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Our sense of hearing boasts exquisite sensitivity, precise fre-
quency discrimination, and a broad dynamic range. Experiments
and modeling imply, however, that the auditory system achieves
this performance for only a narrow range of parameter values.
Small changes in these values could compromise hair cells’ abil-
ity to detect stimuli. We propose that, rather than exerting tight
control over parameters, the auditory system uses a homeostatic
mechanism that increases the robustness of its operation to vari-
ation in parameter values. To slowly adjust the response to sinu-
soidal stimulation, the homeostatic mechanism feeds back a rec-
tified version of the hair bundle’s displacement to its adaptation
process. When homeostasis is enforced, the range of parameter
values for which the sensitivity, tuning sharpness, and dynamic
range exceed specified thresholds can increase by more than an
order of magnitude. Signatures in the hair cell’s behavior pro-
vide a means to determine through experiment whether such a
mechanism operates in the auditory system. Robustness of func-
tion through homeostasis may be ensured in any system through
mechanisms similar to those that we describe here.
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B iological systems are subject to developmental variation
and environmental fluctuations. Homeostatic mechanisms

nonetheless ensure that most individuals function well under a
variety of conditions. For example, homeotherms maintain an
internal body temperature within a few degrees of a set point
thanks to mechanisms such as sweating, panting, shivering, and
redirecting blood flow. Many organisms regulate blood pressure
by changing blood-vessel diameter or by adjusting heart rate or
stroke volume. How homeostasis occurs remains an open ques-
tion in many contexts, particularly when the system in question
operates near a transition between two distinct behaviors, as has
been suggested in gene expression, neuronal networks, and flock-
ing (1–4). Here, we seek the general principles underlying home-
ostatic mechanisms by studying a specific system whose high level
of performance derives from operating near a dynamical transi-
tion. We propose a strategy that increases the robustness of sen-
sory transduction to parameter variation.

Within the range of human hearing, a trained ear can dis-
tinguish tones that differ in frequency by only 0.1% (5). The
softest sounds that we can detect carry energies of the same
magnitude as thermal fluctuations (6–9). We can, however, pro-
cess sounds that convey a trillionfold more power (10). To
achieve these specifications, the auditory system uses a set of
active elements poised on the brink of self-oscillation (11).
The presence of these self-oscillatory elements is evidenced by
measurable sounds, termed spontaneous otoacoustic emissions,
generated by our ears (8). It is unclear, however, how the audi-
tory system maintains proximity to the boundary of spontaneous
oscillation.

Within the cochlea, hair cells transduce sound-induced vibra-
tions into electrical signals, which are subsequently communi-
cated to the brain by afferent nerve fibers. Transduction is medi-
ated by the mechanosensitive organelle of the hair cell, called the
hair bundle. Positive deflection of the bundle opens ion channels,
resulting in depolarization of the hair cell (Fig. 1A). Owing to an
active process within hair cells, hair bundles can oscillate spon-
taneously (11, 12). This active process imparts to hair bundles
enhanced sensitivity, improved frequency discrimination, and an
extended dynamic range (13).

The simplest transition from quiescence to spontaneous oscil-
lation as the value of a parameter is changed is known as a
Hopf bifurcation. Near this transition, a system exhibits the
three aforementioned properties desirable in a sound-detection
apparatus: Amplification of small stimuli renders the system
sensitive to weak sounds, sharp frequency selectivity promotes
pitch discrimination, and a compressively nonlinear response
enables the apparatus to process signals over a broad dynamic
range (14–16). Each of these features, characteristic of our sense
of hearing, has been observed in the vibrations of inner-ear
structures (17). Furthermore, recent work has shown that indi-
vidual hair bundles can operate close to a Hopf bifurcation
(18, 19).

Since the concept was advanced, however, a major criticism
of a Hopf bifurcation in hearing has been the precise parameter
tuning necessary to reach the level of performance observed in
our cochlea (14, 20–27). The auditory system’s ability to detect
sound could be compromised by small changes in parameter val-
ues that move the system away from a Hopf bifurcation. In other
words, the system’s function might not be robust to changes in
parameter values. Acoustic trauma or pharmacological insults,
which undoubtedly affect the system’s parameters, can indeed
disrupt our hearing (28, 29). Nonetheless, our hearing ability is
less vulnerable than our current understanding of the auditory
system might suggest.

To visualize this problem, consider a hair bundle’s state dia-
gram, which depicts the bundle’s behavior for different values
of two control parameters (Fig. 1B). By changing the values
of these parameters, we control the hair bundle’s operating
point and thus the bundle’s behavior (18, 19, 30). The state dia-
gram contains a line of Hopf bifurcations that encloses operating
points at which the bundle oscillates spontaneously, whereas out-
side this curve the bundle is quiescent (SI Appendix, section 2).
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Fig. 1. The sensitivity of a hair bundle to sinusoidal stimulation. (A) The hair bundle comprises a set of rigid, cylindrical stereocilia that protrude from the
apical surface of the hair cell. Deflection of the hair bundle in the positive direction (arrow) pivots the stereocilia about their bases. This motion increases
tension in tip links (blue) that run between neighboring stereocilia, which in turn opens mechanoelectrical transduction channels (orange). (B) A state
diagram depicts the behavior of a hair bundle as a function of two control parameters. A line of Hopf bifurcations (solid, cyan) encircles the set of parameter
values for which spontaneous oscillations occur. The entire shaded area marks the quiescent region in which the hair bundle possesses a sensitivity exceeding
a specific threshold. The dashed curves mark the boundary of the high-performance region when the homeostatic mechanism is either inactive (blue) or
active (red). At the black operating point, for example, the bundle’s sensitivity is poor when homeostasis is off, but above threshold when homeostasis is
operational. (C) Tuning curves for an actual hair bundle from the bullfrog’s sacculus commanded to operate at stiffness values closer to (orange; 900 µN·m -1)
or farther from (purple; 1,000 µN·m -1) the self-oscillation region. Sensitivity is defined to be the amplitude of the hair bundle’s phase-locked response at the
stimulus frequency divided by the amplitude of the sinusoidal driving force. The control parameter is the bundle’s load stiffness, and this bundle traverses a
Hopf bifurcation at 710 µN·m -1 (SI Appendix, section 1). Error bars represent the standard errors of the means of four repeated measurements on the same
hair bundle. Stimuli were delivered to the hair bundle directly by using a glass fiber (Materials and Methods and SI Appendix, section 1). (D) Sensitivity of a
hair bundle model close to (orange; 750 µN·m -1) or farther from (purple; 900 µN·m -1) a Hopf bifurcation. D, Inset schematically depicts the model’s state
diagram, whose axes are the size of a constant force applied to the bundle and the combined stiffness of the bundle and its overlying load; only positive
stiffness values are represented. The Hopf bifurcation curve (cyan) encloses operating points at which the bundle oscillates spontaneously. These tuning
curves were obtained from model II without homeostasis (Eqs. 4 and 5) with the parameter values listed in SI Appendix, Table S2, except λx = 25 µN · s ·m -1,
λy = 125 µN · s ·m-1, P∗

o = 0.5, and f = 220 pN. For this set of parameter values, a Hopf bifurcation occurs at a static deflection, or constant force, of 0 pN
and a load stiffness of 248 µN·m-1.

A mathematical model predicted this state-diagram structure,
whose existence has been confirmed experimentally (18, 19, 30).
The area surrounding the oscillatory region includes a set of
operating points at which a quiescent bundle can attain a desired
performance level. For example, the bundle’s sensitivity, defined
as the system’s response to sinusoidal stimulation divided by the
amplitude of the driving, exceeds a prescribed threshold in this
region. This high-performance region may be very narrow, how-
ever, such that few operating points are included.

To illustrate how a hair bundle’s performance depends on its
operating point, we experimentally determined sensitivity tun-
ing curves for a hair bundle at two different operating points
(Fig. 1C). In these experiments, the stiffness of the load applied
to the bundle served as the control parameter. As the bundle
was poised closer to self-oscillation, its peak sensitivity increased.
This result accords with a model of hair bundle dynamics that
possesses a state diagram with the same structure as that of actual
hair bundles (Fig. 1D, Inset) (18, 19). Therefore, theory and

experiment both show that a hair bundle is better able to detect
sinusoidal signals if it operates closer to the brink of oscillating
spontaneously.

We propose that a homeostatic mechanism increases the range
of parameter values for which a bundle is sufficiently sensitive
to periodic stimuli. This mechanism endows the system with a
means of maintaining effective operation, which we term home-
ostasis of function. Homeostasis eases the demands on the sys-
tem to precisely set its control parameter values, a strategy that
we call robustness enhancement.

Results
Sensitivity. Previous studies have shown that two features of a
hair bundle, a nonlinear region of negative stiffness in the bun-
dle’s force-displacement relationship and an active adaptation
process, are sufficient to capture many aspects of bundle dynam-
ics, including spontaneous oscillation (30). Negative stiffness is
a passive consequence of channel gating, whereas adaptation
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Fig. 2. Homeostasis increases the robustness of a hair bundle’s sensitivity. (A and B) Sensitivity as a function of constant force Fc and stiffness k for model
I when homeostasis is off (A) or on (B). Darker shades of red indicate larger values of the peak sensitivity |χ̃0(ωR)|. Contours are labeled by their respective
peak sensitivity values. The Hopf bifurcation curve is colored cyan, and the blue curve marks the boundary of the underdamped region. Homeostasis
enhances the robustness of the hair bundle’s sensitivity to small-amplitude sinusoidal signals by expanding the areas enclosed by the sensitivity contours. (C
and D) The peak sensitivities along a horizontal (C) or vertical (D) slice through the state diagram when homeostasis is inactive (blue) or active (red). These
curves correspond to slices through the reference operating points indicated in A and B, respectively (apices of white triangles). The peak sensitivity is larger
and changes more slowly along these transects when homeostasis is active. (E–H) The results for model II are portrayed as for A–D. The contour labels in E
and F bear units of km·N -1. All parameter values are listed in SI Appendix, Tables S1 and S2. Additional bifurcation lines that occur in these regions of the
state diagrams are not shown (SI Appendix, sections 8 and 9).

pumps mechanical energy into the system to amplify the hair
bundle’s response to stimulation.

To determine general principles associated with homeosta-
sis of function, we introduce homeostatic mechanisms into two
existing models of hair bundle motility. Model I possesses the
simplest realizations of the hair bundle’s two essential features
and exhibits dynamics that qualitatively agree with those of
experimentally observed hair bundles (30). The simplicity of
model I allows us to determine which elements of the model are
sufficient to achieve robustness enhancement. Model II incorpo-
rates quantitative biophysical properties of the hair bundle (25).
Adding homeostasis to model II allows us to determine which
effects of homeostasis are generalizable from model I and to
quantify the impact of homeostasis. Analyzing how these models
differ in structure further facilitates our understanding of home-
ostatic mechanisms.

The homeostatic mechanisms in both models use a nonlin-
ear term to rectify time-dependent changes in the hair bundle’s
position. To minimize its effects on the dynamical response of
the bundle to sinusoidal stimulation, the homeostatic mecha-

nism operates slowly. Because experimental manipulations have
been shown to affect adaptation, homeostatic feedback is applied
to the models’ adaptation mechanisms, although other choices
are possible (31–33). Additional motivation for the homeostatic
mechanisms is provided in Discussion.

Model I with homeostasis is given by:

ẋ = a(x − y)− (x − y)3 − kx + Fc + F (t), [1]

ẏ = α(bx − y), [2]

ταα̇ = α0 − α− βαx2. [3]

Here x is the hair bundle’s displacement, k = ke + ksp is the com-
bined stiffness of an external load ke and of the bundle ksp, Fc

is a constant force applied to the bundle, and F (t) is an exter-
nal force that varies in time. The overdots represent temporal
derivatives. Negative stiffness appears in the bundle’s instan-
taneous force-displacement relation when k < a , in which a is
a stiffness arising from channel gating (30). Eq. 2 describes
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Fig. 3. Homeostasis increases the robustness of a hair bundle’s frequency selectivity. (A and B) Contours of the quality factor Q are shown in the state
diagram of model I for homeostasis off (A) and homeostasis on (B). Each contour is labeled with its respective value of Q, and darker shades of purple
indicate larger Q values. (C and D) The quality factor along horizontal (C) or vertical (D) slices that pass through the reference operating points indicated in
A and B (white triangle apices) when homeostasis is off (blue) or on (red). (E−H) The results for model II are portrayed as for A−D. In each contour plot, the
Hopf bifurcation curve is colored cyan, and the blue curve marks the boundary of the underdamped region of the state diagram. All parameter values are
listed in SI Appendix, Tables S1 and S2, and the alignment of the curves in C, D, G, and H is as described in Fig. 2. Additional bifurcation lines that occur in
these regions of the state diagrams are not shown (SI Appendix, sections 8 and 9).

the dynamics of adaptation y , which produces a force on the
bundle. The coefficient b determines how strongly adaptation
depends on bundle displacement, whereas the rate of the adap-
tation is set by α (SI Appendix, section 2).

It has been shown that the mechanical load experienced by
a hair bundle sets the bundle’s operating point and thus deter-
mines its biological function as a step detector, an oscillator, or a
sinusoidal-signal detector (18, 19, 30). The parameters k and Fc

control the bundle’s sensitivity to periodic stimulation (18, 19,
30). Our goal was to render the hair bundle’s ability to detect
periodic stimuli more robust to changes in these control param-
eters. To achieve this objective, we took into account the dynam-
ics of α. Eq. 3 is termed the homeostatic mechanism because,
as we will show, its inclusion imparts homeostasis of function
upon the model. The timescale of the homeostatic mechanism
is set by τα and α0 gives the value to which α would decay in the
absence of homeostasis. Homeostasis is inactive when βα = 0 and
active when βα> 0 (SI Appendix, section 3). Information about
the hair bundle’s oscillation amplitude is captured by squaring
the bundle’s displacement, imparting to the homeostasis equa-
tion a means of determining whether the bundle is receiving sinu-
soidal stimulation.

We evaluated the effects of the homeostatic mechanism on
three measures, the first being sensitivity. The sensitivity |χ̃(ω)|
of a system driven by a sinusoidal driving force F (t) =F0 cos(ωt)
is defined as the amplitude |x̃ (ω)| of the system’s phase-locked
response at the driving frequency ω divided by the amplitude of
the driving force F0: |χ̃(ω)|= |x̃ (ω)|/F0. Here and elsewhere,
a tilde above a variable indicates the Fourier transform of that
quantity. Larger sensitivity values indicate a lower input thresh-
old for signal detection.

The sensitivity |χ̃0(ω)| for weak stimulation is maximized when
the system is driven at its resonant frequency ωR (Fig. 1). The
hair bundle’s peak sensitivity, |χ̃0(ωR)|, was calculated for oper-
ating points on the quiescent side of the Hopf bifurcation in
the underdamped region of the state diagram (SI Appendix, sec-
tions 4 and 5). For quiescent bundles, the sensitivity is larger for
operating points near the Hopf bifurcation. The peak sensitivity
inside the region of spontaneous oscillation in the state diagram
exceeds that in the quiescent region.

A hair bundle can detect a stimulus if the bundle’s response
exceeds a threshold value. A curve of constant sensitivity encloses
a region in the state diagram within which the bundle’s sensitiv-
ity exceeds some specified threshold. The larger this region, the
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more robust is signal detection to changes in the values of control
parameters. Homeostasis dilates the area contained within each
curve of constant peak sensitivity (Fig. 2 A and B) and effects more
gradual changes in sensitivity along lines of constant k (Fig. 2C)
or Fc (Fig. 2D). Homeostasis through the adaptation rate α thus
renders the hair bundle’s sensitivity more robust to changes in the
control parameters.

Model II with homeostasis is given by:

λx ẋ = −kgs(x − y −DPo)− kx + Fc + F (t), [4]

λy ẏ = kgs(x − y −DPo)− kes(y − yes)− f (1− SPo), [5]

τf ḟ = f0 − f − βfPo , [6]

Po =
1

1 + Ae−(x−y)/δ
, [7]

in which x , k , Fc , and F (t) bear the same meanings as in model
I. kgs is the collective stiffness of the gating springs that connect
mechanotransduction channels to bundle displacement. D is the
displacement of the hair bundle’s tip that results when a channel
opens, and Po is the probability that a channel is open. The open
probability is described by a Boltzmann function, Eq. 7, derived
from a two-state channel model; A controls the function’s posi-
tion, and δ controls its width. Channel gating introduces into the
system nonlinearity, the first essential ingredient, through the sig-
moidal shape of Po (25).

The second vital ingredient, adaptation, is powered by a Ca2+

gradient and by myosin motors that exert forces to open the
channels. The position of the motors serves as the adaptation
variable y , Eq. 5. The influx of Ca2+ through open channels
inhibits the motors, resulting in channel reclosure. This arrange-
ment constitutes an adaptation mechanism, because it allows the
hair bundle to remain sensitive to farther deflection. S deter-
mines the strength of Ca2+ inhibition. The extent spring pos-
sesses stiffness kes and equilibrium length yes. The drag coeffi-
cients λx and λy account for hydrodynamic damping.

Eq. 6 constitutes the homeostatic mechanism in model II and
describes the dynamics of the myosin motor force f . The form of
Eq. 6 parallels that of Eq. 3: τf sets the timescale of the homeo-
static process, f decays to f0 in the absence of homeostasis, and
βf determines how strongly the current state of the system affects
the homeostatic mechanism. Homeostasis is off when βf = 0 and
operational when βf > 0 (SI Appendix, section 3). In contrast to
Eq. 3, Eq. 6 uses a saturating nonlinearity: The bundle’s oscilla-
tion amplitude is measured by the sigmoidal function Po in Eq.
6. Eq. 6 has a physical interpretation: The motor force f is set
by the average Ca2+-concentration gradient across the hair cell’s
plasma membrane, which is adjusted by the ion’s influx through
the channels. Because homeostasis depends on the transduction
current, βf could depend on the Ca2+-concentration gradient
and on the membrane potential.

Curves of constant peak sensitivity in model II’s state diagram
reveal that engaging the homeostatic mechanism augments the
areas contained within each contour (Fig. 2 E and F and SI
Appendix, section 4). Moreover, when evaluated along a line of
constant stiffness (Fig. 2G) or force (Fig. 2H), the peak sen-
sitivity changes more slowly when homeostasis is operational
than when it is inactive. When homeostasis is active, the bundle
can accommodate larger perturbations in the values of control
parameters, while still maintaining its ability to detect small sig-
nals. Although model II takes into account the dynamics of the
active force f rather than the rate of adaptation α, these results
echo those found for model I.

Model I has a state diagram that is symmetric about the line
Fc = 0. Because of the symmetric dependence of Eq. 3 on the
bundle’s displacement, the symmetry present in model I’s state
diagram is unaffected by the homeostatic mechanism. Home-
ostasis consequently changes the size but not the orientation of
the contours. Model II lacks symmetry, owing to an asymmetry

inherent to hair bundle physiology, namely the sigmoidal rela-
tion of the channel open probability to hair bundle displace-
ment. Because Eq. 6 is not symmetric with respect to displace-
ment, engaging the homeostatic mechanism in model II dilates,
reshapes, and reorients the oscillatory region.

Frequency Selectivity. We next examined how the hair bundle’s
frequency selectivity is affected by the homeostatic mechanisms.
The quality factor Q is defined as the system’s resonant fre-
quency ωR divided by the frequency bandwidth ∆ω over which
the oscillation power exceeds half the maximum at resonance:
Q ≡ ωR/∆ω. Large values of Q indicate that a system is sharply
tuned. Quality factors as large as 30 have been measured in the
mammalian cochlea (17).

We delineate the quality factor contours within the quiescent,
underdamped region of the hair bundle’s state diagram. Fre-
quency tuning is sharper at operating points that are closer to the
self-oscillation region (Fig. 3) and sharper still inside the oscilla-
tory region. Endowing model I with its homeostatic mechanism
renders Q more robust to changes in the values of the control
parameters. When the homeostatic mechanism is engaged, Q
contours enclose larger areas in the state diagram than when
homeostasis is off (Fig. 3 A and B). Homeostasis also reduces
the rate of change of Q along lines of constant stiffness or force
(Fig. 3 C and D).

For model II, the homeostatic mechanism enlarges the regions
contained within Q contours (Fig. 3 E and F) and diminishes the
steepness of Q ’s dependence on each control parameter (Fig. 3
G and H). The precision needed in selecting the hair bundle’s
operating point to ensure sharp frequency selectivity is there-
fore reduced by the two distinct homeostatic mechanisms used
in models I and II.

The quality factor Q increases monotonically with the length
of time that a system requires to reach its steady state: Sharper
frequency selectivity is obtained at the expense of a slowed
response onset. By rendering Q more robust, the homeostatic
mechanism in either model reduces the set of operating points at
which the bundle can respond quickly to stimuli. Frequency dis-
crimination is improved at the expense of temporal resolution.

Fig. 4. Increasing the compressive range broadens a bundle’s dynamic
range. The responses of model II, absent homeostasis, to periodic stim-
ulation at the resonant frequency are shown for operating points closer
to (red) and farther from (blue) the self-oscillation region. The response
|̃x| ∼ |F̃|γ , in which γ is the slope of the curves in the doubly logarithmic
plot. Thin portions of the curves have slopes between 1/2 and 1, whereas
thick portions bear slopes between 0 and 1/2. For comparison, the rela-
tions |̃x| ∼ |F̃| (dashed magenta line) and |̃x| ∼ |F̃|1/3 (dashed gray line) are
shown. The horizontal span of the thick part of each curve defines that oper-
ating point’s compressive range. Points on the curves above the area shaded
green exceed a threshold in displacement. The dynamic range of the red
curve equals the width of the green rectangle; the dynamic range of the
blue curve is smaller by one order of magnitude (purple arrow). This differ-
ence stems from the red curve’s larger compressive range (orange arrow).
Extending the dynamic range renders the bundle more sensitive to low-
amplitude stimuli (black arrow).
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Fig. 5. Homeostasis increases the robustness of a hair bundle’s dynamic range. (A) A contour plot showing curves of constant compressive range for model
I when homeostasis is off. (A and B) Compressive range is shown as a function of the stiffness (abscissa) and constant force (ordinate). The contour labels
indicate the size of the compressive range in orders of magnitude of the periodic forcing amplitude; see Fig. 4 for examples. Darker shades of green indicate
broader compressive ranges. The purple curve is a line of saddle-node bifurcations; saddle-node bifurcations of limit cycles are colored red. (B) A contour
plot of compressive range when homeostasis is on. Multimodal oscillations occur in response to sinusoidal forcing within the region on the left-hand side of
the magenta curves. The purple curve is a line of saddle-node bifurcations. The apices of the white triangles indicate the reference operating points through
which horizontal and vertical slices are taken to generate the curves for C and D, respectively. (E–H) Compressive range for model II when homeostasis is
inactive (E) or active (F). G and H show the compressive range of the bundle along either a horizontal (G) or vertical (H) slice through the apices of the white
triangles in E and F. The Hopf bifurcation curve is colored cyan in each contour plot, and the blue curve marks the boundary of the underdamped region of
the state diagrams. At each operating point, sinusoidal stimuli are delivered at the bundle’s resonant frequency, which varies as a function of stiffness and
constant force. The stimulus frequency is not changed to match possible shifts in the peak frequency as the forcing amplitude increases. The compressive
range is not calculated within the white regions of state space. “Compression” signifies the compressive range in C, D, G, and H. Additional information
about the excluded regions can be found in SI Appendix, section 8. All parameter values are listed in SI Appendix, Tables S1 and S2, and the alignment of
the curves in C, D, G, and H is as described in Fig. 2. Additional bifurcation lines that occur in these regions of the state diagram are not shown (SI Appendix,
sections 8 and 9).

Owing to greater robustness enhancement, homeostasis causes
larger proportional increases in response times in model II than
in model I. Sharper frequency selectivity can be obtained, how-
ever, at a slightly lower cost in relaxation time for model II than
for model I (SI Appendix, section 6).

Compressive Range. A hair bundle can detect signals over a finite
range of amplitudes, defined as the bundle’s dynamic range. If
the amplitude |x̃ (ω)| of a system’s response to stimulation is
proportional to the magnitude of stimulation |F̃ (ω)|, then the
system’s dynamic range must be restricted by the range of per-
missible response amplitudes. A broader dynamic range can be
attained if the system’s response amplitude grows more slowly
with stimulus amplitude, compressing a wide range of inputs into
a narrower range of outputs.

A system that operates at a Hopf bifurcation exhibits nonlin-
ear compression that obeys the one-third power law |x̃ (ω)| ∼
|F̃ (ω)|1/3 (15). Such a system represents six orders of stimu-
lus magnitude with only two orders of magnitude in the ampli-
tude of the response. Near the bifurcation, nonlinear compres-
sion occurs for a limited range of stimulus amplitudes, termed
the compressive range (Fig. 4). We define this range to be the
span, in logarithmic units, of stimulus amplitudes over which the
amplitude of the response grows according to |x̃ (ω)| ∼ |F̃ (ω)|γ ,
in which the exponent γ falls in the interval (0, 1/2]. This con-
dition restricts our analysis to strong compression and avoids
numerical complications (SI Appendix, section 7).

Curves of constant compressive range for each model show
that operating points close to the Hopf bifurcations in the
state diagrams have a broad compressive range (Fig. 5). The
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A

D E F

B C

Fig. 6. Quantification of robustness enhance-
ment. The values reported represent the ratios
of areas enclosed by contours in the homeosta-
sis on state diagrams to areas bounded by con-
tours in the homeostasis off state diagrams. The
oscillatory region of the state diagram is either
included (darker) or excluded (lighter). (A–C)
Areal ratios for model I: peak sensitivity (A), qual-
ity factor (B), and compressive range (C). (D–F)
Areal ratios for model II: peak sensitivity (D),
quality factor (E), and compressive range (F). The
entire areas enclosed by some contours are not
shown in Figs. 2, 3, and 5, but are included in our
calculation of areal ratios.

homeostatic mechanism used in model I expands the range of
parameter values over which the compressive range exceeds a
threshold. Furthermore, the compressive range changes more
slowly in size at most values of stiffness or constant force.
For model II, the compressive-range contours encompass larger
regions when homeostasis is active than when inactive (Fig. 5
E and F), and the slope of the bundle’s compressive range as
a function of either stiffness or force is significantly less steep
when homeostasis is operational (Fig. 5 G and H). Both home-
ostatic mechanisms succeed in rendering the bundle’s dynamic
range more robust to changes in the control parameters.

Model I uses two nonsaturating nonlinearities: Eq. 1 bears
a cubic term, and Eq. 3 is quadratic in the bundle’s displace-
ment. A consequence of the first nonlinearity is the absence of an
upper bound on the hair bundle’s compressive range. The second
nonlinearity results in unbounded responses to very large forces
when homeostasis is active (SI Appendix, section 7). Both of these
issues are resolved in model II by using the saturating nonlinear-
ity Po , which more closely approximates reality.

The saddle-node bifurcations, saddle-node bifurcations of
limit cycles, and multimodal response boundaries shown in Fig. 5
were excluded from Figs. 2 and 3 for the sake of clarity; in these
three figures, the diagrams contain the same set of bifurcations.
The Hopf bifurcation curve comprises supercritical and subcriti-
cal parts (SI Appendix, section 8). The advantages and disadvan-
tages of poising a bundle near the supercritical or subcritical por-
tions of the Hopf bifurcation curve are discussed elsewhere (19).

Robustness Enhancement. To quantify the degree of robustness
enhancement, we calculated the areas contained within contours
of peak sensitivity, sharp tuning, and compressive range. The ratio
of the areas in the “homeostasis on” state diagram to those of
the “homeostasis off” state diagram yielded a measure of robust-
ness enhancement termed the areal ratio. The areal ratios for
peak sensitivity, frequency tuning, and compressive range always
exceed one and become greater for contours closer to the self-
oscillation region (Fig. 6). The size of this effect can be increased
by changing the parameters controlling homeostasis (SI Appendix,
section 3). We conclude that both homeostatic strategies render
the hair bundle’s ability to detect signals more robust to parameter
variation, with the greatest enhancement occurring for operating
points located close to the line of Hopf bifurcations.

It is unclear whether the self-oscillation region of the state
diagram is used by hair bundles responsible for detecting sinu-
soidal signals. Including the area of self-oscillation mildly affects

the enhancement for model I: Areal ratios are slightly greater
than or comparable to values found when the self-oscillation
region is excluded. In model II, however, including the regions
of spontaneous oscillation yields much larger areal ratios, par-
ticularly for greater values of peak sensitivity, tuning sharpness,
and compressive range (Fig. 6). When the self-oscillation regions
are included, the areal ratios for both models approach the fac-
tor by which homeostasis dilates the size of the oscillatory region
for large values of sensitivity, tuning sharpness, and compressive
range. At small values of these measures, the oscillatory region
makes only a small contribution to the area enclosed by the con-
tours and therefore does not significantly affect the areal ratios.

Transient Responses. We have shown that robustness enhance-
ment can be effected through homeostatic mechanisms. How-
ever, it remains to be determined whether actual hair bundles
use such a strategy. Obtaining direct evidence that homeostatic
mechanisms improve the robustness of a bundle’s responsiveness
is complicated by the challenging nature of experimentally map-
ping the bundle’s state diagram and by our ignorance of the home-
ostatic mechanism’s identity. We therefore describe additional
consequences of homeostasis that are more amenable to exper-
imental testing. Because homeostasis produces systems whose
behavior is governed by an additional timescale, identifying hair
bundle behaviors that betray the presence of such a timescale
would provide support for the presence of homeostasis.

One approach is to ask how a bundle poised to operate within
the quiescent, underdamped region of the state diagram responds
to force steps (Fig. 7). A positive step is applied to shift the bun-
dle from various initial operating points to the same reference
operating point. An operating point at which the bundle has a
peak sensitivity of 40 km·N -1 is chosen as the reference operat-
ing point in both the homeostasis off and on case. The relaxation
time for small stimuli at the reference operating point is conse-
quently similar with and without homeostasis. However, engaging
the homeostatic mechanism alters the bundle’s response to large
stimuli. At the onset of each force step, the bundle exhibits ring-
ing, whose magnitude and duration are similar for all initial oper-
ating points when homeostasis is inactive (Fig. 7B). When home-
ostasis is turned on, the ringing behavior diminishes in amplitude
and vanishes more quickly for initial operating points farther from
the reference operating point. Homeostasis alters the relaxation
dynamics associated with force steps.

A second stimulation protocol adds sinusoidal forcing to the
force steps described above. The stimulus frequency is chosen to
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A
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C

D

Fig. 7. Hair bundle behaviors associated with homeostasis. (A) A schematic
diagram showing the locations of the operating points and directions of the
force steps used; labels indicate to which panel(s) each arrow applies. The
Hopf bifurcation curve is colored purple when homeostasis is off (left) and
orange when homeostasis is on (right). (B) The response to positive force
steps for a bundle poised in the quiescent, underdamped region of the state
diagram. Traces are labeled by the initial operating point’s peak sensitivity
in km·N -1. All force steps bring the bundle to the same reference operating
point (tip of B,C arrows in A), which has a peak sensitivity of 40 km·N -1. The
peak sensitivity at the reference point is a maximum as a function of the
constant force. The stimulation protocols for the largest and smallest steps
are shown schematically above the traces. (B, Left) When homeostasis is off,
the ringing after the onset of the force step is not appreciably affected by
the initial operating point. (B, Right) When homeostasis is on, the size and
duration of the ringing diminish as the distance between the initial and
reference operating points increases. (C) Schematic protocol of the force
steps with a superimposed sinusoidal driving force delivered to a bundle.
The frequency of the sinusoidal component is equal to the bundle’s resonant
frequency at the reference operating point (tip of B,C arrows in A), and the

match the resonant frequency at the reference point. When home-
ostasis is turned off, the bundle’s oscillation amplitude quickly
reaches a steady state, and the response time is not strongly
affected by changing the initial operating point (Fig. 7C). In con-
trast, when homeostasis is active, the bundle requires more time
to reach a steady state, and this time delay grows systematically
as the distance between the reference and initial operating points
increases. Homeostasis retards the response to periodic stimuli.

In a final paradigm, force steps are delivered to a sponta-
neously oscillating hair bundle. In this protocol, the bundle’s
initial operating point is the common reference point, and the
final operating point is varied. The bundle’s amplitude of spon-
taneous oscillation at the reference operating point is chosen to
be the same for the homeostasis off and on cases. Negative force
steps are applied to shift the bundle’s operating point closer to
the edge of the oscillatory region. When homeostasis is inac-
tive, spontaneous oscillations appear almost immediately after
the onset and offset of the force step, regardless of the step’s size
(Fig. 7D). In contrast, when homeostasis is active, the return of
spontaneous oscillations is delayed. The delay lengthens as the
size of the force step increases. Once again, homeostasis intro-
duces a lag in the bundle’s dynamics.

Discussion
Any biological system must contend with a host of constraints.
Failing to operate within these constraints hinders the system’s
ability to function. In this work, we have demonstrated how a
hair bundle could use homeostatic mechanisms to ease such con-
straints. Two homeostasis strategies, accounting for the dynam-
ics of the adaptation rate or of the adaptation motor’s strength,
enhance the robustness of the hair bundle’s sensitivity, frequency
selectivity, and dynamic range to changes in parameter values.
That these disparate homeostasis strategies produce qualitatively
similar results suggests that enhancing robustness through home-
ostasis is a general principle. We conjecture that a homeostatic
mechanism renders the bundle’s signal-detection function more
robust to changes in all parameter values and that equipping
other systems with homeostasis would yield similar effects. The
values of the parameters in the homeostasis equations could well
have evolved to preserve the robustness of the bundle’s function
to changes in these parameter values (SI Appendix, section 3).

Although the two models we investigate differ in a number
of ways, their common features underlie the generality of our
results. In the absence of homeostasis, the models possess topo-
logically similar state diagrams, each characterized by a region
of spontaneous oscillation bounded by a line of Hopf bifur-
cations. Moreover, each model involves a homeostatic mecha-
nism that decreases the value of a target variable in response
to an increasing measured variable. We show that these ele-
ments are sufficient to ensure robustness of function for an active

sinusoid’s amplitude is 0.01 pN. The bundle’s initial operating points and
the size of the force steps are the same as in B. Representative traces are
shown when homeostasis is off (C, Left) or on (C, Right). (C, Left) When
homeostasis is off, the bundle quickly reaches a steady state after the onset
of the force step. (C, Right) When homeostasis is on, a greater interval is
needed for the bundle to reach a steady state. (D) Response to negative
force steps for a bundle poised in the self-oscillation region. Lighter shades
of blue indicate larger step sizes. The schematic diagrams above the traces
show the stimulation protocols for the largest and smallest force steps. The
initial operating points for this protocol are chosen so that the bundle’s
oscillation amplitude is 17 nm in the absence or presence of homeostasis.
The bundle’s oscillation amplitude reaches a maximum as a function of the
constant force at the initial operating points. The bundle’s operating point is
contained within the self-oscillation region throughout the entire protocol
(D arrow in A). (D, Left) When homeostasis is off, spontaneous oscillations
are not interrupted by the force steps. (D, Right) When homeostasis is active,
a delay precedes the return of spontaneous oscillations at the onset and
offset of the force step, and this delay lengthens as the size of the force step
increases. All simulations are generated by using model II, with parameter
values listed in SI Appendix, Table S2.
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periodic-signal detector. A homeostatic mechanism with this
structure together with a state diagram containing the aforemen-
tioned properties may constitute the minimal features needed to
enhance a system’s robustness of function.

For each control parameter that we evaluated, homeostasis
renders the bundle’s signal-detection ability more robust. The
robustness enhancement is related to the factor by which the
homeostatic mechanism dilates the size of the oscillatory region
(SI Appendix, section 3). Identifying a homeostatic mechanism
that enlarges the self-oscillation region likely constitutes a gen-
eral strategy for enhancing the robustness of an oscillator’s func-
tion to changes in parameter values.

The forms of the homeostatic mechanisms are biologically
plausible. Each uses information about the current state of the
hair bundle; the homeostatic equation measures the bundle’s
oscillation amplitude through the mechanotransduction current.
This information is rectified by a nonlinearity of the homeo-
static process, which ensures that the process responds when
the bundle is stimulated by a sinusoidal force. In model I, we
show that a quadratic nonlinearity is sufficient to provide rec-
tification, whereas model II enacts rectification by using a bio-
physically motivated nonlinearity—namely, a Boltzmann func-
tion. The homeostatic mechanisms require few assumptions so
that either could be realized through several biological processes.
For example, both homeostatic mechanisms could be effected
through myosin-motor inhibition mediated by a Ca2+-activated
second messenger (34) or through regulation of Ca2+ buffers
(35, 36) or pumps (35, 37).

The homeostatic mechanism operates on a timescale that
greatly exceeds both the channels’ relaxation time of a few mil-
liseconds and the adaptation time constant of tens of millisec-
onds (38, 39). This timescale separation ensures that the home-
ostatic mechanism does not perturb the system’s ability to detect
periodic signals. When driven at the resonance frequency, the
period of the bundle’s oscillation was shorter than 20 in model I
or 20 ms in model II for the vast majority of operating points in
the underdamped region. We chose τα = 103 and τf = 200 ms
so that these timescales are long compared with those of bundle
oscillation, in accord with the timescales of the potential homeo-
static mechanisms mentioned above.

Temporal resolution is sacrificed to attain robustness of func-
tion in two ways. First, by extending the range of parameter
values over which the bundle exhibits sharply tuned frequency
selectivity, the homeostatic mechanism also broadens the set of
operating points at which the bundle’s response is slow. This
tradeoff poses a disadvantage only if a signal detector must
strongly prioritize temporal resolution over frequency selectiv-
ity. Second, the bundle’s transient responses to sinusoidal stimu-
lation reveal that the homeostatic mechanism engenders delays
on the order of hundreds of milliseconds (Fig. 7). That these
delays are long reflects our decision to use parameter values
that accord with measurements and estimates in saccular hair
cells of the bullfrog. These cells are tuned to frequencies of a
few tens of hertz, and their sensory function does not demand
that they respond quickly to sinusoidal stimuli. Were we to use
instead parameter values drawn from measurements in mam-
malian hair cells that are tuned to higher frequencies, the delays
would be shorter, and the homeostatic mechanism would not
degrade the cells’ temporal resolution below that required for
higher-frequency hearing. There is some evidence, however,
that homeostatic feedback within our cochlea is quite slow
(see below).

Our models resemble a model that neglects adaptation, but
accounts for somatic motility, the change in length of an outer
hair cell in response to a change in membrane potential (27).
Feedback provided by somatic motility can engender sponta-
neous oscillations in cochlear models, yielding state diagrams
similar to those discussed here. Enhancement of robustness
through a homeostatic mechanism is not specific to models
endowed with adaptation, but instead represents a principle that
applies to models using many forms of feedback.

Two types of hair cells are present within the mammalian
cochlea: Inner hair cells provide input to the brain, whereas outer
hair cells amplify the vibrational response of the cochlea (40, 41).
Feedback to the outer hair cells from efferent fibers originating
in the medial olivocochlear nucleus could constitute a homeo-
static mechanism similar to those that we describe (41). Stimula-
tion of efferents innervating outer hair cells alters the cochlea’s
mechanical response to acoustic stimulation, diminishing both
sensitivity and dynamic range (40, 42). There is also evidence
that efferent stimulation reduces the cochlea’s frequency selec-
tivity (43, 44). Moreover, feedback through efferents occurs in
∼100 ms for fast effects and in tens of seconds for slow effects,
timescales that are long compared with the response time of a
few milliseconds for cochlear mechanics (42, 45). Because our
models require only a resonant amplifier to which a homeostatic
mechanism is added, they suggest how efferent-mediated home-
ostasis could enhance the robustness of cochlear function.

Noise diminishes a hair bundle’s sensitivity, frequency selec-
tivity, and dynamic range (46). Homeostasis, through the feed-
back that it exerts, propagates stochastic fluctuations of the bun-
dle’s position into the adaptation process. Accounting for noise
may therefore decrease the degree of robustness enhancement.
For sufficiently weak noise, the homeostatic mechanism should
nonetheless improve the robustness of a bundle’s function to
parameter variation.

Because bifurcations may be blurred or shifted by noise, it can
be challenging to precisely locate them in noisy systems (47). In
experiments, we address this difficulty by using a statistical test
to delineate the boundary of a bundle’s self-oscillation regime
(SI Appendix, section 1). Near the boundary, we predict that a
hair bundle will take longer to relax after a constant force step
when homeostasis is present than when it is absent.

Multiple timescales have been seen in the dynamics of hair
bundle motion (31, 48). However, delays in a bundle’s return to
spontaneous oscillations were reported to depend on the dura-
tion rather than on the magnitude of the force steps, possibly
because large force steps were used (48). Here we have shown
that a homeostatic mechanism introduces an additional timescale
whose signatures might be observed in the bundle’s transient
response (Fig. 7). Noise may make it difficult to see in exper-
iments the bundle’s predicted transient responses to sinusoidal
stimulation applied during force steps. The sizes of the force steps
and amplitude of sinusoidal forcing can be adjusted, however,
to maximize the predicted effects; we hope that a sufficiently
large stimulus will evoke a behavior that is not obscured by noise.
Alternatively, the long relaxation times owing to homeostasis may
be evident only in the average over many stimulus trials. Eval-
uating transient responses in hair bundles or in cochlear vibra-
tions evoked by the stimulation protocols described in this work
might provide evidence for a homeostatic mechanism in hearing.

Owing to homeostatic feedback, bursting oscillations arise in
our models for low values of stiffness. At these operating points,
the timescale for homeostatic feedback is similar to the hair bun-
dle’s period of spontaneous oscillation. Although these bursting
oscillations can be entrained by sinusoidal forcing (31), the utility
of multimodal responses in hearing remains uncertain.

In this work, we sought to achieve homeostasis of function—
namely, of a system’s sensitivity, sharpness of tuning, and dynamic
range. This strategy constitutes a conceptual departure from
existing approaches that instead seek homeostasis of parameter
values. Previous models have relied on a strong assumption: that
the system’s behavior is not significantly altered by conferring
dynamics on a control parameter (20–26, 49). We show that this
assumption does not hold in general: Introducing homeostasis
changes a system’s state diagram and its dynamics. Furthermore,
our method does not require that the system maintain a represen-
tation of the set-point values to which parameters must be tuned.

The approach described in this work is general and likely appli-
cable to any system whose function depends on oscillatory ele-
ments. A few examples drawn from biology include circadian
clocks (50, 51), beating cardiomyocytes (52), and insulin–glucose
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oscillations (53). The functions of these systems depend on their
ability to detect and entrain to periodic stimuli. Homeostatic
mechanisms may ensure that the function of these systems is
robust to developmental and environmental variation.

Materials and Methods
Experimental Protocols. Detailed descriptions have been published of the
tissue preparation, imaging apparatus, mechanical-load clamp, data acqui-
sition, and time-series analysis (18, 19). In each experiment, the sen-
sory epithelium from the sacculus of an adult American bullfrog, Rana
catesbiana, was mounted into a two-compartment chamber. Using a rapid
feedback system and piezoelectrical stimulator, we applied to an individual
hair bundle the displacements and forces necessary to situate a mechani-
cally active bundle at specific positions in its state diagram. In this way, we
were able to determine the load stiffness or force value at which sponta-
neous oscillations were suppressed and, thus, to approximate the location
of the Hopf bifurcation. The location of the bifurcation was subsequently
confirmed by using Hartigans’ dip statistic (SI Appendix, section 1). After
the hair bundle had been poised at an operating point on the quiescent
side of the bifurcation, sinusoidal stimulation with an amplitude of 10 pN
was delivered at a sequence of 14 evenly spaced driving frequencies from

2.3 to 18.7 Hz. The bundle was then commanded to an operating point with
a larger load stiffness, at which the stimulus sequence was repeated. The
procedure continued for several additional operating points farther from
the Hopf bifurcation with multiple replicates obtained for each operating
point. The resulting time series were analyzed in MATLAB (Version R2015a;
MathWorks). The sensitivity of the hair bundle’s response to periodic forcing
was calculated as the bundle’s phase-locked motion at the driving frequency
x̃(ω) divided by the amplitude of the stimulus at the driving frequency F̃(ω)
averaged over replications, and finally the magnitude of the resulting value
was taken as:

|χ̄(ω)| =
∣∣∣∣〈 x̃(ω)

F̃(ω)

〉∣∣∣∣ .
Analytical Calculations and Simulations. All analytical calculations and
numerical simulations were performed by using Mathematica (Version 10.1;
Wolfram). Further details are provided in SI Appendix.
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