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Abstract

There is a consensus that visual working memory (WM) resources are sharply limited, but debate 

persists regarding the simple question of whether there is a limit to the total number of items that 

can be stored concurrently. Zhang and Luck (2008) advanced this debate with an analytic 

procedure that provided strong evidence for random guessing responses, but their findings can also 

be described by models that deny guessing while asserting a high prevalence of low precision 

memories. Here, we used a whole report memory procedure in which subjects reported all items in 

each trial, and indicated whether they were guessing with each response. Critically, this procedure 

allowed us to measure memory performance for all items in each trial. When subjects were asked 

to remember 6 items, the response error distributions for about 3 out of the 6 items were best fit by 

a parameter-free guessing model (i.e. a uniform distribution). In addition, subjects’ self-reports of 

guessing precisely tracked the guessing rate estimated with a mixture model. Control experiments 

determined that guessing behavior was not due to output interference, and that there was still a 

high prevalence of guessing when subjects were instructed not to guess. Our novel approach 

yielded evidence that guesses, not low-precision representations, best explain limitations in 

working memory. These guesses also corroborate a capacity-limited working memory system – we 

found evidence that subjects are able to report non-zero information for only 3–4 items. Thus, 

WM capacity is constrained by an item limit that precludes the storage of more than 3–4 

individuated feature values.
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Introduction

Working memory (WM) is an online memory system where information is maintained in the 

service of ongoing cognitive tasks. Although there is a broad consensus that WM resources 

are sharply limited, there has been sustained debate about the precise nature of these limits. 

On the one hand, discrete-resource models argue that only a handful of items can be 

maintained at one time, such that some items fail to be stored when the number of 

memoranda exceeds the observer’s capacity (Awh, Barton, & Vogel, 2007; Cowan, 2001; 

Rouder et al., 2008; Zhang & Luck, 2008). On the other hand, continuous resource models 

argue that WM storage depends on a central pool of resources that can be divided across an 

unlimited number of items (Bays & Husain, 2008; van den Berg, Shin, Chou, George, & Ma, 

2012; Wilken & Ma, 2004).

Of course, it has long been known that memory performance declines as the number of 

memoranda increases in a WM task. For example, Luck and Vogel (1997) varied the number 

of simple colors in a change detection task that required subjects to detect whether one of 

the memoranda had changed between two sequential presentations of a sample display. They 

found that while performance was near ceiling for set sizes up to three items, accuracy 

declined quickly as set size increased beyond that point. This empirical pattern is well 

described by a model in which subjects store 3–4 items in memory and then fail to store 

additional items. However, the same data can be accounted for by a continuous resource 

model that presumes storage of all items, but with declining precision as the number 

memoranda increases (Wilken & Ma, 2004). According to continuous resource accounts, 

increased errors with larger set sizes are caused by insufficient mnemonic precision rather 

than by storage failures (but for a critique of this account see Nosofsky & Donkin, 2016b). 

Thus, a crux issue in this literature has been to distinguish whether performance declines 

with displays containing more than a handful of items are due to storage failures or sharp 

reductions in mnemonic precision.

In this context, Zhang and Luck (2008) offered a major step forward with an analytic 

approach that provides separate estimates of the probability of storage and the quality of the 

stored representations. They employed a continuous recall WM task in which subjects were 

cued to recall the precise color of an item from a display with varying numbers of 

memoranda. Their key insight was that if subjects failed to store a subset of the items, there 

should be two qualitatively distinct types of responses within a single distribution of 

response errors. If subjects had stored the probed item in memory, responses should be 

centered on the correct color, with a declining frequency of responses as the distance from 

the correct answer increased. But if subjects had failed to store the probed item, then 

responses should be random with respect to the correct answer, producing a uniform 

distribution of answers across the entire space of possible colors. Indeed, their data revealed 

that the aggregate response error distribution was well described as a weighted average of 

target-related and guessing responses. Thus, Zhang and Luck (2008) provided some of the 

first positive evidence that working memory performance reflects a combination of target-

related and guessing responses.
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Subsequent work, however, has argued that the empirical pattern reported by Zhang and 

Luck (2008) can be explained by continuous resource models that presume storage of all 

items in every display (van den Berg, Awh, & Ma, 2014; van den Berg et al., 2012). A key 

feature of these models has been the assumption that precision in visual WM may vary 

substantially; thus, while some items may be represented precisely, other representations in 

memory may contain little information about the target item. Using this assumption, van den 

Berg et al. (2012) showed that they could account for the full distribution of errors – 

including apparent guessing – and that their model outperformed the one proposed by Zhang 

and Luck (2008). Indeed, converging evidence from numerous studies has left little doubt 

that precision varies across items in these tasks (e.g., Fougnie, Suchow, & Alvarez, 2012). 

That said, the question of whether precision is variable is logically separate from the 

question of whether observers ever fail to store items in these procedures. To examine the 

specific reasons why one model might achieve a superior fit over another, it is necessary to 

explore how distinct modeling decisions influence the outcome of the competition. 

Embracing this perspective, van den Berg, Awh and Ma (2014) carried out a factorial 

comparison of WM models in which the presence of items limits and the variability of 

precision were independently assessed. Although this analysis provided clear evidence that 

mnemonic precision varies across items and trials, the data were not decisive regarding the 

issue of whether working memory is subject to an item limit. There was a numerical 

advantage for models that endorsed item limits, but it was not large enough to draw strong 

conclusions. Thus, the critical question of whether item limits in visual working memory 

elicit guessing behavior remains unresolved.

Here, we report data that offer stronger traction regarding this fundamental question about 

the nature of limits in working memory. Much previous work has focused on explaining 

variance within aggregate response-error distributions (i.e. the shape of the response 

distribution and how it changes across set sizes). Here, we chose a different route. Rather 

than developing a new model that might explain a small amount of additional variance in 

“traditional” partial report datasets, we developed a new experimental paradigm in which 

subjects recalled—in any order that they wished—the precise color (Experiment 1a) or 

orientation (Experiment 1b) of every item in the display. This procedure has the key benefit 

of measuring the quality of all simultaneously remembered items, and it yields the clear 

prediction that if there are no item limits, then there should be measurable information 

across all responses. To anticipate the results, this whole report procedure provided rich 

information about the quality of all items within a given trial as well as subjects’ 

metaknowledge of variations in quality. Observers consistently reported the most precisely 

remembered items first, yielding monotonic declines in information about the recalled item 

with each successive response. Critically, for the plurality of subjects, the final three 

responses made were best modeled by the parameter-free uniform distribution that indicates 

guessing. In additional analyses and experiments, we showed that subjective guess ratings 

tracked mixture model guessing parameter (Experiments 1 & 2), that output interference 

could not explain our estimates of capacity (Experiment 2), and that making subjective guess 

ratings did not drive our evidence for guessing (Experiment 3). Finally, we used simulations 

to question a key claim of the variable precision model – that representations used by this 

model all contain measurable information. Previously, others have suggested that the 
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variable precision model may mimic guess responses with ultra-low precision 

representations (Nosofsky & Donkin, 2016b; Sewell, Lilburn, & Smith, 2014). Here, we 

advanced these claims by showing that variable precision models that eschew guessing posit 

a high prevalence of memories that are indistinguishable from guesses. Moreover, the 

frequency of these putative representations precisely tracked the estimated rate of guessing 

in models that acknowledge item limits.

In sum, there has been a longstanding debate over whether there is any limit in the number 

of items that can be stored in working memory. Our findings provide compelling evidence 

that working memory is indeed subject to item limits, disconfirming a range of prior models 

that deny guessing entirely or posit an item limit that varies from trial to trial without any 

hard limit in the total number of items that can be stored (e.g. Sims, Jacobs, & Knill, 2012; 

van den Berg et al., 2014). Instead, our results point toward a model where each individual 

has a capacity ceiling (e.g. 3 items), but they frequently under-achieve their maximum 

capacity, likely due to fluctuations in attentional control (Adam, Mance, Fukuda, & Vogel, 

2015).

2. Experiment 1

2.1. Materials and Methods

2.1.1. Experiment 1a: Color memoranda

2.1.1.1 Subjects: 22 subjects from the University of Oregon completed Experiment 1a for 

payment ($8 per hour) or class credit. All participants had normal color vision and normal or 

corrected-to-normal visual acuity, and all gave informed consent according to procedures 

approved by the University of Oregon institutional review board.

2.1.1.2. Stimuli: Stimuli were generated in MATLAB (The MathWorks, Inc., Natick, MA, 

www.mathworks.com) using the Psychophysics Toolbox extension (Brainard, 1997; Pelli, 

1997). Stimuli were presented on a 17-inch flat cathode ray tube computer screen (60 Hz 

refresh rate) on a Dell Optiplex GX520 computer running Windows XP and viewed from 

distance of approximately 57 cm. A chin rest was not used, so all visual angle calculations 

are approximate. A gray background (RGB = 128 128 128) and a white fixation square 

subtending .25 by .25 degrees of visual angle appeared in all displays. In Experiment 1a, 

subjects were asked to remember the precise color of squares in the memory array, each 

subtending 1.7 by 1.7 degrees. Colors for memory stimuli were chosen randomly from a set 

of 360 colors taken from a CIE L*a*b* color space centered at L = 54, a = 18 and b = −8. 

Note, colors were generated in CIE L*a*b* space, but they were likely rendered with 

additional variability; monitors were not calibrated to render true-equiluminant colors. 

Others have compared calibrated versus uncalibrated monitors and found consistent results 

(Bae, Olkkonen, Allred, & Flombaum, 2015; Bae, Olkkonen, Allred, Wilson, & Flombaum, 

2014). Uncalibrated monitors may exaggerate the amount of variability in precision across 

different colors in the color wheel.

Spatial positions for colored stimuli were equidistant from each other on the circumference 

of circle with a radius of 3.75 degrees around the fixation point. At test, a placeholder array 
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of dark gray squares (RGB = 120 120 120) and a color wheel (radius = 11.9 degrees of 

visual angle) appeared, and the mouse cursor was set to the fixation point. The color wheel 

rotated on each trial so that subjects could not use spatial locations of colors to plan 

responses. When a placeholder item was selected for response, its color changed to light 

gray (RGB = 145 145 145). During response selection, the selected square changed colors to 

match the color that matched the current position of the mouse cursor; after response 

selection the selected square returned to dark gray.

2.1.1.3. Procedures: The session for Experiment 1a lasted approximately 1.5 hours and 

participants completed 5 blocks of 99 trials (99 trials per set size). On each trial, a memory 

array with one, two, three, four or six colored squares appeared briefly (150 ms) followed by 

a blank retention interval (1000, 1200, or 1300 ms). Retention interval length was jittered to 

add variability and were collapsed for analyses. There were not enough trials to separately fit 

model parameters to each retention interval duration. After the retention interval, the test 

display appeared, containing the color wheel and placeholder squares. The response order 

was determined freely by the subject. Subjects chose the first response item by clicking on 

one of the dark gray placeholders; the dark gray placeholder turned light gray, indicating that 

this square was chosen for response. The mouse cursor was set back to the fixation point to 

avoid any response bias based on spatial proximity of a chosen square to a section of the 

color wheel. Then, the subject selected a color on the color wheel that best matched their 

memory of the square. During each response, participants were instructed to indicate their 

confidence with a mouse click. Participants were instructed to use one mouse button to make 

their response if they felt they had “any information about the item in mind,” and to use the 

other mouse button to indicate when they felt they “had no information about the item in 

mind.” After responding to the first item, the mouse was set back to the fixation point. 

Subjects repeated the item selection and color selection procedure until they had responded 

to all of the items. After finishing all responses, the placeholder squares disappeared and the 

next trial began after a blank inter-trial interval (1300 ms).

2.1.2. Experiment 1b: Orientation memoranda

2.1.2.1. Subjects: 23 subjects from the University of Chicago participated in Experiment 1b 

for payment ($10 per hour). Three subjects participated in the study but were not included in 

the final sample because they left the session early (2 subjects) or stayed for the full session 

but failed to complete all trials (1 subject); this left a total of 20 subjects for analysis. All 

participants had normal or corrected-to-normal visual acuity, and all gave informed consent 

according to procedures approved by the University of Chicago institutional review board.

2.1.2.2. Stimuli: Stimuli were presented on a 24-inch LCD computer screen (BenQ 

XL2430T; 120 Hz refresh rate) on a Dell Optiplex 9020 computer running Windows 7 and 

viewed from distance of approximately 70 cm. A chin rest was not used, so all visual angle 

calculations are approximate. In Experiment 1b, subjects were asked to remember the 

precise orientation of a line embedded in a circle (see inset of Fig. 1). The stimuli in each 

memory array had a radius of approximately .9 degrees of visual angle, and their 

orientations were randomly chosen from 360 degrees of orientation space. Stimuli were 

presented on a gray background (RGB = 85 85 85), and a white fixation circle appeared in 
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all displays (diameter = .14 degrees). Dark gray placeholder circles (RGB = 45 45 45) were 

used during the test period. Spatial positions of the discs were randomly placed within a box 

6.6 degrees of visual angle to the left and right of fixation and 6.1 degrees above and below 

fixation, with the stipulation that there must be a minimum distance of 1.25 items between 

items’ centers.

2.1.2.3. Procedures: Procedures in Experiment 1b (orientation) were similar to Experiment 

1a. Each experimental session lasted approximately 2.5 hours and subjects completed 20 

blocks of 50 trials (200 trials per set size). On each trial in Experiment 1b, a memory array 

with one, two, three, four or six black orientation stimuli appeared briefly (200 ms) followed 

by a blank retention interval (1000 ms). After the retention interval, the test display 

appeared, containing dark gray placeholder circles. The response order was determined 

freely by the subject. Subjects responded to each item by first clicking on the location of the 

item they wished to report. After selecting the item, the gray placeholder circle was replaced 

by a black test circle. Participants then used the mouse to click the edge of the circle at the 

location of the remembered orientation. During each response, participants were instructed 

to indicate their confidence with a mouse click. Participants were instructed to use one 

mouse button to make their response if they felt they had “any information about the item in 

mind,” and to use the other mouse button to indicate when they felt they “had no information 

about the item in mind.” After responding to all items, the next trial began with the blank 

inter-trial interval (1000 ms).

2.1.3. Fitting Response Error Distributions

2.1.3.1. Model-free circular statistics: To quantify change in mnemonic quality without 

committing to contentious model assumptions, we used a circular statistics measure to 

quantify mnemonic performance. Circular statistics were calculated using “CircStat”, a 

circular statistics toolbox for MATLAB (Berens, 2009); for more information on statistics in 

circular space, see Zar (2010). Response error distributions are centered around 0 degrees of 

error in a circular normal space (e.g. −180 degrees is the same as 180 degrees of error). The 

direction and variability of data-points in a given response error distribution can be 

described by the mean (“circ_mean.m”; Zar (2010) pp. 612) and the mean resultant vector 

length (MRVL; r, “circ_r.m”; Zar (2010) pp. 615) of the distribution. The circular mean 

indicates the average direction of data-points (e.g. the central tendency), whereas MRVL 

indicates the variability of data-points. MRVL varies from 0 (indicating a complete absence 

of information about the target) to 1 (indicating perfect information about the target).

2.1.3.2. Model fitting: In addition to using circular statistics, for some analyses we fit a 

mixture model to response error distributions (Zhang and Luck, 2008). Although there is 

debate regarding the mixture model’s assumption that subjects sometimes guess, this 

analytic approach allowed us to compare subjects’ self-reports of guessing to the frequency 

of guess responses postulated by these mixture models. Thus, response errors for each 

response at each set size were fit for each subject with a mixture model using a maximum 

likelihood estimation procedure in the MemToolbox package (Suchow, Brady, Fougnie, & 

Alvarez, 2013, www.memtoolbox.org). The mixture model fits response errors with a 

mixture of two distributions, a Von Mises distribution (circular normal) and a uniform 
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distribution. The contribution of the uniform distribution to the response error distribution is 

described by the guessing parameter, g, and the dispersion of the Von Mises component is 

described by the precision parameter, sd.1 The guessing parameter ranges from 0 to 1, and 

quantifies the “proportion of guesses” in the distribution, whereas the precision parameter is 

given in degrees (higher values indicate poorer precision). Using MemToolbox, we could 

also compare BIC values for the mixture model to an all-guessing model (uniform 

distribution).

2.2. Results and Discussion

In Experiment 1 we tested for the presence of guessing in response errors. A model of 

working memory that includes item limits and guessing predicts uniformly distributed 

responses for items that subjects cannot recall. That is, some responses are based on positive 

knowledge of the target, and some responses are completely random. To preview our results, 

we found that a uniform distribution (with zero free parameters) was the best-fitting 

distribution for a substantial portion of responses and that subjects consistently reported that 

these responses were guesses. Data from Experiment 1 and all following experiments are 

available on our Open Science Framework project page, https://osf.io/kjpnk/.

2.2.1. Change in quality across set sizes and responses—To examine the effects 

of set size, we collapsed across all responses to create the response error distribution for 

each set size. Consistent with the previous literature, we observed a systematic decline in 

MRVL across set sizes (Fig. 2) in Experiment 1a (Color), F(2.45,51.38) = 431.9, p < .001, 

ηp
2 = .95, and Experiment 1b (Orientation), F(1.45,27.62) = 675.58, p < .001, ηp

2 = .972. As 

the memory load increased, the distribution of response errors became increasingly diffuse, 

indicating that on average less information was stored about each memorandum. 

Importantly, overall MRVL values and the slope of their decline across set sizes was similar 

to that observed in past studies using single probe procedures.3 Below, a more detailed 

analysis of Experiment 2 findings will provide further evidence for this observation. Thus, 

requiring the report of all items did not induce qualitative changes in performance at the 

aggregate level. Nevertheless, as the following results will show, the whole report procedure 

provided some important new insights about the distribution of mnemonic performance 

across the items within a trial.

Next, we examined the effect of response order within each set size. Recall that subjects 

were free to recall each item in whatever order they chose. As Figures 3 and 4 show, there 

was a strong tendency for subjects to report the best remembered items first. There was a 

sharp drop in MRVL from early to late responses within a trial. A repeated-measures 

ANOVA for each set size with a within-subject factor for response order showed a clear 

main effect of response order for all set sizes in Experiment 1a (Table 1) and Experiment 1b 

(Table 2). Planned contrasts comparing each earlier response to the last response revealed 

that performance declined monotonically with response order, except for between the fifth 

1The dispersion of the Von Mises probability density function used in the model is specified with κ (concentration), this is later 
converted to sd for interpretation.
2Greenhouse-Geisser corrected values are reported wherever the assumption of sphericity is violated.
3Mixture model parameters are provided in Figures S1 and S2.
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and sixth responses in the set size six condition where MRVL values were hovering just 

above the floor of 0 (p = .96 for Experiment 1a, p = .13 for Experiment 1b). MRVL 

decreased by on average .18 per response in Experiment 1a and .19 per response in 

Experiment 1b. From the first to the last response in set size 6, estimates of mean resultant 

vector length decreased by .74 in Experiment 1a and .84 in Experiment 1b (maximum 

possible difference of 1.0), reaching minimum values of between 0.05 and 0.10. To 

summarize, when subjects were allowed to report all items in any order that they chose, we 

observed a consistent drop in target information with each additional response. This suggests 

that subjects reported the best remembered items first, and that they had strong meta-

knowledge of which items were remembered the best. Below, we will show that subjects’ 

explicit reports of guessing were also quite accurate in tracking their mnemonic 

performance.

2.2.2. Evidence for guessing in the set size 6 condition—Thus far, the findings 

from the whole report procedure have mirrored those found in past studies using single-item 

probes. The shape of the aggregate error distribution, as well as the decline in MRVL values 

with increasing set size, fell in line with past studies. Going beyond this, testing all items in 

each trial provided new insight into the full range of memory performance across each item 

in the sample array. Notably, there appeared to be uniform error distributions – the 

distribution predicted when subjects fail to store the relevant item – for the fifth and sixth 

items recalled in the set size 6 condition (see Fig. 3). This may be a critical observation. 

While past work has shown that it is difficult to adjudicate between models that endorse 

guessing and those that propose high prevalence of low fidelity memories, the whole report 

procedure appears to provide clear evidence of guessing behavior in the set size 6 condition.

To objectively test the hypothesis that subjects guessed during later responses, we used a 

BIC approach to compare the fit of a uniform distribution with the fit of a mixture model4 

(the simplest implementation of some guessing plus some information) using MemToolbox 

(Suchow et al., 2013). Any reliable central tendency in the error distribution should yield a 

lower BIC value for such a mixture model than for the uniform model. If, however, guessing 

alone is adequate to explain performance, then the BIC value should be lower for the 

uniform distribution. For each participant, we operationally defined a capacity limit by 

counting the number of empirically-defined uniform distributions during Set Size 6 trials. 

Our logic for this operational definition of capacity is as follows: participants tended to 

report items in order of decreasing quality, and we would expect that a participant who 

stored 3 items would first report these items before making any guess responses. Thus, they 

would have 3 non-uniform responses and 3 uniform responses. Participants who maximally 

stored different numbers of items would be expected to have different numbers of uniform 

distributions. Note, this analysis relies on the assumption that participants had robust 

4We thought it unlikely that models with more free parameters than a mixture model would beat a zero-parameter uniform 
distribution, but we nevertheless ran a second version of the model competition in which we included 5 models available in the 
MemToolbox: (1) Uniform (2) Standard Mixture Model (3) Variable Precision (VP) Model, with Gaussian higher-order distribution of 
precision values (4) VP, with Gamma higher-order distribution (5) VP, with Gamma higher-order distribution plus a guessing 
parameter. Critically, Memtoolbox implementations of these models allow model fitting to individual distributions without specifying 
set-size; this was important because we had no strong a priori assumptions about what “set size” each response distribution should be 
equivalent to. There was no difference in the results for either Experiment 1a or 1b. The uniform model won for the same individual 
distributions as when just comparing between the uniform and the mixture models.
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metaknowledge that enabled them to report items in declining order of quality. Thus, if an 

individual had poor meta-awareness of stored items (i.e. they sometimes reported their best 

items toward the end of the trial), then this operational definition of capacity would over-

estimate that individual’s capacity limit. This analysis revealed that all subjects had between 

one and four responses best described by a uniform distribution, and that these were the last 

items reported in the trial (Fig. 5, Tables S1 and S2). In Experiment 1a (Color), the average 

number of uniform responses was 2.64 (SD = .73), and in Experiment 1b (Orientation) the 

average number was 2.80 (SD = .77). Supplementary analyses revealed that the uniformity 

of later responses cannot be explained by a sudden increase in the tendency to report the 

value of the wrong item (Analysis S1, Table S3). However, some guess responses may be 

due to retrieval failures rather than to lack of storage (Harlow & Donaldson, 2013; Harlow & 

Yonelinas, 2016). We also found that circular statistics approaches to test for uniformity 

yield similar conclusions (Analysis S2). In sum, we obtained clear positive evidence that the 

final responses in the set size 6 condition were guesses.

Our estimates of individual differences in capacity closely tracked the range found in the 

literature. A majority of participants had an estimated capacity between 3 and 4 items, and 

there was some variability on either side of this (Fig. 5). Thus while every subject in this 

study showed evidence of an item limit, there was no evidence for a common storage limit 

across observers, in line with past work that has documented individual variations in neural 

markers of WM storage (e.g. Todd & Marois, 2004, 2005; Unsworth, Fukuda, Awh, & 

Vogel, 2015; Vogel & Machizawa, 2004) and behavioral measures of performance (e.g. 

Engle, Kane, & Tuholski, 1999; Vogel & Awh, 2008; Xu, Adam, Fang, & Vogel, in press). 

Likewise, previous modeling efforts have acknowledged the need to account for individual 

differences in performance; models allow parameters to vary across individual subjects (e.g. 

Bays, Catalao, & Husain, 2009; van den Berg et al., 2014; Zhang & Luck, 2008).

2.2.3. Strong correspondence between subjective reports of guessing and the 
guessing parameter in a mixture model—Previous work has demonstrated that 

subjective confidence strongly predicts mnemonic precision (Rademaker, Tredway, & Tong, 

2012) and correlates strongly with fluctuations in trial-by-trial performance (Adam & Vogel, 

2017; Cowan et al., 2016). Our finding that subjects consistently reported the best-

remembered items first also suggests that subjects have strong meta-knowledge regarding 

the contents of working memory. To provide an objective test of this interpretation, we 

examined whether or not subjects’ self-reports of guessing fell in line with the probability of 

guessing estimated with a standard mixture model (Zhang and Luck, 2008). A tight 

correspondence between subjects’ claims of guessing and mixture model estimates of 

guessing would demonstrate that subjects have accurate meta-knowledge and bolster the 

face validity of the guessing parameter employed in mixture models.

To examine the correspondence between subjective and objective estimates of guess rates, 

we fit a separate mixture-model to response errors for each response within each set size (16 

total model estimates per subject). We also calculated the percentage of subjects’ responses 

that were reported guesses (guess button used) for each of these 16 conditions. Then, we 

correlated the g parameter with the percentage of reported guessing. If there is perfect 

correspondence between the guessing parameter and subjective reports of guessing, a slope 
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of 1.0 and intercept of 0.0 would be expected for the regression line. The resulting 

relationship between the model and behavioral guessing was strikingly similar to this 

idealized prediction (Fig. 6). The average within-subject correlation coefficient was r = .94 

(SD = .05, all p-values < .001) in Experiment 1a and r = .93 (SD = .06, all p-values < .001) 

in Experiment 1b, indicating a tight relationship between the model’s estimates of guessing 

and subjects’ own reports of guessing. Participants were on average slightly over-confident 

(as indicated by a slope slightly less than one when the model’s guessing parameter was 

plotted on the x-axis). In Experiment 1a, participants had an average slope of .80 (SD = .29) 

and intercept of .03 (SD = .08). In Experiment 1b, participants had an average slope of .83 

(SD = .19) and intercept of −.05 (SD = .02). In sum, the striking correspondence between 

mixture model estimates of guessing and subjective reports of guessing suggests that 

subjects had excellent metaknowledge. The frequency with which subjects endorsed 

guessing precisely predicted the height of the uniform distribution estimated with a standard 

mixture model.

2.2.4. Output interference as a potential source of guessing behavior—The data 

from Experiment 1 provide compelling evidence that that a substantial portion of subjects’ 

responses were best characterized by a uniform distribution associated with guessing. 

Because subjects tended to respond first with the items that they remembered the best, these 

uniform distributions were observed in the last items that were reported within the whole 

report procedure. An important alternative explanation, however, is that the decline in 

memory performance across responses may have been due to output interference. 

Specifically, we considered whether merely reporting the initial items could have elicited the 

drop in performance that we saw for the last items reported within each trial. Indeed, output 

interference has been demonstrated in past studies of working memory (Cowan, Saults, 

Elliott, & Moreno, 2002). Thus, Experiment 2 was designed to measure the strength of 

output interference in our whole report procedure. Subjects in Experiment 2 had to respond 

to the items in a randomized order specified by the computer. If the uniform responses that 

we observed in Experiment 1 were due to output interference, then we should observe a 

similar drop in performance across responses in Experiment 2. Furthermore, a randomized 

response-order design allowed us to decouple confidence ratings from response order. In 

Experiment 1, confident responses never occurred at the end of the trial. By randomly 

selecting the order of report in Experiment 2, we had the opportunity to observe whether 

subjects also guessed when they were making the earliest responses in a trial.

3. Experiment 2

3.1. Materials & Methods

3.1.1. Experiment 2a: Color memoranda

3.1.1.1. Subjects: 17 subjects from the University of Oregon completed Experiment 2a. All 

participants had normal color vision and normal or corrected-to-normal visual acuity, and 

they were compensated with payment ($8/hour) or course credit. All participants gave 

informed consent according to procedures approved by the University of Oregon 

institutional review board.
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3.1.1.2. Procedures: Stimuli and procedures in Experiments 2a were identical to 

Experiment 1a except for the order in which responses were collected. On each trial, the 

response order was determined randomly by the computer on each trial, which will be 

referred to as a “random response” order. In Experiment 2a (color), one of the remembered 

items turned light gray, indicating that the participant should report the color at that location. 

The participant used the mouse to click on the color in the color wheel that best matched the 

memory for the probed square. The response process repeated until subjects had responded 

to all of the items in the display. Participants were again instructed to use the two mouse 

buttons to indicate their confidence in each response.

3.1.2. Experiment 2b: Orientation memoranda

3.1.2.1. Subjects: 21 subjects from the University of Chicago completed Experiment 2b. 

One participant began participation, but left the session early. After analyzing the data, one 

additional participant was excluded for poor performance (> 30% guessing rate for set size 

1). This left a total of 19 subjects for data analysis. All participants had normal color vision 

and normal or corrected-to-normal visual acuity. Participated were compensated with 

payment ($10/hour) and all gave informed consent according to procedures approved by the 

University of Chicago institutional review board.

3.1.2.2. Procedures: Trial events in Experiment 2b were identical to Experiment 1b except 

for the order in which responses were collected. At test, the cursor was set on top of one of 

the remembered items. The participant used the mouse to rotate the probed item to the 

remembered orientation, and clicked to set the response. After a response was collected, the 

test item was replaced by a gray placeholder circle, and a new untested item was probed. 

The response process repeated until subjects had responded to all of the items in the display. 

Participants were again instructed to use the two mouse buttons to indicate their confidence 

in each response.

3.2. Results & Discussion

3.2.1. Changes in response quality across set sizes and responses—The whole 

report procedure was meant to tap into the same cognitive limits that have been observed in 

past studies using single-item probes. Thus, an important goal was to determine whether this 

procedure produced the same kinds of error distributions that have been observed in studies 

employing single-item probes. In the random response-order condition, participants were 

probed on all of the items in a randomized fashion. Thus, the first probed response in this 

condition was similar to a typical partial-report procedure, where only one item is randomly 

probed and output interference cannot influence the results. We compared overall 

performance in the free-response order experiments (i.e. combining all responses into one 

set size level distribution) to performance for the first randomly probed item in the random 

response-order experiments. Then, we quantified the quality for each set size distribution 

using MRVL. For color stimuli (Experiments 1a and 2a), an ANOVA with within-subjects 

factor Set Size and between-subjects factor Experiment revealed that there was no main 

effect of Experiment on MRVL, F(1,37) = 0.12, p = . 72, ηp
2 = .003. Likewise, there was no 

main effect of Experiment for orientation stimuli (Experiments 1b and 2b), F(1,37) = 0.17, p 
= .68, ηp

2 = .005. These null results suggest that the free-response whole report procedure 
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elicited similar aggregate error distributions as observed in past procedures that have probed 

only a single item.

To more directly measure the effect of output interference within the random response-order 

experiments, we examined how response quality changed across responses made within each 

set size. A decline in MRVL values across responses in Experiment 2 would provide positive 

evidence for output interference. Indeed, the results revealed some decline in performance 

across responses. Critically, however, the slope of this decline was far shallower than when 

subjects chose their own response order in Experiment 1 (Fig. 7 and Fig. 8). To quantify the 

decline in mnemonic quality across responses, we again calculated MRVL values for each 

response within each set size, and we ran a repeated-measures ANOVA for each set size with 

the within-subjects factor Response. There was a significant main effect of response for all 

set sizes in Experiment 2a (Table 3). In Experiment 2b, there was no significant main effect 

of response for Set Size 2 (p = .96) but there was a significant difference for all other set 

sizes (Table 4). However, while these findings provide some evidence of output interference, 

there were striking differences from the pattern that was observed in Experiment 1. In 

Experiment 1, we observed a monotonic decline in memory quality across all responses, 

such that aggregate error distributions were completely uniform for the fifth and sixth 

responses. By contrast, in Experiment 2 only the first response was consistently better than 

the final response. Rather than an accumulation of output interference across each successive 

response, this empirical pattern suggests an advantage for the first response or two. In 

Experiment 2a, planned contrasts comparing each earlier response to the last response 

revealed that performance was better for only the first response for Set Sizes 3 and 4 and for 

the first and second responses for Set Size 6. In Experiment 2b, contrasts revealed that only 

the first response was significantly better than the final response for all set sizes.

To summarize, although both Experiments 2a and 2b produced evidence for a modest 

amount of output interference, the slope of this decline in the computer-guided condition 

was more than six times shallower than when subjects chose the response order themselves 

in Experiment 1 (Fig. 8). While resultant vector length decreased by 0.18–.19 per response 

in the self-ordered experiments (Exp. 1a and 1b), it decreased by only .04 and .02 per 

response in Experiments 2a and 2b. That is, output interference could at most explain around 

16% of the decline observed in Experiment 1. Thus, the effect of output interference alone 

cannot explain the dramatic decrease in performance during the self-ordered response 

procedure used in Experiment 1. Instead, we conclude that subjects in Experiment 1 used 

metaknowledge to report the best stored items first. Thus, the final responses in the subject-

ordered conditions contained no detectable information about the target.

3.2.2. Subjective ratings of guessing again predict uniform-distributed 
responses—Experiment 2 replicated the finding that participants’ subjective ratings of 

guessing strongly corresponded with mixture-model estimates of a guessing parameter. We 

fit a mixture model to each response within each set size (i.e. Set Size 2 first response, Set 

Size 2 second response, etc.), and we quantified the percentage of responses that the subjects 

reported guessing with a mouse button click. In line with the earlier results, we found a tight 

relationship between participants’ subjective reports of guessing and the mixture model’s 

estimation of a guess state. One subject in Experiment 2a showed no relationship between 
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confidence ratings and mixture model parameters, because they reported that every item was 

not a guess (they did not use both buttons). This subject was not included in metaknowledge 

analyses. On average, the strength of the within-subject correlation was r = .91 (SD = .03, all 

p-values < .001) in Experiment 2a and r = .94 (SD = .06, all p-values <.001) in Experiment 

2b. Once again, subjects were slightly over-confident. When plotting the model’s guessing 

parameter on the x-axis, the average slope was 0.89 (SD = .16) for Experiment 2a and 0.70 

(SD = .25) for Experiment 2b; the average intercept was −.01 (SD = .13) for Experiment 2a 

and −.06 (SD = .04) for Experiment 2b.

If the guessing we observed in Experiment 1 was due to output interference, then purely 

uniform error distributions should remain concentrated in the final responses of the trial even 

when the order of report was randomized in Experiment 2. By contrast, if the drop in 

performance across responses in Experiment 1 resulted from a bias to report the best 

remembered items first when subjects controlled response order, then guesses should be 

evenly distributed across responses in Experiment 2 when response order was randomized. 

This predicts that there should be some trials in which the best stored items happened to be 

probed last while items that could not be stored were probed first. Such a pattern of results 

could not be explained by an output interference account. Thus, we used subjects’ 

confidence ratings to identify two types of trials from Experiment 2: (1) Trials where the 

three items probed late in the trial were guess responses and (2) Trials where the three items 

probed early in the trial were guess responses. We took these trials across subjects and 

binned them together, then tested whether a uniform distribution best fit each response in the 

trial. Consistent with a mnemonic variability account of Experiment 1, we found that 

uniform error distributions occurred early -- but not late -- in the trial when participants 

reported guessing for the early responses (Fig. 9). Likewise, when participants indicated that 

they were guessing during the final three responses, purely uniform distributions were 

observed for the last three – but not the first three – responses. BIC values are listed in the 

supplementary materials, Tables S4 and S5. Thus, Experiment 2 showed that guessing 

prevalence was decoupled from response order, arguing against an output interference 

account of the observed uniform distributions. This analysis also gives insight into subjects’ 

metaknowledge accuracy; subjective confidence ratings nicely tracked the location of guess 

response (early versus late). However, these ratings were imperfect; “confident” responses 

still contained a sizeable uniform component, indicating that participants sometimes had less 

information in mind than they reported, converging with earlier evidence (Adam & Vogel, 

2017).

3.2.3. The role of instructions in guessing—Experiments 1 and 2 both provided 

compelling evidence that participants do not remember all items with a set size of 6 items, 

and that the observed guesses were not a result of output interference. Nevertheless, we also 

considered whether the specific instructions subjects received in our study may have 

influenced their tendency to guess. In both experiments, we asked participants to make a 

dichotomous “some” or “no” information confidence judgment. Gathering confidence 

ratings was extremely useful for validating the relationship between subjective guessing 

states and mixture model estimates of guess rates. However, we also wanted to assess 

whether instructions that emphasized the possibility of guessing may have artificially 
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encouraged guessing behaviors. To test this possibility, we ran a similar whole report 

procedure in which we eliminated the meta-knowledge assessment and participants were 

instructed to never randomly guess.

4. Experiment 3

4.1. Materials & Methods

Ten participants from the University of Chicago community participated in Experiment 3 for 

payment ($10/hour). Stimuli and procedures were nearly identical to Experiment 1b; 

participants were asked to remember the orientation of 1, 2, 3, 4 or 6 items and to report all 

items in any order they chose. However, participants did not make confidence ratings using 

the two mouse buttons. During the instruction period, the experimenter instructed the 

participants that they should remember all of the items. Participants were instructed: “Even 

if you feel you have no information in mind, do your best when making your responses. 

Even the information that you have in mind is extremely imprecise, it will still lead you in 

the right direction.”

4.2. Results & Discussion

Even though participants were not instructed to dichotomously report guess states, we still 

observed responses that were best described by a uniform distribution (Fig. 10). Using a BIC 

approach to compare the fit of a uniform distribution with the fit of a mixture model, we 

found a mean of 2.6 uniform distributions (SD = .97, range from 1 to 4). Non-parametric 

tests of uniformity agreed with this number. To conclude, the key finding that some working 

memory responses are best fit by a uniform distribution was not a result of instructions that 

allowed for the possibility of guessing.

5. Simulation results: Variable precision models mimic guessing behaviors 

by positing very low precision memories

Across several experiments, we have shown that guessing accounts for a large proportion of 

subjects’ responses when working memory load is high (e.g. ~50% of Set Size 6 responses). 

This result is apparently in conflict with past findings that a variable precision model that 

denies guessing (hereafter called “VP-no guessing”) is a strong competitor for models that 

presume a high prevalence of storage failures (van den Berg et al., 2014). How does the VP-

no guessing model achieve close fits of these aggregate error distributions? We hypothesized 

that the VP-no guessing model may succeed by postulating memories that are so imprecise 

that they cannot be distinguished from random guesses. Indeed, others have noted that this is 

a potentially troubling feature of VP models (Nosofsky & Donkin, 2016b; Sewell et al., 

2014). To test this hypothesis, we implemented a VP-no guessing model to fit the aggregate 

error distribution from Experiment 1a. This provided a clear view of the range of precision 

values used by this model to account for performance with six items. Next, we assessed 

what percentage of these memories could be distinguished from random guesses with 

varying amounts of noise-free data. To anticipate the findings, the VP-no guessing model 

posits memories that are undetectable within realistic experimental procedures, and it does 

so at a rate that tracks the guessing parameter within a standard mixture model.
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Using code made available from van den Berg et al. (2014, code accessed at http://

www.ronaldvandenberg.org/code.html), we fit the VP-no guessing model to individuals’ 

aggregate data (i.e. combining all responses for a given set size) from Experiment 1a. The 

variable precision model proposes that precision for each item in the memory array is von 

Mises-distributed with concentration κ. The precision of the von Mises for each item in the 

memory array is randomly pulled from a range of possible precision values. The range of 

possible precision values is determined by a gamma-distributed higher-order distribution, 

and the shape of this gamma distribution changes with different numbers of target items. 

This particular implementation of the variable precision model fits parameters while 

simultaneously considering performance across all set sizes. For Set Size 1 memory arrays, 

the gamma distribution contains mostly high precision von Mises distributions; for larger 

memory arrays, the gamma distribution contains a larger proportion of low precision von 

Mises distributions (Fig. 11).

For this analysis, we focused on the higher-order distribution of precision values for the Set 

Size 6 condition. We found that the VP-no guessing model posits a high prevalence of 

representations with exceedingly low precision. To further visualize this point, we computed 

decile cut-offs for each participant, and then took the median value for each decile cut-off 

across participants. Figure 12 shows the probability density function for each decile of von 

Mises distributions posited by the VP-no guess model. As can be seen, the von Mises PDF 

appears, by eye, to be perfectly flat for a large proportion of Set Size 6 trials (20 –30%). 

Critically, this PDF visualization is hypothetical in that it assumes infinite numbers of 

samples from a von Mises PDF, and with infinite numbers of trials we can easily distinguish 

a diffuse von Mises distribution (e.g. 40th Percentile, K = .318) from a uniform distribution. 

However, if we were to experimentally sample “trials” from the hypothetical PDF, our 

ability to distinguish this distribution from uniform would depend on the number of samples. 

Below, we show that variable precision models that deny guessing must postulate a very 

high prevalence of memory representations that cannot be detected with a feasible 

behavioral study.

To illustrate how poor the VP-no guessing model’s hypothesized representations are, we ran 

simulations in which we used varying amounts to data to discriminate between a von Mises 

distribution of precision κ and a uniform distribution. We did so for a range of precision 

values and a range of trial numbers. We chose 10 log-spaced bins between 10 and 1,000,000 

samples (“trials”), and we ran 200 iterations of randomly sampling trials from a von Mises 

distribution with various concentrations (κ). For each iteration, we compared the fit of the 

von Mises to the fit of a uniform distribution using BIC comparison in MemToolbox 

(Suchow et al., 2013), and we took the difference score in BIC fits for the uniform and the 

von Mises distributions. We defined our ability to discriminate from uniform as the precision 

value at which the 95% Confidence Intervals for a given number of trials remained in favor 

of the uniform. Discriminable precision values are shown as a function of the number of 

samples in Figure 13. With only 10 samples from a von Mises PDF, we could discriminate 

between uniform and a von Mises with κ = 0.65 (SD = 88 degrees). With 1,000,000 samples 

from a von Mises PDF, we could discriminate between uniform and a von Mises with κ = 

0.007 (SD = 193 degrees). That is, a concentration of less than κ < .007 is so diffuse that the 

central tendency is undetectable with 1,000,000 samples of noise-free data sampled from a 
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true von Mises distribution. Of course, because these simulations presume noise-free data, 

these simulations overestimate the true detectability of these putative representations in a 

real experiment.

Finally, we determined the prevalence of effectively undetectable memories for each subject 

(defined as those requiring at least one million trials to discriminate from uniform). On 

average, 22.0% (SD = 11.2%) of VP-no guessing distributions had a precision less than or 

equal to κ =.007, and this percentage ranged from 7.0% to 46.3% of a subjects’ higher-order 

distribution values. Further, the proportion of these representations was tightly coupled with 

mixture model estimates of the guess rate for Set Size 6 (r = .81, p <.001), underscoring the 

possibility that the VP-no guessing model is mimicking random guesses. Thus, although the 

VP-no guessing models can achieve close fits to aggregate error distributions, their success 

depends on the assumption that a substantial number of these memories would be literally 

undetectable with a feasible behavioral paradigm.

In cases of model mimicry, it is important to question which model is the mimic. Could it be 

that models endorsing guessing are mimicking low precision representations? We offer three 

arguments to the contrary. First and foremost, the whole report data from Experiments 1 and 

2 revealed a high prevalence of error distributions that were best modeled by a uniform 

distribution with zero free parameters. Thus, while it has been difficult to adjudicate between 

models that endorse and deny guessing with the aggregate error distributions generated by 

partial-report studies, (van den Berg, Awh and Ma, 2014), whole report data provide clear 

positive evidence that the modal subject guesses about half of the time for Set Size 6. 

Second, participants report that they were guessing, and these subjective reports were 

excellent predictors of simple mixture-model estimates of guessing rates (Experiments 1 and 

2). We contend that subjective judgments of whether an item has been stored are decidedly 

relevant for characterizing the contents of a memory system that is thought to hold 

information “in mind” (however, see general discussion for limitations to this claim). 

Finally, we think it’s reasonable to question the plausibility of “memories” that are as 

imprecise as those posited by variable precision models that deny guessing. For example, the 

VP-no guessing model requires that the worst memory out of six simultaneously-presented 

items would have a standard deviation of around 230 degrees. Based on our earlier 

simulation of trial numbers and precision values, this means that an ideal observer would 

require over 900 million trials to produce above-chance performance in detecting the largest 

possible difference in color or orientation (e.g., red vs. green, or horizontal versus vertical). 

At the least, there may be a consensus that such homeopathic amounts of information would 

be of little use for purposeful cognitive tasks.

6. General Discussion

Understanding the nature of capacity limits in working memory has been a longstanding 

goal in memory research. The capacity debate has been dominated by a theoretical 

dichotomy of “number” versus “precision.” Discrete resource models have argued that 

capacity is limited by the number of items that can be concurrently stored, and that subjects 

to resort to guessing when more than a handful of memoranda are presented (Fukuda, Awh, 

& Vogel, 2010; Zhang & Luck, 2008). By contrast, continuous resource models argue that 
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mnemonic resources can be distributed amongst an unlimited number of items(Bays & 

Husain, 2008; van den Berg et al., 2012; Wilken & Ma, 2004). In addition, there is a 

growing consensus that mnemonic precision varies across items and across trials (e.g. Bae et 

al., 2014; Fougnie et al., 2012). In the present data, for example, item-by-item varations in 

precision were plainly demonstrated. However, variable mnemonic precision is compatible 

with both discrete resource models that propose an item limit and continuous resource 

models that allow for the storage of unlimited numbers of items. In sum, despite a 

proliferation of work a key aspect of the number/precision theoretical dichotomy has 

remained unresolved: Do participants guess? If so, do we need capacity limits to explain 

guessing behavior? Even some of the most sophisticated modeling efforts have reached a 

stalemate (van den Berg et al., 2014).

In this context, our findings provide compelling evidence that the modal subject guesses 

about half of the time with a memory load of six items. This confirmation of the guessing 

construct is critical for the broader idea that working memory performance differs both in 

terms of the number and the precision of the representations that are stored. Further, the 

variations in the number of items that individuals could store (2 – 5 items) aligned closely 

with past estimates of items limits in visual working memory (Cowan, 2001; Fukuda et al., 

2010; Luck & Vogel, 1997; Zhang & Luck, 2008). Finally, Experiments 2a and 2b showed 

that output interference could not explain the powerful decline in mnemonic performance 

across responses that resulted in uniform distributions. While there was some evidence of 

output interference when all items were probed in a random order, it could not account for 

the dramatic declines in performance that were observed when subjects chose the order of 

their response. Thus, while past studies have shown that aggregate error distributions can be 

equally well fit by competing models that endorse and deny guessing behaviors, our whole 

report procedure provided unambiguous evidence for a high prevalence of guessing 

responses.

The finding that individual differences in capacity yielded similar findings to previous 

estimates rules out two key classes of models. First, this provides compelling evidence 

against “no guessing” models in which participants are able to store all items in the array. To 

account for individual differences in performance, “no guessing” models posit that 

participants with poor working memory performance have less precise memories, but store 

some information about all presented items. Our findings clearly rule out such a model; we 

did not find any participants for whom a “no guessing” model was best. Second, these 

results constrain models of trial-by-trial variability in performance. Some models have 

proposed that effective capacity (i.e. the number of stored items) varies from trial to trial, 

and it could do so in several ways. Models that include guessing while denying item limits 

propose that the number of stored items varies dynamically from trial to trial but is not 

limited by an upper bound. For instance, trial-by-trial performance may be Poisson- or 

uniform-distributed (van den Berg et al., 2014). On the other hand, item-limited models 

propose that performance varies from trial to trial, but only in one direction – below the 

capacity limit for each individual (Adam et al., 2015). Critically, the first class of models 

(dynamic but capacity-unlimited) also yield the prediction that the majority of subjects 

should show non-uniform distributions at all 6 response positions. Instead, we find support 

for the latter model (dynamic but capacity-limited); there is still some degree of guessing for 
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early responses, indicating that subject frequently under-perform their maximum capacity. 

However, participants do not over-perform past a hypothetical “mean limit”, as shown by the 

pure uniform error distributions we observed for late response in the set size six condition.

Interestingly, objective estimates of guessing dovetailed with the subjects’ own reports of 

whether they had any information about the item in question. The frequency with which 

subjects endorsed guessing precisely tracked the guess rate as estimated by a standard 

mixture model (Zhang and Luck, 2008). Note, the alignment of the guessing parameter and 

subjective guess reports alone cannot distinguish between a guessing account and a variable 

precision account of working memory limits. For example the variable precision model 

might posit that participants will choose the “guess” label whenever mnemonic precision 

does not pass a certain threshold. However, the precise alignment of subjective ratings with 

the mixture model’s guess parameter greatly bolsters the face validity of the mixture 

model’s guessing parameter.

There is a growing consensus that working memory responses have variable precision. In 

particular, many recent papers have found that a large amount of variability in working 

memory precision may arise from stimulus-specific differences, such as color categories, 

orientation categories, or verbal labels (Bae et al., 2015, 2014; Donkin, Nosofsky, Gold, & 

Shiffrin, 2015; Hardman, Vergauwe, & Ricker, 2017; Pratte, Park, Rademaker, & Tong, 

2017). However, there is growing doubt as to whether variability in precision is due to 

variations in the allocation of a mnemonic resource per se, as opposed to lower level 

differences in the quality of encoding or the imposition of categorical structure for different 

types of stimuli. For instance, recent work by Pratte and colleagues (2017) measured 

performance in a task that required the storage of orientations in working memory and 

replicated earlier work showing variability in precision across concurrently stored items in 

working memory. Rather than presuming that this variability reflects variation in the 

allocation of mnemonic resources per se (van den Berg et al., 2012), Pratte et al. showed that 

much of this variability was explained by higher precision for orientations near the 

horizontal and vertical meridians. This observation falls in line with the “oblique effect” that 

has been documented in past studies of visual perception (Appelle, 1972). Strikingly, when 

the oblique effect was incorporated into competing discrete and continuous resource models, 

discrete models that endorsed guessing were the clear winner of the model competition. In 

other words, once stimulus-driven sources of variable precision were acknowledged, the best 

account of the data posited a high prevalence of guessing responses.

Clear evidence for guessing in a working memory task has important implications for our 

taxonomy of the processes that determine memory performance. In past work, putative item 

limits in working memory have been argued to predict variations in fluid intelligence, 

scholastic achievement, and attentional control (e.g. Cowan et al., 2005; Engle et al., 1999; 

Fukuda, Vogel, Mayr, & Awh, 2010; Unsworth, Fukuda, Awh, & Vogel, 2014). A simple 

interpretation is that a common mental resource determines the number of items that can be 

stored in working memory and one’s ability to handle a variety of cognitive challenges. 

According to continuous resource models, however, it is not possible to measure individual 

differences in the number of items that can be stored in working memory, because all 

observers can store all items regardless of set size. By this account, the apparent variations in 
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the number of items that can be maintained are an illusion created by limitations in memory 

quality. Thus, continuous resource models explicitly argue that individual differences in 

memory performance will be explained by a single factor that determines memory quality.

Evidence from Awh et al. (2007) challenged the idea that memory quality is the determining 

factor of working memory limits. They measured performance in a change detection task 

while manipulating the size of the changes that occurred in the test display. When changes 

were very large, they reasoned that subjects should be able to detect the change whenever 

the probed item had been stored, because precision should not be a limiting factor. When 

changes were relatively small, however, they reasoned that successful change detection 

would be limited more by memory quality, because more precise memories would be needed 

to detect a relatively small mismatch between the sample and test. By contrast, a continuous 

resource model asserts that precisely the same mnemonic resource determines performance 

with small and large changes, because there is no limit to the number of items that can be 

stored. Disconfirming this prediction, Awh et al. (2007) found that performance with big and 

small changes was completely uncorrelated, despite having positive evidence that both 

scores were reliable. This finding has since been extended by looking at the pattern of errors 

to big-change and small-change trials across multiple response probabilities (Nosofsky & 

Donkin, 2016a); participants frequently endorse that large changes are “the same” on big-

change trials, even though they are capable of discriminating much smaller changes. Thus, 

number and precision may represent distinct facets of working memory ability.

Memory precision does not seem to be the limiting factor for detecting changes within 

displays, and there is also little evidence that precision predicts individual differences in 

working memory performance. Fukuda, Vogel, et al. (2010) carried out a latent variable 

analysis of a variety of change detection tasks that required the detection of either very large 

or small changes. This analysis revealed distinct factors for the detection of large and small 

changes, with no reliable cross loading between these factors. This result provides a robust 

confirmation of the earlier finding, suggesting that number and resolution may indeed be 

dissociable aspects of memory ability. Moreover, Fukuda, Vogel, et al. (2010) found that 

while the number factor was a robust predictor of fluid intelligence, there was zero evidence 

for such a link between precision and fluid intelligence. Likewise, capacity is reduced but 

precision is spared in people with schizophrenia (Gold et al., 2010). Thus, a two-factor 

model that distinguishes between the number of items stored and the precision of those 

mnemonic representations is needed to account for performance with large and small 

changes, and these two factors have unique relationships with fluid intelligence.

In conclusion, we present clear evidence for a high prevalence of guessing responses in a 

visual working memory task. When subjects were allowed to choose the order of report in a 

whole report memory task, we observed a monotonic decline in memory performance with 

each successive response, and the modal observer produced uniform error distributions – the 

hallmark of guessing – for three of the items in a six item display. Control experiments ruled 

out the hypothesis that output interference generated this monotonic decline in performance 

across responses; modest evidence of output interference was observed, but it accounted for 

only a modest proportion of the decline across responses. Instead, we conclude that subjects 

used accurate metaknowledge to report the best remembered items first. In turn, this yielded 
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robust evidence of guessing behaviors when the last responses were examined, and supports 

the idea that working memory is subject to clear item limits.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

In a whole report task, participants report all items held in Working Memory 

(WM).

We directly observed variable precision in working memory responses.

For large arrays, many responses were best fit by a uniform guessing distribution.

Robust evidence for guessing confirms the presence of item limits in WM storage.

Adam et al. Page 23

Cogn Psychol. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Task design
Panel A depicts the order of events in Experiment 1. Panel B depicts the order of events in 

Experiment 2. Color stimuli were used in Experiment 1a and 2a, the orientation stimuli 

(inset) were used in Experiment 1b and 2b.
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Figure 2. Aggregate data for Experiment 1
Collapsing across all responses within a set size, we see a typical decline in precision with 

increasing memory load.
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Figure 3. Subject-ordered responses reveal representations that covary with response order
All set sizes and responses are shown for (A) Experiment 1a and (B) Experiment 1b.
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Figure 4. Mean resultant vector length across responses in Experiment 1a (A) and Experiment 
1b (B)
Shaded error bars represent 1 Standard Error.
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Figure 5. Number of uniform responses for Set Size 6 in Experiments 1a and 1b
(A) Histogram of subjects’ total number of Set Size 6 responses that were best fit by a 

uniform distribution. Top: Color Condition; Bottom: Orientation Condition. (B) Number of 

subjects’ responses best fit by uniform distributions as a function of response number. Top: 

Color Condition; Bottom: Orientation Condition.
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Figure 6. The relationship between behavioral guessing and modeled guessing in Experiment 1b
Each panel shows an individual’s correlation between reported guessing and the mixture 

model g parameter for each of 16 conditions (every response made for Set Sizes 1–4 and 6). 

The red dotted line represents perfect correspondence between behavioral guessing and 

modeled guessing (slope = 1, intercept = 0).
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Figure 7. Computer-ordered responses reveal representations that are relatively unaffected by 
response order
All set sizes and responses are shown for (A) Experiment 2a and (B) Experiment 2b.
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Figure 8. Mean resultant vector length for responses in Experiment 2a (A) and Experiment 2b 
(B)
Shaded error bars represent 1 Standard Error.
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Figure 9. Response distributions for set-size 6 trials in Experiment 2, split by when participants 
reported guessing
Trials are binned by whether participants reported the first three responses as guesses (top 

row) or the final three response as guesses (bottom row) in (A) Experiment 2a and (B) 

Experiment 2b.
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Figure 10. Number of uniform representations for Set Size 6 in Experiment 3
(A) Histogram of subjects’ total number of Set Size 6 responses that were best fit by a 

uniform distribution. (B) Number of subjects’ responses best fit by uniform distributions as a 

function of response number.
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Figure 11. Cumulative distribution functions for the variable precision model across set sizes
X-axis represents the concentration parameter of the von Mises distributions pulled from the 

higher order gamma distribution. Y-axis represents the cumulative proportion of trials in 

which a given concentration (κ) or less is pulled. From left to right, the scale of the x-axis is 

zoomed in to better illustrate the proportion of very low precision representations that make 

up each higher-order distribution. Shaded error bars represent 1 Standard Error.
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Figure 12. Illustration of von Mises distributions used by the variable precision model to account 
for Set Size 6 performance
Precision values of the von Mises distributions are given as both concentration (K) and 

standard deviation (SD) in degrees.

Adam et al. Page 35

Cogn Psychol. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 13. The minimum detectable amount of information (Kappa) needed to distinguish a von 
Mises distribution from uniform as a function of the number of noise-free von Mises-distributed 
samples
The fitted line is the linear fit of the log-transform of the sample number and the log-

transform of the precision threshold.
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Table 1

Change in Mean Resultant Vector Length across responses in Experiment 1a.

Set Size df1 df2 F p ηp
2

2 1 21 42.4 <.001 .67

3 2 42 129.5 <.001 .86

4 2.2 45.4 223.8 <.001 .91

6 2.8 58.4 295.2 <.001 .93
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Table 2

Change in Mean Resultant Vector Length across responses in Experiment 1b.

Set Size df1 df2 F p ηp
2

2 1 19 66.1 <.001 .78

3 1.2 21.9 116.1 <.001 .86

4 1.5 28.3 217.3 <.001 .92

6 2.1 40.2 389.5 <.001 .95
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Table 3

Change in Mean Resultant Vector Length across responses in Experiment 2a.

Set Size df1 df2 F p ηp
2

2 1 16 11.75 .003 .42

3 2 32 25.3 <.001 .61

4 3 48 18.4 <.001 .53

6 5 80 14.9 <.001 .48
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Table 4

Change in Mean Resultant Vector Length across responses in Experiment 2b.

Set Size df1 df2 F p ηp
2

2 1 18 .003 .96 <.001

3 2 36 16.1 <.001 .47

4 3 54 25.0 <.001 .58

6 5 90 13.3 <.001 .43
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