarly estimated for the KG-model for comparison purposes. Both 

parameters were assumed to be constant for each tissue class (GM, WM, and CSF); 

therefore, a single value was estimated from data pooled across each tissue mask. The 

relative goodness-of-fit as measured by Akaike Information Criteria (AIC) (14). AIC is a 

goodness-of-fit measure for comparing the goodness-of-fit to the data of two or more 

statistical models with potentially different numbers of parameters. AIC consists of a two-

term criterion: a goodness-of-fit term and a model complexity term that penalizes potential 

over-fitting.
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To assess the dependence of α on channel count, we performed an additional analysis on our 

32Ch data. In this specific analysis we estimated α directly (using Eq. 14) using an estimate 

of Cα calculated from ΨP and S and using the relationship in Eq. 12 and the weight vectors 

w generated by either the root-sum-of-squares or birdcage-like combination method, but 

choosing distinct, random subsets of coils ranging from 2 to 30 coil elements. In this 

analysis, the weights of the unused coils are simply set to zero. We refer to the number of 

elements used in this analysis as Nused. We limited the analysis to 100 combinations of 

element choices for each Nused value tested. To distinguish the value of α obtained from the 

model fit from that computed directly from the covariance matrix, we refer to the value 

estimated directly from the measured covariance matrices as α̂. For each subset we 

computed α̂ using Eq. 14 on a pixel-wise basis, and then pooled across all subsets and all 

channel counts to calculate a two-dimensional histogram of the number of voxels found with 

a given α̂ value and as a function of the total number of channels in each subset.

Results

Figure 1 shows tSNR as a function of SNR0 for the single-echo EPI data for the 3T 12Ch 

and 32Ch coil, 7T 32Ch array, as well as the AIC to estimate the goodness of fit of each 

model to the data. Each data point in the tSNR vs. SNR0 plot represents one of the six 

spatial resolutions studied and corresponds to the SNR value averaged across the cortical 

gray matter ROI and over all subjects. The dotted line is the fit to the KG-model (Eq. 4) and 

solid line is the PNC-model (Eq. 14). The relative goodness-of-fit between the competing 

models was characterized using the AIC for each model and each coil configuration (Fig 

1D). The 1Ch (i.e. volume coil) and 12Ch at 3T are adequately parameterized by the KG-
model, although the 12Ch shows a higher deviation. For example, for the 1ch coil AIC was 

11.8 and 13.6 for the KG- and PNC-models, respectively. For the 12Ch the KG-model and 
PNG-model gave 41.5 and 35.1, respectively, for 3T data. The 32Ch coils showed higher 

deviation from the KG-model and an improved fit to the PNC-model. The 32Ch coil AIC 

was 49.1 and 42.1 for KG- and PNC-model, respectively, at 3T and 64.3 and 54.3 at 7T.

Figure 2 shows the relationship between tSNR and SNR0 for the different tissue classes 

(WM, GM and CSF) for the 32Ch array combined with rSoS for 3T and 7T. At each field 

strength, data from white matter ROIs is well parameterized by the KG-model, while the 

cortical gray matter and CSF exhibit a greater deviation from this model and better 

agreement with the proposed PNC-model. From the fit data, we also estimated the PNC-
model parameter α, which also serves as a metric of the appropriateness of the KG-model 
(α=0 for the KG-model). The minimum value of α is observed for the 3T WM data 

(α=0.16) and the highest value of α is found in CSF at 7T (α =4.16) where we expect the 

largest physiological noise fluctuations. The α values observed for WM, GM and CSF were, 

respectively, 0.16 ± 0.10, 1.26 ± 0.54, 2.50 ± 0.68 at 3T and 0.52 ± 0.15, 2.39 ± 0.64, 4.16 

± 1.05 at 7T (Figure 3). This result suggests that the need for the extra model term is 

dependent on the tissue class, with tissues having strong physiological noise contributions 

requiring a larger modification to the KG-model.

Figure 4 shows phantom data at 3T from 12Ch and 32Ch coils for different in-plane 

resolutions, reconstructed with the conventional rSoS method. Each point represents the 
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average measures over large ROIs. Again the dotted and solid lines represent the KG- and 

PNC-models respectively. The phantom measurements suggest that the two models have 

almost identical fitting and the α values are very close to zero. To investigate the effect of 

the reconstruction method on the model fit, phantom data were also reconstructed using the 

‘birdcage’ combination method for both the 32Ch and 12Ch coils (data not shown). The 

results were very similar to the conventional rSoS reconstruction method, with α values very 

close to zero.

Figure 5 shows the different α obtained from GM regions for three different array channel 

combination methods of the 7T 32Ch array data. Figure 5A shows a single-channel from the 

32Ch array (all weights in w equal to zero except one). Fig. 5B shows the ‘birdcage’ 

combination where a single set of weights is determined in the form of the complex-valued 

weight vector is the signal value taken in the center of the brain for each channel, and Fig. 

5C shows the rSoS combination. Similarly to the other graphs, dotted and solid lines 

correspond to KG- and PNC-models, respectively. To illustrate the image appearance for the 

different coil combination methods, thumbnails with representative images are shown within 

each graph panel. Single-channel data show a good correspondence to the KG-model while 

this correspondence is not as good for the ‘birdcage’ combination and even worse for the 

32Ch rSoS SNR combination data, where the PNC-model shows a substantially better fit to 

the data. Correspondingly, the parameter α increases as we move from single-channel data 

to the 32Ch with rSoS SNR combination weights. This result suggests that the additional 

parameter in the proposed model is dependent on the weights chosen to combine the data (as 

well as the number of channels used).

In Figure 6, we compare 3T GM single-channel volume coil acquired data (Fig. 6A) to the 

‘birdcage’ 32Ch combination method (Fig. 6B). Again dotted and solid lines correspond to 

KG- and PNC-models, respectively, and the image appearance for the different coils and 

their combination methods illustrated as thumbnails within each graph panel. Although both 

datasets correspond to the birdcage coil (one is an actual birdcage coil and the other is 

synthetically obtained), the α value is different. For the single-channel volume coil (Fig. 

6A), α is almost zero (α = 0.26) and the KG-model fits better to the data as shown in the 

AIC test (Fig. 1D). However, for the synthetically obtained birdcage data (Fig. 6B) the PNC-
model best characterizes the data and α = 0.69. The 32Ch coil data showed higher deviation 

from the KG-model and an improved fit to the PNC-model (α = 1.26). This shows that there 

is a physiological noise cancellation when data combined in the ‘birdcage’ mode compared 

to the 32Ch with rSoS SNR combination weights, but still the synthetic birdcage 

combination has a higher α value than the data acquired with the real birdcage volume coil, 

which has no channels to form a physiological noise correlation between.

In Figure 7, the model parameters λ and α are shown as a function of TE at 3T in regions of 

gray matter. A clear dependence on the TE is shown for λ (as also demonstrated by Eq. 5). 

For higher TE, λ increases monotonically, however the value of α parameter remained 

constant as TE increased. This behavior suggests that the additional model parameter is not 

primarily driven by ‘BOLD-like’ physiological noise in the brain.
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Figure 8 shows the computed matrices SSH, Ψp, and Ψ0 for three different GM voxels 

acquired with the 3T 32Ch array. Firstly, the physiological noise covariance matrix, Ψp, is 

distinctly different in structure to the thermal noise covariance matrix, Ψ0. While the SSH 

and Ψp are similar in some ways for the second and third voxel, they are distinctly different 

for the first. A sampling of many voxels showed a range of similarity in the structure of the 

SSH and Ψp matrix. Since α is zero (and thus the KG-model sufficient) only when SSH and 

Ψp are identical to a scale factor, this suggests that α takes on a range of values for gray 

matter voxels.

Figure 9 shows the histogram of estimated α values (α̂) as a function of the number of coil 

channels included in the combined data. Gray matter pixels are analyzed from the 1×1×3 

mm3 3T images. Fig. 9A shows the birdcage-like array combination and Fig. 9B shows the 

root-sum-of-squares combination. The α̂ values generally monotonically increase with coil 

count, reaching an approximate asymptote after the number of included channels reaches 

approximately 25. The observed value of α̂ is about 0.6–1.2 for the birdcage combination 

and about 1–2 for the root-sum-of-squares combination, agreeing with the values of α 
calculated from the above tSNR vs. SNR0 plots.

Discussion

Understanding the relationship between tSNR and SNR0 is critical since tSNR is a principle 

determinant of the sensitivity of the fMRI experiments to BOLD contrast (in addition to TE 

and ) and SNR0 is the readily controlled metric (via resolution, flip angle, coil 

choice or field strength). Thus, the tSNR vs. SNR0 relationship guides our decisions 

concerning the many trade-offs between acquisition parameters and BOLD sensitivity. In 

this work we investigate the need for a modified model describing the behavior of 

physiological noise in the fMRI time-series in multi-channel acquisitions and assess the new 

model’s dependence on acquisition parameters, tissue class, coil-combination methods and 

as a function of field strength and TE.

We provide evidence associating the new model parameter with the channel-to-channel 

noise correlations of the physiological fluctuations. We suggest that the time-series noise 

covariance matrix describing these correlations might be different from both the matrix 

describing the thermal noise covariance and the signal level matrix. We show that when the 

physiological noise covariance matrix is simply proportional to the signal level matrix, then 

the proposed model reduces to KG-model. But if the correlations of the physiological noise 

sources among the array elements are more general (not proportional to the signal level 

matrix) then the model is extended to include an additional model parameter (α, in this 

case), as shown with both experimental evidence and a mathematical derivation. This 

parameter corresponds to the influence of the type of physiological fluctuations not 

distributed among the array elements in the same way as the signal. The extended model 

(PNC-model) can be used to accurately characterize the tSNR vs. SNR0 relationship.

The value of the new parameter (α) is solely determined by the deviation of the 

physiological noise covariance matrix from the signal level matrix (Eq. 14) and can be 

viewed as a physiological noise source, which is independent of signal strength, but is a 
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“fictitious” noise source since it actually arises from any differences in structure between the 

physiological noise covariance matrix and the signal matrix, i.e., it embodies differences in 

signal coupling and noise coupling across the array channels.

However, the physical meaning of this noise component is not yet clear. Why is the 

covariance matrix between the channels formed from the time-series fluctuations different 

from the signal intensity matrix and the thermal noise covariance matrix; i.e. why does the 

non-thermal part of time-series noise covariance not simply follow the signal level 

relationship between the coils? There are a few mechanisms where the physiological 

fluctuations covariance matrix Ψp is not expected to act like the signal coupling matrix SSH, 

and this can contribute to a physical explanation of the extended model.

Under the KG-model interpretation, the physiological noise is not a true noise source per se 

but rather it is a modulation of the signal intensity by uncontrolled forces (such as blood-

volume fluctuations) which are not accounted for but are sufficiently complex to “look” like 

noise. The action of the modulation experienced by a voxel (usually dephasing) happens 

inside that voxel. Namely its signal is modulated by random or sufficiently complex 

biological fluctuations. Some examples are (a) fluctuations in deoxyhemoglobin that 

modulate signal in the voxel through the BOLD effect, or (b) fluctuations due to pulsatile 

flow (for a voxel with a partial volume of CSF). In these two examples, both the source of 

the fluctuations and their action (dephasing) is local to the voxel—the local signal is 

modulated by a local physiological effect. Additionally, the source of the modulation can be 

coherent across several voxels. The physiological mechanism could be a global 
physiological effect, such as blood CO2 changes due to variations in breathing, or from the 

global susceptibility gradients produced by lung inflation. In these cases, the effect is not 

spatially localized (e.g., the susceptibility effect of the lungs dephases signal in the whole 

lower-half of the brain). However, the effect on the signal is still local: dephasing across the 

voxel due to the respiratory-dependent field gradient. In the case of global physiological 

effects, the only difference compared to the local physiological effects is that multiple voxels 

are affected in nearly the same way, but in both cases these physiological effects still cause a 

modulation of the signal as described by the KG-model. However, the signal level and the 

noise variance measured at a single voxel by two distinct coil elements are affected 

differently such that the noise is not described by KG-model.

One possible noise source that could not be described by the KG-model is when the signal 

intensity changes are generated from modulation upstream in the RF detection chain, rather 

than at the location of the voxel. Consider, for example, that a subject’s heart rate can be 

seen in an inductance measurement of a surface coil placed on the brain. This is most likely 

due to blood pressure/volume changes in the scalp changing over the cardiac cycle. Because 

blood is highly conductive, a cerebral blood volume (CBV) fluctuation is like moving a 

conductive plane toward and away from the coil during the cardiac cycle, an effect that 

raises or lowers the inductance of the coil. But, the coil’s inductance is also a determinant of 

its signal detection efficiency. Thus, this source of physiological signal modulation occurs 

not through dephasing of signal at the pixel level but by modulating the gain of the receive 

chain (at the coil/detection level). The coupling of the CBV fluctuation to the inductance of 

Triantafyllou et al. Page 12

Magn Reson Med. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the coil element could cause noise modulations that affect the signal levels and noise 

variances measured at a single voxel by two distinct coils differently.

Another example of physiological fluctuations “happening” at the detector level is from 

head motion within the array. If the head moves between two image volumes, motion 

correction can bring the volumes into near perfect alignment (under ideal circumstances), 

but as the head moves through the spatial gradient of detector sensitivity profiles, it incurs an 

intensity modulation. The aligned image time-series will have increased temporal variance 

from this process. Unlike the KG-model, where a pixel’s physiological noise standard 

deviation is described solely by its tissue class and signal level, this is no longer the case for 

multi-channel arrays. Consider, for example, two gray matter pixels of the same intensity 

one at the vertex and one in the left temporal lobe. If the head moves left to right, the pixel in 

the left temporal lobe will experience a sizable intensity change as it moves in the direction 

of the coil sensitivity profile gradient. The voxel at the vertex, however, moves along an 

isocontour of the coil sensitivity profile and experiences little intensity change. The KG-
model would have these two voxels experience the same physiological noise because they 

have the same tissue type and same intensity. But under this detector-level mechanism, they 

violate this central assertion of the KG-model. This mechanism breaks the relationship 

between the voxel’s signal level and its time-series variance.

This discrepancy between the physiological noise covariance matrix and the signal matrix 

also appears to vary across space even within the GM compartment (see Fig. 8) and this 

discrepancy may vary smoothly over the brain (15,16). Furthermore, we show experimental 

data supporting the view that the value of α depends on the coil combination method and 

number of channels used in the reconstructed image. The observed value for α ranged from 

near zero for the image time-series from a single channel of the 32Ch array to values that 

significantly alter the tSNR of an image time-series for rSoS combinations of the array 

channel data.

The new PNC-model was used further to characterize the tSNR dependence on SNR0 for 

multi-channel array coil acquisitions across field strengths of 3T and 7T. Fitting the time-

series data from different tissue components (e.g., GM, WM, and CSF) showed that the 

largest values of α were needed in the tissue with the highest levels of physiological 

fluctuations (GM and CSF), whereas the values of α were relatively small for WM. 

Additionally, the value of α is small for phantom data and for WM. This supports a 

physiological noise origin for α as opposed to an alternative proposal, which explains the 

need for α ≠0 as a mis-scaling of the SNR0 measurement, perhaps due to incomplete 

accounting for the magnitude bias in array coil data. Although the need for the additional 

term appears to be related to the physiological noise correlations, the model parameter α 
does not appear to depend on TE in our 3T data (and is therefore not expected to vary with 

TE at 7T as well). This could perhaps reflect the fact that the degree of physiological noise 

coupling between channels is itself not a strong function of TE.

Future investigations into the discrepancy between the physiological noise covariance matrix 

and the signal matrix could quantify the relative contribution of various physiological noise 

sources, such as changes during to the respiratory or cardiac cycles or longer term 
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modulations. Because the origins of this discrepancy are not likely to be “BOLD-like” due 

to the lack of a dependency of α on TE, a complete explanation of this effect would have to 

take into account the interaction between the elements of the array coil and the measured 

fMRI signal. The possible explanations provided above for how physiological noise 

covariance could vary across the array are likely hold for different array coil geometries and 

are expected to persist at higher field strengths, but we have demonstrated that the relative 

influence of physiological noise correlation appears to vary with both coil geometry (see 

Fig. 5) and field strength (see Fig. 3).

Comparison of the 3T birdcage volume coil acquisitions and the “birdcage-like” synthetic 

combination of the 32Ch array data reveals differences in the behavior of the model fits to 

these two data sets, even though they both correspond to a birdcage coil image. Within the 

cortical GM, qualitatively the volume coil data appears to be equally well characterized by 

both the KG-model and the PNC-model (Fig. 6A), but the value of α for this data is close to 

zero (0.26). This observation is confirmed quantitatively by the AIC test (Fig. 1D) showing 

that the KG-model is a better fit to the data than the PNC-model. However, the synthetic 

birdcage combination generated from the 32Ch array data is better characterized by the 

PNC-model, whose fit yielded an increased α value (0.69). This value of α is still lower than 

the value seen from fitting the 32Ch data combined with the conventional rSoS method (Fig. 

6C). Therefore the synthetic ‘birdcage’ combination formed from the 32Ch data acts to 

lower the value of α relative to the conventional combination, making the behavior of the 

synthetic ‘birdcage-combined’ 32Ch data similar to but not identical to the data acquired 

with a true birdcage volume coil. This suggests that the global channel weights used in the 

synthetic ‘birdcage’ combination of the 32Ch data somehow cancel out the physiological 

noise coupling seen in the physiological noise covariance matrix, and thereby lower the 

value of α. This further suggests that the value of α is likely to vary with different coil array 

detector layouts and geometries.

In this work, no parallel imaging acceleration was used. We have previously demonstrated 

(3) accelerated parallel imaging causes a reduction of SNR but that the relationship between 

SNR0 and tSNR is largely unaffected. Calculation of alpha is expected to be more 

computationally expensive because in accelerated parallel imaging reconstructions the 

transformation from k-space into the image domain is no longer a simple unitary operation 

and the result is that the thermal noise covariance varies spatially (17). Furthermore, because 

parallel imaging techniques such as Generalized Autocalibrating Partially Parallel 

Acquisitions (GRAPPA) (18) estimate missing data through linear combinations of acquired 

data across all coils, the spatial pattern of the discrepancy between the physiological noise 

covariance matrix and the signal matrix could be affected. Notwithstanding these technical 

challenges in quantifying α and the relationship between physiological noise covariance and 

the signal matrix, it is expected that physiological noise correlations will similarly affect the 

relationship between tSNR and SNR0 in both accelerated and unaccelerated data.

A closer look at the proposed model reveals that the parameters α and λ control distinct 

aspects of the tSNR–SNR0 curve and are, therefore, independent from each other. 

Specifically, α parameterizes the slope of the linear component at low SNR0 values (i.e., the 

thermal noise-dominated regime) and λ parameterizes the level of the flat, asymptotic 
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component of the curve found at high SNR0 values (i.e., physiological noise-dominated 

regime). Because the parameters control different components of this curve, and are, 

therefore, largely independent from one another, the values of the two model parameters are 

expected to be unique for a particular data set, and, therefore, the fitting procedure is more 

likely to provide a solution that converges toward a global minimum.

In addition to analyzing the behavior of the new parameter, we are also able to use the time-

series data to compute the physiological noise covariance matrix. We show that 

mathematically, when the physiological noise is proportional to SSH, the SNR calculation is 

identical to the SNR relationship provided by the KG-model. Therefore, having the 

physiological noise covariance matrix, Ψp, be proportional to SSH is the logical extension of 

the KG-model to coil arrays. Yet experimental evidence shows that while this is mostly the 

case, Ψp can be measured in a time series and shown to be different from SSH, and at the 

same time the relationship between tSNR and SNR0 can be shown to deviate from the KG-
model. Unlike the thermal noise covariance matrix, which is expected to be invariant across 

the object, both the physiological noise covariance matrix and the signal level matrix SSH 

differ significantly from location to location in the brain.

Hutton et al. pointed out that many sites do not retain the uncombined data or knowledge of 

the thermal noise covariance matrix and simply measure the standard deviation (SD) in an 

ROI in a signal-free area of the image (19). They pointed out that for high-SNR data this 

simplified SNR measurement (which they referred to as SNR0′) differs from the rigorously 

measured image SNR0 only by a scale factor. Thus SNR0′ = κ SNR0. We note that this 

relationship is only expected to hold for high-SNR data due to the magnitude bias problem 

(4,5,6). However, it is often the case in practical fMRI data that SNR0 is sufficiently high 

that the magnitude bias issue can be ignored.

In conclusion, we extend the Krueger-Glover model to include a physiologicial noise 

covariance matrix and show that when the relationship σP = λS is generalized to ΨP = 

λSSH, then the general form of the tSNR vs. SNR0 relationship is preserved. We show that a 

non-zero matrix Cα can be interpreted as a component of physiological noise that does not 

scale with signal strength but is unaccounted for in the image noise. We also show that this 

type of noise source leads to a modification in the Krueger-Glover relationship between 

tSNR and SNR0 and thus has consequences for the interpretation of where a given 

acquisition stands in the trade-off between thermal and physiological noise sources. We 

propose some possible examples of “physiological” noise in arrays whose level is not 

dependent on the local signal intensity. We show that the deviation from Cα = 0 is relatively 

small for white matter and largest in cerebral gray matter and cerebrospinal fluid, the two 

largest contributors to physiological noise. Finally, the presence of this additional 

physiological noise source also has implications for how array channels should be combined 

for fMRI. Previously they were combined with knowledge of only Ψ0 to maximize SNR0 

with the assumption that this would also maximize tSNR. But when Cα ≠ 0, optimizing 

SNR0 is not sufficient, suggesting that the time-series noise covariance matrix (Ψp) should 

be measured and considered in the choice of coil combination weights to optimize tSNR.
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Figure 1. 
Time-series SNR (tSNR) as a function of SNR0 for 3T 12Ch (A) and 32Ch (B) coils, (C) 7T 

32Ch array using both models. The dotted line is the fit to the KG-model and solid line is the 

PNC-model. Each circle corresponds to one of the six spatial resolutions examined, from left 

to right 1×1, 1.5×1.5, 2×2, 3×3, 4×4, 5×5 mm2 in-plane and a fixed slice thickness of 3 mm. 

Measurements derived from areas of cortical gray matter ROIs and averaged over all 

subjects. Six resolutions were used at 3T, while seven resolutions were used at 7T. In (D) the 

AIC of the fit to each model is shown. All data reconstructed using the rSoS combination 

method.
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Figure 2. 
SNR in fMRI time-series (tSNR) as a function of image SNR (SNR0) for different tissue 

classes (WM, GM and CSF) for the 3T (A, B, C) and 7T (D, E, F) 32Ch array data when 

image SNR was modulated with voxel size. Each point represents the average and SD error 

bars over all subjects, (because of their small size, some of the error bars are contained 

within the symbols). The dotted line is the fit to the KG-model (Eq. 4) and solid line 

corresponds to the PNC-model (Eq. 13). All data reconstructed using the rSoS combination 

method.
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Figure 3. 
Bar graph of the estimated α values for each tissue class from the data of Figure 2, with gray 

and black bars corresponding to 3T and 7T respectively.
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Figure 4. 
Relationship of tSNR as a function of SNR0 for phantom data at 3T for 12Ch (A) and 32Ch 

(B) arrays. Phantom data reconstructed using the conventional rSoS method.
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Figure 5. 
Three different array channel combination methods for 7T gray matter exhibiting the effect 

of the combination weights to the relationship of tSNR vs SNR0. From left to right, (A) 

single loop data from the 32Ch array, (B) data were generated by combining the individual 

coil elements with a birdcage combination and (C) using the rSoS combination method. 

Estimated α values are given on each graph. Similarly to other figures, SNR0 was modulated 

by varying the voxel size and the two models are shown in dotted (KG-model) and solid 

(PNC-model) lines. Thumbnails with representative images of each combination are shown 

on each graph.
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Figure 6. 
3T array channel combination methods compared to true volume coil acquisition. From left 

to right, (A) single channel birdcage coil, (B) data were generated by combining the 

individual coil elements with a birdcage combination and (C) using the rSoS combination 

method. Estimated α values are given on each graph. Similarly to other figures, the two 

models are shown in dotted (KG-model) and solid (PNC-model) lines and measurements 

performed in ROIs of gray matter. Thumbnails with representative images of each coil and 

coil combination are shown on each graph.
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Figure 7. 
Dependence of the model parameters λ and α on TE at 3T 32Ch array in regions of gray 

matter.
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Figure 8. 
Varying levels of agreement between the signal and noise statistics. Statistical matrices are 

shown across coil channels taken from a single representative subject (1×1×3 mm3 images, 

3T, 32Ch array coil). (Top row) Average (over the time-series) of the signal level matrix 

SSH. (Middle row) Physiological noise covariance matrix Ψp. (Bottom row) Thermal noise 

covariance matrix Ψ0. Each column shows the matrixes from a single voxel within the 

cortical gray matter mask. For Voxel 1, the structure of the SSH matrix is substantially 

different from the Ψp matrix, whereas for Voxel 2 there is some common structure between 

these two matrices, while for Voxel 3 the two matrices appear to be identical up to a global 

scaling. Note that the Ψ0 matrix is virtually identical across the voxel positions, and is 

distinct from both the SSH and Ψp matrices.

Triantafyllou et al. Page 25

Magn Reson Med. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. 
Dependence of α̂ on the total number of coil channels included in the combined pixel. 

Shown are 2D histograms depicting the value of α̂ as a function of the number of coil 

channels in the combined data from a single representative subject (1×1×3 mm3 images, 3T, 

32Ch array coil). Combinations of channels were formed using both: (A) global weights 

from a birdcage-like combination or (B) weights for the rSoS of those channels. The color 

scale represents the number of EPI voxels falling within a particular bin. The bin is 

determined by the number of channels included in the array combination (horizontal axis) 

and the observed α̂ value (vertical axis). For both combination methods, the value of α̂ 

increases nonlinearly as the number of channels increases, converging to a value in the range 

of 2–3 for the rSoS SNR combination and 0.6–1.2 for the birdcage combination.

Triantafyllou et al. Page 26

Magn Reson Med. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Theory
	Methods
	Data Acquisition
	Data Reconstruction
	tSNR and SNR0 Calculation
	Data Processing
	Data Analysis

	Results
	Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9

