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The hippocampus, including the dorsal dentate gyrus (dDG), and
cortex engage in bidirectional communication. We propose that
low-frequency activity in hippocampal–cortical pathways contrib-
utes to brain-wide resting-state connectivity to integrate sensory
information. Using optogenetic stimulation and brain-wide fMRI
and resting-state fMRI (rsfMRI), we determined the large-scale ef-
fects of spatiotemporal-specific downstream propagation of hip-
pocampal activity. Low-frequency (1 Hz), but not high-frequency
(40 Hz), stimulation of dDG excitatory neurons evoked robust cor-
tical and subcortical brain-wide fMRI responses. More importantly,
it enhanced interhemispheric rsfMRI connectivity in various corti-
ces and hippocampus. Subsequent local field potential recordings
revealed an increase in slow oscillations in dorsal hippocampus
and visual cortex, interhemispheric visual cortical connectivity, and
hippocampal–cortical connectivity. Meanwhile, pharmacological in-
activation of dDG neurons decreased interhemispheric rsfMRI con-
nectivity. Functionally, visually evoked fMRI responses in visual
regions also increased during and after low-frequency dDG stimu-
lation. Together, our results indicate that low-frequency activity
robustly propagates in the dorsal hippocampal–cortical pathway,
drives interhemispheric cortical rsfMRI connectivity, and mediates
visual processing.
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The hippocampus (HP) plays a prominent role in central
nervous system functions, particularly in episodic memory (1,

2) and spatial navigation (3, 4). The HP, including the dentate
gyrus (DG), can evoke large-scale influences on cortical activity,
because the HP receives convergent information from sensory
and limbic cortices before sending reciprocal divergent projec-
tions to create a highly interactive corticohippocampal–cortical
network. The HP, including DG, CA3, and CA1, and neocortex,
are connected via the entorhinal cortex (EC) (5, 6), such that the
dorsolateral-to-ventromedial projection that originates in the EC
corresponds to a dorsoventral axis of termination in the HP (5).
This anatomical topography suggests that a functional gradient
could exist along the HP dorsoventral axis. Previous studies de-
monstrated that dorsal HP (dHP) and cortex are functionally in-
tegrated during sensory processing and memory consolidation
(7–9). Specifically, dHP can integrate multimodal sensory infor-
mation and process memory operations (7) using excitatory long-
range projections (10). This process occurs over multiple brain
circuits, but the role of dHP in complex networks, particularly
its influence on brain-wide functional connectivity, is not well
understood.
Resting-state functional MRI (rsfMRI) (11–14) provides an

invaluable, noninvasive imaging technique to map long-range,
brain-wide functional connectivity networks based on the temporal
coherence of infraslow (0.005–0.1 Hz) blood oxygen level de-
pendent (BOLD) activity. The functional relevance of specific
brain-wide networks in cognition can be inferred through rsfMRI

connectivity. Numerous studies demonstrate that changes in
rsfMRI connectivity are highly correlated to sensory, memory,
and learning task performance, detailed in two comprehensive
review papers (13, 15). These studies indicate that changes in
brain-wide functional connectivity facilitate and modulate diverse
cognitive functions. Despite the enormous potential inherent in
this technique, the neural basis of rsfMRI connectivity remains
unknown, which impedes further interpretation of neural activity
and interactions within and between brain networks. Previous at-
tempts to uncover the neural basis of rsfMRI in anesthetized rats
and awake macaques implicated delta oscillations (16, 17) and
alpha oscillations (18, 19), respectively. Furthermore, cortical slow
oscillations (<1 Hz) (20, 21) resemble the spatiotemporal char-
acteristics of infraslow coherent activity in brain-wide functional
networks detected by rsfMRI. Previous studies suggest that these
cortical oscillations may underlie rsfMRI connectivity (22–24).
Further, a recent study indicates the coupling between resting-
state hemodynamics and the oscillatory activity of excitatory
neurons (25). However, the answer remains generally inconclusive
due to the correlative nature of those studies without directly
probing the effects of modulating the brain’s electrical activity
during rsfMRI.
Brain-wide slow oscillations are a characteristic feature of the

mammalian neocortex that occurs spontaneously in the virtual
absence of sensory stimulation, such as during anesthesia (26,
27), natural sleep (9, 28), or quiescent waking (29). Previous
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studies also found similar slow oscillatory activities in the hip-
pocampus (30, 31). In particular, DG granule cells modulate
hippocampal slow oscillations phase locked to neocortical slow
oscillations with a short delay (31). This dynamic property sug-
gests that individual hippocampal neurons can form functional

connections with other neurons to create synchronized networks,
particularly in slow oscillation frequency ranges, to mediate
complex cognitive functions. Such functional coupling may es-
tablish the temporal framework for coordinated information
transfer within and between networks. Human rsfMRI studies

Fig. 1. Brain-wide activation of visually related regions during low-frequency optogenetic stimulation of dDG excitatory neurons in dHP. (A) Averaged
activation maps at 0.5-Hz (Top), 1-Hz (Middle), and 2-Hz (Bottom) stimulation. * indicates the stimulation site. Robust positive BOLD responses detected in
bilateral V1, V2, LGN, and SC, as well as Cg (n = 6; t > 3.1, corresponding to P < 0.001). We used a lower statistical threshold (t > 2.5, corresponding to P < 0.01)
for 0.5-Hz stimulation to detect the low BOLD responses. (B) Regions of interest (ROIs) defined by the rat brain atlas to extract the BOLD signal profiles.
Abbreviations: g, cingulate cortex; LGN, lateral geniculate nucleus; SC, superior colliculus; V1, primary visual cortex; V2, secondary visual cortex. (C) The
respective BOLD signal profiles extracted from the ROIs. Error bars indicate ±SEM.
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also identified the hippocampus as a densely connected region
that may coordinate brain functional connectivity (32–34). Fur-
thermore, a recent study demonstrated the propagation of low-
frequency activity from the hippocampus to the cortex in humans
(34). Thus, directly examining hippocampal activity with respect
to brain-wide propagation and connectivity is essential to un-
cover the fundamental neural basis of rsfMRI.
Currently, there is no direct evidence that demonstrates the

influence of low-frequency activity or oscillations that propagate
along the hippocampal–cortical axis on brain-wide rsfMRI con-
nectivity. Because the DG primarily receives cortical terminal
projections and acts as a bridge for corticohippocampal–cortical
network communication, we examined how spatiotemporally
specific activity initiated in the dorsal DG (dDG) influences
cortical activity and subsequent brain-wide rsfMRI connectivity by
combining optogenetic, cell-specific stimulation of Ca2+/calmodulin-
dependent protein kinase IIa (CaMKIIα)-expressing excitatory
neurons (i.e., dDG granule cells) and large-scale fMRI detection
(35–38). We also examined the functional effects of such changes
in brain-wide rsfMRI connectivity on sensory processing.

Results
fMRI Reveals Brain-Wide Frequency-Dependent Activity Propagation
from Dorsal Hippocampus. We used virally mediated optogenetics
to selectively stimulate CaMKIIα-expressing excitatory neurons in
dDG in normal adult male rats. Anatomical MRI scans confirmed
the location of the virus injection and optical fiber implantation in
dDG of all animals (Fig. S1A). Immunohistochemistry confirmed
that CaMKIIα+ excitatory neurons of the dDG, but not the
GABAergic inhibitory neurons, expressed ChR2-mCherry (Fig. S1
B and C). Whole-brain fMRI determined frequency-dependent
spatiotemporal characteristics of brain-wide, long-range evoked
responses driven by dDG stimulation using a block design. We
performed optogenetic stimulation in lightly anesthetized rats (1%
isoflurane). Blue light pulses at four frequencies (0.5 Hz, 1 Hz, 2 Hz,

and 40 Hz with 5%, 10%, 20%, and 30% pulse width duty cycle,
respectively; light intensity, 40 mW/mm2) were delivered to dDG
neurons in a block design paradigm. We chose reduced duty cycles
for 0.5-Hz, l-Hz, and 2-Hz stimulation to avoid excessively long
stimulation pulse widths that may not be physiological.
A 1-Hz optogenetic stimulation of dDG evoked positive and

robust BOLD responses in bilateral primary visual cortex (V1),
secondary visual cortex (V2), lateral geniculate nucleus (LGN)
and superior colliculus (SC), as well as the cingulate cortex (Cg)
(Fig. 1 A and C). We observed similar BOLD responses at 0.5-
and 2-Hz stimulations (Fig. 1 A and C). We also stimulated dDG
at a higher frequency (40 Hz) and observed strong positive re-
sponses in bilateral dHP and negative responses in bilateral
ventral HP (vHP) and Cg (Fig. 2 A and C). However, we de-
tected no responses in V1, V2, LGN, and SC (Fig. S2). The
sequence of fMRI responsivity demonstrates spatiotemporal
response properties from dHP shifting from regions actively in-
volved in processing visual information and cognition at low
frequencies (0.5–2 Hz) to local hippocampal regions (40 Hz).
The absolute BOLD signal amplitude in bilateral V1 at 0.5 Hz
was generally lower than those at 1 Hz and 2 Hz, mainly due to
the reduced pulse width duty cycle of 5% used at 0.5 Hz.
To gain insight into the fMRI findings, we performed extra-

cellular electrophysiological recordings using low-impedance
(1 MΩ) electrodes to characterize downstream signal propaga-
tion from dDG excitatory neurons in dHP to V1 using identical
stimulation paradigms (Fig. 3A). Local field potentials (LFPs),
which are highly correlated with BOLD signals (39), revealed
that only low-frequency stimulation (0.5–2 Hz) evoked strong
LFP responses in bilateral V1 (Fig. 3B), corroborating the fMRI
results (Fig. 1), although all tested stimulation frequencies
evoked LFP responses in dDG/dHP. We further investigated the
response latencies to determine the dynamic properties within
the hippocampal–cortical circuit. Following dDG stimulation,
evoked responses first occurred in the ipsilateral dHP, followed

Fig. 2. Local hippocampal activation and deactivation during 40-Hz optogenetic stimulation of dDG excitatory neurons in dHP. (A) Averaged activation maps
at 40-Hz stimulation. * indicates the stimulation site. Robust positive BOLD responses are detected in bilateral dHP, whereas negative responses are detected
in the bilateral vHP and Cg (n = 6; t > 3.1 or t < −3.1, corresponding to P < 0.001). (B) Regions of interest (ROIs) are based on the rat brain atlas to extract bold
signal profiles. Abbreviations: Cg, cingulate cortex; dHP, dorsal hippocampus; vHP, ventral hippocampus. (C) BOLD signal profiles extracted from the ROIs.
Error bars indicate ±SEM.
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by the ipsilateral V1, and finally the contralateral V1 (Fig. 3C).
Latency was measured at the first prominent trough of the
optogenetically evoked LFP response. Latency measurements
were similar for 0.5-Hz, 1-Hz, and 2-Hz stimulation (0.5 Hz:
ipsilateral dDG/dHP = 4.95 ± 0.71 ms, ipsilateral V1 = 14.77 ±
1.08 ms, contralateral V1 = 18.68 ± 0.65 ms; 1 Hz: ipsilateral
dDG/dHP = 5.02 ± 0.71 ms, ipsilateral V1 = 14.57 ± 1.03 ms,
contralateral V1 = 18.33 ± 1.06 ms; and 2 Hz: ipsilateral dDG/
dHP = 5.35 ± 0.85 ms, ipsilateral V1 = 14.77 ± 1.09 ms,
contralateral V1 = 18.72 ± 0.68 ms) (Fig. 3D). Although
optogenetically evoked LFP profiles evolved throughout the

stimulation period, the comparative latency measurements
between the first and last response were similar (Fig. S3),
demonstrating stable response latencies. These latency mea-
surements indicate that the first evoked responses occurred
in the ipsilateral dDG/dHP and propagated to the ipsilateral
V1 polysynaptically (9.5 ± 1.3 ms, P < 0.001; one-way ANOVA
followed by Bonferroni’s post hoc test), before reaching con-
tralateral V1 via monosynaptic interhemispheric callosal connec-
tions (40) (4.0 ± 1.5 ms, P < 0.01; one-way ANOVA followed by
Bonferroni’s post hoc test). However, we do not preclude that
propagation to contralateral V1 can occur polysynaptically through
contralateral dHP. No evoked responses were observed in the naïve
animal (Fig. S4), indicating that the observed responses were a
direct result of ChR2 stimulation, not photoelectrically induced
artifacts or undesired light-induced activations of the visual
pathway. In addition, multiunit activity (MUA) recordings in
dDG showed all stimulation frequencies successfully elicited
hippocampal spikes without failure (Fig. S5). We made the
exposed optical fiber cannula (used to deliver blue light pulses)
opaque using heat shrinkable sleeves in all MRI and electro-
physiological recording experiments to prevent light leakage
that may cause undesired visual stimulation to animals.

Low-Frequency Optogenetic Stimulation of dDG Excitatory Neurons in
dHP Enhances Brain-Wide Resting-State Functional Connectivity. Next,
we examined the effects of low-frequency activity propagating
along the dorsal hippocampal–cortical pathway (Figs. 1 and 3)
on interhemispheric or bilateral rsfMRI connectivity (Fig. 4A).
Before the rsfMRI acquisition, we measured LFPs in dDG/dHP
and V1 to ensure that sustained 1-Hz stimulation (400 s) did not
evoke different LFP response characteristics observed during
shorter stimulation durations (20 s) (Fig. S6 vs. Fig. 3B). LFPs
showed steady evoked responses, which demonstrate the stability
of 1-Hz evoked responses in both stimulated and activated re-
gions. The strength of interhemispheric rsfMRI connectivity in-
creased progressively in dHP, V1, primary auditory cortex (A1),
and primary somatosensory cortex (S1) during (during) and after
(post) 1-Hz dDG stimulation, which showed an increase in the
spatial extent of connectivity maps (Fig. 4B, Left). The interhemi-
spheric rsfMRI connectivity strengthened significantly during stim-
ulation in dHP, V1, A1, and S1 (Fig. 4B,Middle; n = 18; dHP: 37.3 ±
7.4%, P < 0.01; V1: 55.6 ± 11.5%, P < 0.01; A1: 44.2 ± 6.9%,
P < 0.05; and S1: 43.3 ± 9.0%, P < 0.01; one-way ANOVA
followed by Bonferroni’s post hoc test). We also observed a sig-
nificant enhancement of interhemispheric rsfMRI connectivity
post stimulation (Fig. 4B, Middle; n = 18; dHP: 46.2 ± 8.6%,
P < 0.001; V1: 72.9 ± 13.8%, P < 0.001; A1: 53.9 ± 7.6%, P <
0.01; and S1: 58.9 ± 10.9%, P < 0.001; one-way ANOVA fol-
lowed by Bonferroni’s post hoc test). We then computed the
connectivity spectrum of rsfMRI signals that were bilaterally
correlated. We observed an increase in infraslow (<0.1 Hz)
rsfMRI BOLD activity in dHP, V1, A1, and S1 during and post
stimulation (Fig. 4B, Right). We further examined the intra-
hemispheric or local rsfMRI connectivity, which was increased
during (Fig. 4C, Left; n = 18; ipsilateral dHP: 59.6 ± 8.6%, P <
0.001; contralateral dHP: 55.6 ± 8.2%, P < 0.01; ipsilateral S1:
38.3 ± 9.4%, P < 0.05; and contralateral S1: 45.6 ± 8.7%, P <
0.01; one-way ANOVA followed by Bonferroni’s post hoc test)
and post stimulation (Fig. 4C; n = 18; ipsilateral dHP: 58.4 ±
6.9%, P < 0.01; contralateral dHP: 57.4 ± 6.8%, P < 0.01; ip-
silateral V1: 43.8 ± 5.4%, P < 0.01; contralateral V1: 45.7 ±
11.3%, P < 0.01; contralateral A1: 33.7 ± 7.3%, P < 0.05; ip-
silateral S1: 51.2 ± 7.7%, P < 0.01; and contralateral S1: 60.5 ±
13.0%, P < 0.01; one-way ANOVA followed by Bonferroni’s
post hoc test).
We then performed LFP recordings in bilateral V1 and ipsi-

lateral dDG/dHP to determine the neuronal activity underlying
enhanced V1 interhemispheric rsfMRI connectivity and examine

Fig. 3. Local field potentials (LFPs) in ipsilateral dDG/dHP and bilateral
V1 confirm neuronal activity underlies BOLD fMRI responses, and latency
measurements indicate polysynaptic propagation of low-frequency activity
from dHP. (A) Recording electrodes location in ipsilateral dDG/dHP and bi-
lateral V1. (B) Averaged LFP traces in ipsilateral dDG/dHP and bilateral V1 for
0.5-Hz, 1-Hz, 2-Hz, and 40-Hz stimulation (n = 6). All frequencies evoked
responses in ipsilateral dDG/dHP. Only low-frequency stimulation evoked
strong responses in bilateral V1. (C) LFP responses from the first optogenetic
pulse for 0.5-Hz, 1-Hz, and 2-Hz stimulation. Error bars indicate ±SEM.
(D) Latency measurements of the first LFP response during low-frequency
stimulation (0.5 Hz: ipsilateral dDG/dHP = 4.95 ± 0.71 ms, ipsilateral V1 =
14.77 ± 1.08 ms, contralateral V1 = 18.68 ± 0.65 ms; 1 Hz: ipsilateral dDG/
dHP = 5.02 ± 0.71 ms, ipsilateral V1 = 14.57 ± 1.03 ms, contralateral V1 =
18.33 ± 1.06 ms; 2 Hz: ipsilateral dDG/dHP = 5.35 ± 0.85 ms, ipsilateral V1 =
14.77 ± 1.09 ms, contralateral V1 = 18.72 ± 0.68 ms; one-way ANOVA fol-
lowed by Bonferroni’s post hoc test; **P < 0.01 and ***P < 0.001). Error bars
indicate ±SEM.
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possible interregional (i.e., dDG/dHP–V1) connectivity changes
after low-frequency optogenetic stimulation under similar con-
ditions to rsfMRI experiments (Fig. 5A). We computed the ip-
silateral dDG/dHP and bilateral V1 intrahemispheric LFP frequency
spectra (Fig. 5B), as well as the V1–V1 interhemispheric and
dDG/dHP–V1 LFP interregional connectivity spectra (Fig. 5C).
We observed a pronounced peak at ∼1 Hz in ipsilateral dDG/
dHP and bilateral V1 intrahemispheric LFP spectrum during
and post stimulation (Fig. 5A) and found a general increase of
slow (0.1–1 Hz) and delta (1–4 Hz) oscillations (Fig. 5A), in-
dicating a persistent modulation of LFP activity by low-frequency
optogenetic stimulation of dDG excitatory neurons. The connec-
tivity spectra demonstrate that the bilateral V1, ipsilateral dDG/
dHP–ipsilateral V1, and ipsilateral dDG/dHP–contralateral V1
correlation of slow and delta oscillations strengthened during and

post stimulation (Fig. 5C). These results indicate that persistent
low-frequency activity propagating from dDG/dHP along the
hippocampal–cortical pathway enhances interhemispheric rsfMRI
connectivity. They demonstrate that increased slow and delta os-
cillations, in addition to the increased infraslow rsfMRI BOLD
activity, contribute to enhanced brain-wide rsfMRI connectivity.
These results further suggest significant effects on the integration
of sensory information and memory operations, because such
functions normally occur via cross-frequency coupling mechanisms
between co-occurring brain oscillations (41).

High-Frequency Stimulation of dDG Excitatory Neurons in dHP Does
Not Enhance Brain-Wide Resting-State fMRI Connectivity. Separate
rsfMRI experiments (n = 8) examined high-frequency stimu-
lation (40 Hz) (Fig. 6A). No significant increase in inter- and

Fig. 4. Increased interhemispheric rsfMRI connectivity during (during) and after (post) low-frequency (1 Hz) optogenetic stimulation of dDG excitatory
neurons in dHP. (A) Schematic of the optogenetic stimulation setup (Left), a typical rsfMRI experiment timeline with five baseline (pre) scans acquired before
five “during” scans interleaved with five post scans (Middle), and the corresponding rsfMRI paradigms used (Right). (B) RsfMRI connectivity maps of dHP, V1,
A1, and S1 (Left), corresponding quantification of interhemispheric connectivity (Middle), and their respective connectivity spectrum (Right), pre, during, and
post low-frequency optogenetic stimulation. rsfMRI maps generated by correlation analysis of band-pass filtered (0.005–0.1 Hz) BOLD signals using a seed
defined in the ipsilateral and contralateral side. Seed location is indicated by a blue crosshair. Quantification of the interhemispheric rsfMRI connectivity (n =
18; one-way ANOVA followed by Bonferroni’s post hoc test; *P < 0.05, **P < 0.01, and ***P < 0.001; error bars indicate ±SEM). (C) Quantification of
intrahemispheric rsfMRI connectivity (Left) and the respective power spectrum (Right) of ipsilateral and contralateral dHP, V1, A1, and S1.
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intrahemispheric rsfMRI connectivity was observed during (during)
and after (post) 40 Hz optogenetic stimulation of dDG (Fig. 6). Only
interhemispheric rsfMRI connectivity in dHP exhibited a significant
decrease in strength. These results demonstrate that only low-
frequency activity enhances brain-wide functional connectivity.

Pharmacologically Blocking dDG Neurons in dHP Decreases Brain-
Wide Resting-State fMRI Connectivity. We examined the effects of
pharmacologically inactivating dDG neurons in dHP on rsfMRI
interhemispheric connectivity using tetrodotoxin (TTX). rsfMRI
was acquired before (pre) and after (post) infusion of TTX (Fig.
7A). Pharmacological blockade significantly decreased rsfMRI
interhemispheric connectivity in dHP, V1, A1, and S1, and
intrahemispheric connectivity in dHP and V1 (Fig. 7 B and C).
These results present additional evidence that dHP is a pivotal
structure that coordinates brain-wide rsfMRI connectivity.

Low-Frequency Stimulation of dDG Excitatory Neurons in dHP
Enhances Visually Evoked fMRI Responses. To investigate func-
tional effects of low-frequency dorsal hippocampal–cortical activity

on visual processing, visual fMRI (vfMRI) was performed before
(pre), during (during), and after (post) continuous 1-Hz opto-
genetic stimulation (Fig. 8A). Visually evoked BOLD responses
occurred along the visual pathway, including bilateral LGN, SC,
and VC (Fig. 8 B and C). However, BOLD responses increased in
ipsilateral LGN and bilateral SC during stimulation (Fig. 8D) (n =
8; ipsilateral LGN: 37.9 ± 19.8%, P < 0.05; ipsilateral SC: 49.2 ±
28.1%, P < 0.05; contralateral SC: 38.6 ± 14.5%, P < 0.05; one-
way ANOVA followed by Bonferroni’s post hoc test). BOLD re-
sponses further increased in bilateral VC, LGN and SC post
stimulation (Fig. 8D) (n = 8; ipsilateral VC: 93.4 ± 28.9%, P <
0.01; contralateral VC: 87.2 ± 14.2%, P < 0.01; ipsilateral
LGN: 80.9 ± 18.5%, P < 0.01; contralateral LGN: 71.0 ±
25.3%, P < 0.01; ipsilateral SC: 136.5 ± 40.1%, P < 0.01;
contralateral SC: 105.9 ± 22.0%, P < 0.01; one-way ANOVA
followed by Bonferroni’s post hoc test). These results indicate that
persistent low-frequency activity propagating along hippocampal–
cortical pathways can enhance sensory responses that underlie
sensory processing.

Fig. 5. Increased slow (0.1–1 Hz) and delta (1–4 Hz) neuronal oscillations during (during) and after (post) low-frequency (1 Hz) optogenetic stimulation of
dDG excitatory neurons in dHP. (A) Illustration of LFP recording electrode location in ipsilateral dDG/dHP and bilateral V1 (Left) and a typical LFP recording
experiment timeline with the corresponding paradigms (Right). (B) Intrahemispheric LFP power spectrum of ipsilateral dDG/dHP and bilateral V1. Error bars
indicate ±SEM. (C) LFP connectivity spectra for interhemispheric V1–V1 and interregional dDG/dHP–V1. Error bars indicate ±SEM.
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Discussion
Here, we examined large-scale effects of spatiotemporal-specific
propagation of downstream hippocampal activity using opto-
genetic stimulation and brain-wide fMRI and rsfMRI. Stimula-
tion of dDG excitatory neurons at low frequency, but not high
frequency, evoked robust cortical and subcortical brain-wide
responses. This low-frequency stimulation enhanced interhemi-
spheric hippocampal and cortical rsfMRI connectivity. LFP re-
cordings revealed an increase in slow oscillations in dHP and
visual cortex (VC), interhemispheric visual cortical connectivity,
and hippocampal–cortical connectivity. Meanwhile, pharmaco-
logical inactivation of dorsal hippocampus decreased brain-wide
rsfMRI connectivity. Functionally, visually evoked fMRI responses
in visual regions also increased during and after low-frequency
dHP stimulation. Together, these experimental results high-
light the role of low-frequency activity propagating along the

hippocampal–cortical pathway, particularly its contribution to
interhemispheric cortical rsfMRI connectivity.
Our fMRI results and electrophysiological recordings dem-

onstrate that the anatomical topography within HP is spatio-
temporally specific with low-frequency activity propagating from
dDG/dHP downstream to VC and Cg. Note that a recent human
rsfMRI study of low-frequency hippocampal–cortical propaga-
tion also showed characteristics of activity propagation between
the hippocampus and visual cortex (34). Interestingly, the robust
detection of BOLD responses in bilateral visual cortices ob-
served in the present study suggests that low-frequency activity
initiated in dDG may drive slow oscillatory activity to coordinate
visual memory replay in the visual cortex and hippocampus

Fig. 6. High-frequency (40 Hz) optogenetic stimulation of dDG excitatory
neurons in dHP does not enhance interhemispheric rsfMRI connectivity.
(A) rsfMRI connectivity maps of dHP, V1, A1, and S1 before (pre), during
(during), and after (post) high-frequency optogenetic stimulation (Left) and
the corresponding quantification of interhemispheric rsfMRI connectivity
(Right). (B) Quantification of intrahemispheric rsfMRI connectivity.

Fig. 7. Pharmacological inactivation of dDG neurons in dHP decreases in-
terhemispheric rsfMRI connectivity. (A) Illustration of the tetrodotoxin (TTX)
infusion setup (Left) and a typical rsfMRI experiment timeline whereby TTX
is infused into dHP a minute after the last baseline (pre) scan (Right). The first
post scan is acquired a minute after the completion of TTX infusion. (B) rsfMRI
connectivity maps of dHP, V1, A1, and S1, pre and post infusion of TTX.
(C) Quantification of the interhemispheric rsfMRI connectivity (Left; n = 12;
paired t test followed by Bonferroni’s post hoc test; *P < 0.05, **P < 0.01, and
***P < 0.001; error bars indicate ±SEM).
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during slow-wave sleep (9). Although LFP recordings in bilateral
V1 only showed robust primary optogenetically evoked responses,
we do not preclude that the presence of secondary responses like
slow oscillations may contribute to BOLD responses. Moreover,
Cg, a prefrontal cortical region implicated in memory (42) and
learning (43), was also activated in our fMRI experiments. This
result reinforces the role of dHP in cognitive functions.
We do not suggest that the presence of high-frequency activity

could not be evoked by our low-frequency optogenetic stimula-
tion. Previous studies showed features of diffuse brain-wide ac-
tivity that were identified in relation to high-frequency hippocampal
sharp wave ripple events (44–46). The relationship between slow

oscillations and ripples in the hippocampus and/or cortex is well
documented (30, 47–50). In particular, electrophysiological studies
demonstrated that a large proportion of endogenous slow oscilla-
tions in the cortex and hippocampus precede the generation of
hippocampal ripples (47–49). This finding indicates that slow os-
cillations and ripples are tightly coupled within the hippocampal–
cortical pathways.
Low-frequency activity is a key contributor to integrate long-

range interactions within thalamocortical–thalamic networks (21,
51–53). A recent study investigated the relationship between
single neuron spiking activity and brain-wide cortical calcium
dynamics (54). The authors found that thalamic spikes could
produce various large-scale cortical activity patterns, which were
underpinned by large-scale slow calcium activity (<1 Hz).
Complementarily, earlier work using voltage-sensitive dye im-
aging also showed similar large-scale slow spontaneous cortical
activity patterns (55). In fact, our recent study demonstrated
brain-wide cortical activity propagation when the somatosensory
thalamus was optogenetically stimulated at low frequency (36).
Therefore, subcortical regions, such as thalamus, could initiate
brain-wide cortical activity.
Our fMRI results and LFP latency analyses suggest that low-

frequency activity propagates downstream from ipsilateral dDG/
dHP to ipsilateral VC via the ipsilateral lateral EC (LEC) (5),
before reaching contralateral VC through the corpus callosum
(40, 56) to finally terminate in the LGN and SC via cortico-
thalamic and corticocollicular descending projections. The me-
dial EC (MEC) may not actively participate in our observed
responses because dHP is functionally coupled with LEC, not
MEC, to establish functional gradients along the dorsoventral
hippocampal axis (8). In addition, our optogenetic stimulation of
dDG reveals unique spatiotemporal response characteristics
compared with fMRI studies using CA3 electrical stimulation
(57) or optogenetic CA1 stimulation (58). We postulate that
different stimulation locations elicit distinct spatiotemporal re-
sponses within hippocampal subfields. The hippocampal network
encompasses multiple CaMKIIα-excitatory neurons, such as
granule cells in DG and pyramidal cells in CA3/CA1, reciprocally
connected to a network of GABAergic interneurons (5). Whereas
we exclusively stimulated dDG excitatory neurons, orthodromic
activation of various intrahippocampal circuits, and subsequent,
monosynaptic excitation of interneurons and polysynaptic excitation
of CA3/CA1 excitatory cells may occur. Based on our results,
we propose that dHP has a frequency-dependent spatiotemporal
gradient across hippocampal subfields, such that dDG facilitates
downstream propagation of low-frequency activity brain-wide.
Importantly, our study demonstrates that interhemispheric cor-

tical rsfMRI connectivity increases after low-frequency dDG stim-
ulation (Fig. 4). This low-frequency activity propagates downstream
from dDG/dHP and underlies changes in neuronal synchrony
or neuronal excitability to substantially enhance brain-wide
functional connectivity. Indeed, our LFP measurements show
that hippocampal–cortical slow and delta oscillations enhance
neuronal synchrony in bilateral V1 (Fig. 5). The parallel in-
crease in both interhemispheric rsfMRI connectivity (at infra-
slow frequency 0.005–0.1 Hz) and slow- and delta-frequency
neuronal oscillations (0.1–4 Hz) indicates a tight association
between the two measures, because slow oscillations generate
large, synchronous membrane-potential fluctuations in many
neurons throughout brain-wide networks (21, 22, 59). Our results
demonstrate the modulatory effects of increased neuronal slow
oscillations on corticocortical and hippocampal–cortical con-
nectivity. Numerous studies have demonstrated the importance
of hippocampal and cortical theta oscillations (4–12 Hz) (60) to
coordinate groups of neurons to integrate sensory information
(61) and consolidate memory (62, 63). Comparatively, our results
suggest that the hippocampus plays an even greater role in co-
ordinating brain-wide neural activity, particularly at slow oscillations.

Fig. 8. Low-frequency (1 Hz) optogenetic stimulation of dDG excitatory
neurons in dHP enhances visually evoked fMRI responses. (A) Illustration of
binocular visual and optogenetic fMRI stimulation setup (Top Left). Block
design visual stimulation paradigm (20 s on, 60 s off) presented before (pre),
during (during), and after (post) continuous low-frequency optogenetic
stimulation (Right). Typically, five baseline visual fMRI scans were acquired
before five “during” scans were interleaved with five post scans (Bottom
Left). (B) Averaged activation maps for visual stimulation pre, during, and
post low-frequency stimulation. BOLD responses are detected in bilateral V1,
V2, LGN, and SC (n = 8; t > 3.1, corresponding to P < 0.001). (C) BOLD signal
profiles in the bilateral V1, LGN, and SC. Error bars indicate ±SEM. (D) Com-
parison of vfMRI responses (one-way ANOVA followed by Bonferroni’s post
hoc test; *P < 0.05 and **P < 0.01; error bars indicate ±SEM).
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Whereas we observed increased hippocampal delta oscillations,
hippocampal delta activities have been observed so far only in
primates and humans but not rodents (64, 65). Previous studies
in rodents showed that theta-like oscillations in the hippo-
campus shifted to lower frequencies (i.e., delta range) during
light anesthesia (∼1.0% isoflurane) (66, 67). This finding suggests
that our increased delta oscillation results might arise from in-
creased theta-like oscillations after low-frequency stimulation.
Whereas we exclusively focused on the dHP in this study, we do

not preclude that the vHP could also affect rsfMRI connectivity.
Given the differences in anatomical and functional organization
(7, 8), the vHP may predominantly affect nonsensory-related re-
gions through unknown mechanisms. Interhemispheric or homo-
topic rsfMRI connectivity networks are conserved across species
(17, 68–70) and under distinct brain states (e.g., anesthesia,
sleep, and wake) (71, 72) and consistent among different human
subjects (73). We (14, 36) and others (16, 17, 68) have reliably
measured interhemispheric rsfMRI connectivity in sensory cor-
tices of rodents under light isoflurane (∼1.0%). However, the
detection of more complex rsfMRI networks, such as default
mode network, could be altered by anesthesia (74).
Brain-wide slow oscillations exhibit two distinct states, namely,

up states with vigorous synaptic activity and down states of rel-
ative quiescence, that cycle between each other (26, 29). Up
states, in particular, can increase neuronal sensitivity to synaptic
inputs and enhance their responsiveness to weak, subthreshold
inputs (75, 76). Our observed increase in neuronal synchrony
of slow oscillatory activity, triggered by low-frequency stimula-
tion of dDG, could modulate incoming signals, such as visual
inputs, to promote robust evoked responses and significantly
increase interhemispheric rsfMRI connectivity in V1. Studies
investigating the dependence of evoked cortical responses on
spontaneous network activity in up states demonstrated a linear
relationship between spontaneous membrane potential levels
and the magnitude of evoked responses in cortical neurons. Such
a linear relationship between up-state membrane potential and
evoked responses was described in anesthetized cat visual cortex
(77, 78). However, our study indicates that this modulation
extends beyond cortical regions, because responses to visual
inputs increased not only in visual cortices but also in visual
subcortical regions.
Hippocampal–cortical activity is state dependent, so the light

anesthesia used here may alter their characteristics (34, 66, 67, 79).
Nevertheless, prior work revealed synchronized interhemispheric
delta oscillations as a major contributor to infraslow rsfMRI
connectivity in anesthetized rodents (16, 17). A recent human

rsfMRI study demonstrated that low-frequency oscillations,
such as delta, propagate from the hippocampus toward cortex
and slowly in the opposite direction during sleep (34). An EEG
study in humans reported EEG differences under anesthesia
and sleep/wake conditions, but the authors observed sleep os-
cillations (i.e., slow and delta dominant) under anesthesia (80).
Such oscillations were also found in rodent studies during extra-
cellular and/or intracellular recordings (67, 81, 82). Taken to-
gether, these studies highlight the robust presence of low-
frequency activity in brain-wide interactions under various states,
including anesthetized and sleep conditions.
In conclusion, our results demonstrate that slow oscillatory

activity propagating along dorsal hippocampal–cortical path-
ways, contributes to interhemispheric cortical connectivity and
mediates sensory functions. This finding advances our funda-
mental understanding of the neural basis and functional role
of brain-wide rsfMRI connectivity. Further, we present an
integrated optogenetic fMRI approach to interrogate rsfMRI
mechanisms and to explore neuromodulation of brain
connectivity.

Methods
Subjects. Adult male Sprague Dawley rats (250–300 g) were used in all ex-
periments. Animals were individually housed under a 12-h light/dark cycle
with access to food and water ad libitum. All animal experiments were ap-
proved by the University of Hong Kong’s Committee on the Use of Live Ani-
mals in Teaching and Research (CULATR). Group I underwent optogenetic
fMRI experiments (n = 6), group II underwent LFP recording experiments (n =
6), group III underwent MUA recording experiments (n = 3), group IV un-
derwent rsfMRI experiments (n = 18, low-frequency stimulation, n = 8, high-
frequency stimulation and n = 12, TTX infusion), group V underwent LFP re-
cording experiments at resting state (n = 8, low-frequency stimulation),
and group VI underwent optogenetic vfMRI experiments (n = 8). Full de-
tails of animal surgical procedures, optogenetic stimulation paradigms,
optogenetic fMRI/rsfMRI/vfMRI acquisition and analysis procedures, elec-
trophysiological recordings and analysis protocols, and histology are pro-
vided in SI Methods.

Data and Code Availability. The data that support the findings of this study and
computer codes used are available from the corresponding author upon request.
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