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Abstract

With the increasing use of mycophenolic acid (MPA) as an immunosuppressant in solid organ
transplantation and in treating autoimmune diseases such as systemic lupus erythematosus, the
need for strategies to optimize therapy with this agent has become increasingly apparent. This
need is largely based on MPA’s significant between-subject and between-occasion (within-subject)
pharmacokinetic variability. While there is a strong relationship between MPA exposure and
effect, the relationship between drug dose, plasma concentration and exposure (area under the
concentration-time curve [AUC]) is very complex and remains to be completely defined.
Population pharmacokinetic models using various approaches have been proposed over the past 10
years to further evaluate the pharmacokinetic and pharmacodynamic behaviour of MPA. These
models have evolved from simple one-compartment linear iterations to complex multi-
compartment versions that try to include various factors, which may influence MPA’s
pharmacokinetic variability, such as enterohepatic recycling and pharmacogenetic polymorphisms.

There have been major advances in the understanding of the roles transport mechanisms,
metabolizing and other enzymes, drug-drug interactions and pharmacogenetic polymorphisms
play in MPA’s pharmacokinetic variability. Given these advances, the usefulness of empirical-
based models and the limitations of nonlinear mixed-effects modelling in developing mechanism-
based models need to be considered and discussed. If the goal is to individualize MPA dosing, it
needs to be determined whether factors which may contribute significantly to variability can be
utilized in the population pharmacokinetic models. Some pharmacokinetic models developed to
date show promise in being able to describe the impact of physiological processes such as
enterohepatic recycling.
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Most studies have historically been based on retrospective data or poorly designed studies which
do not take these factors into consideration. Modelling typically has been undertaken using non-
controlled therapeutic drug monitoring data, which do not have the information content to support
the development of complex mechanistic models. Only a few recent modelling approaches have
moved away from empiricism and have included mechanisms considered important, such as
enterohepatic recycling. It is recognized that well thought-out sampling schedules allow for better
evaluation of the pharmacokinetic data. It is not possible to undertake complex absorption
modelling with very few samples being obtained during the absorption phase (which has often
been the case). It is important to utilize robust AUC monitoring which is now being propagated in
the latest consensus guideline on MPA therapeutic drug monitoring.

This review aims to explore the biological factors that contribute to the clinical pharmacokinetics
of MPA and how these have been introduced in the development of population pharmacokinetic
models. An overview of the processes involved in the enterohepatic recycling of MPA will be
provided. This will summarize the components that complicate absorption and recycling to
influence MPA exposure such as biotransformation, transport, bile physiology and gut flora.
Already published population pharmacokinetic models will be examined, and the evolution of
these models away from empirical approaches to more mechanism-based models will be
discussed.

Mycophenolic acid (MPA) was approved for transplant rejection prophylaxis in the US and
Europe in the mid-1990s and is now a widely used immunosuppressive agent.[*] MPA is the
active compound of the pre-systemically hydrolysed prodrug myco-phenolate mofetil
(MMF, CellCept®)[2] and is also found in de-layed-release formulation, enteric-coated
mycophenolate sodium (EC-MPS, Myfortic®). MPA is a potent, selective, non-competitive
and reversible inhibitor of inosine monophosphate dehydrogenase. It inhibits the de novo
synthesis pathway of guanosine nucleotides, which triggers a potent cytostatic effect on T
and B lymphocytes, thereby inhibiting their proliferative response. MPA also inhibits the
proliferation of B lymphocytes.[3]

With increased use of MPA, there has been interest in optimizing therapeutic drug
monitoring (TDM) of MMF therapy. Low drug exposure or replacing MMF therapy due to
drug related adverse events has been associated with increased risks of graft rejection.[4:5]
Therefore, it would be ideal to titrate the dose to individual patients’ needs. Currently, there
are no universal guidelines for TDM of MPA therapies.[®:7] Varying approaches such as
measuring predose trough concentrations as is common practice for ciclosporin and
tacrolimus and abbreviated area under the concentration-time curve (AUC) estimation have
been proposed,[8:8-111 in a recent consensus report on TDM of MPA in solid organ
transplantation. The goal of this report was to offer transplant practitioners information on
clinically relevant pharmacokinetic characteristics of MPA in support of the currently
advised target exposure ranges for MPA in different types of organ transplantation, and to
summarize the available methods for application of MPA TDM in clinical practice.[”]

Strategies to improve the optimization of MMF therapy have involved many investigations
into the clinical pharmacokinetics of MPA. Population pharmacokinetic approaches have
been used to describe the complex behaviour of MPA in renal transplant recipients. Most
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published population pharmacokinetic studies are undertaken in renal transplant recipients
with a limited number of studies conducted in liver transplantation and in patients treated
with MPA for autoimmune diseases. The majority of studies have used nonlinear mixed-
effects modelling techniques to provide mean population estimates for the pharmacokinetic
parameters and to characterize between-subject (BSV) and between-occasion (within-
subject) variability (BOV). The focus has primarily been on identifying the influence of
demographic (e.g. body-weight, sex) and clinical factors (e.g. albumin concentrations) on
pharmacokinetic variability.[12] The interactions of drugs such as ciclosporin, tacrolimus and
corticosteroids with MPA have been extensively investigated.

1. General Features of Mycophenolic Acid (MPA) Pharmacokinetics

Investigations into the pharmacokinetics of MPA have shown the existence of a
concentration-effect relationship. However, the relationship between dose, plasma
concentrations and exposure (AUC) is difficult to predict, with a greater than 10-fold range
in MPA dose-normalized AUC between patients.[13] In renal transplant patients, the AUC
has been shown to increase over time as changing renal function, protein binding and
corticosteroid tapering give rise to lower clearance.l*2] The absorption of MMF is a complex
process that involves dissolution, transport and metabolism. This can be observed in the
MPA concentration-time profiles that show varying lag times, varying times to maximal
MPA concentration and double peaks in the absorption and post-absorption phases.[14:15]
The large BSV and BOV in MPA pharmacokinetics!1¢] has been attributed to differences in
albumin concentrations, change of renal and hepatic function, bilirubin and haemoglobin
concentrations, bodyweight, sex, concomitant medication[13] and race. In addition, the
exposure to and disposition of MPA are influenced by multiple enzymes and various
transporters in which several functional single nucleotide polymorphisms (SNPs) have been
found.[17-27]

2. Metabolism

MPA has four main metabolites: 7- O-MPA-B-glucuronide (MPAG), MPA acyl-glucuronide
(AcMPAG), catalysed by uridine 5’-diphosphate glucuronosyltransferases (UGTS), 7-C-
MPA glucoside through UGT, and trace amounts of 6- O-des-methyl-MPA (DM-MPA) via
cytochrome P450.[28.29]1 The main metabolite, MPAG, is pharmacologically inactive but
plays an important role in enterohepatic circulation (EHC). AcCMPAG is a minor metabolite,
and there is ongoing debate regarding its activity Jin vitro.[30-321

The specific role of the different UGT isoforms is not completely known, but several in vitro
studies have suggested UGT1A9 as the predominant isoform with 1A8 and 1A7 contributing
to a minor extent to the transformation of MPA to MPAG and, via UGT2B7, to
AcMPAG.[30.33-37]

3. Effect of Concomitant Medications

In transplantation, MPA is used in combination with other immunosuppressive drugs
including calcineurin inhibitors (ciclosporin, tacrolimus), m-Tor inhibitors (sirolimus) and
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corticosteroids (prednisone/prednisolone).[38] Studies involving humans and animalshave
demonstrated that the AUC and trough concentration of MPA are decreased when
administered concomitantly with ciclosporin. This is due to the inhibitory effect of
ciclosporin on the multidrug resistance-associated protein (MRP)-2 transporter that controls
MPAG’s active transport into bile.[3%40] Recent evidence also suggests a contribution of
ciclosporin-mediated inhibition on the organic anion transporting polypeptide (OATP)
1B3.141] As a result, EHC of MPA is decreased or absent, resulting in less pronounced or no
secondary peaks.[42] MPA and sirolimus combination studies have demonstrated drug
disposition variation between paediatric and adult patients, most likely because of
developmental changes related to biliary transporters and metabolic enzymes.[43]

Studies by Filler et al.[44] and Kiberd et al.[4%] have outlined biliary excretion as a nonlinear
process, suggesting that with higher MMF doses MPA will undergo additional enterohepatic
recycling. Consequently, there is a more pronounced inhibitory effect by ciclosporin seen at
higher MMF doses. Another drug-drug interaction relevant to MMF therapy is the
concomitant use of corticosteroids. Cattaneo et al.[6] showed that patients receiving high
doses of methylprednisone had lower exposure to MPA, when compared with those on lower
methylprednisone maintenance doses. Tapering of corticosteroids resulted in increased MPA
exposure. An induction of UGTs caused by cor-ticosteroids has been proposed to explain
this change in MPA clearance and, consequently, exposure.[46-491 However, debate remains
about the effect of corticosteroids, with Cattaneo et al.[4¢] reporting an influence on the
bioavailibity of MPA in transplant patients. Recently, differences in the inductive effect of
corticosteroids on UGT were reported during the initial post-transplant period compared to
the stable phase, which is thought to be related to changes in MPA clearance.[41.46]

4. Summary of the Enterohepatic Recycling of MPA

Figure 1 provides an outline of MMF disposition, indicating the associated drug-
metabolizing enzymes and transporters known or suspected of playing a role. Enteral
absorption of MPA is influenced by individual characteristics of a patient’s gastrointestinal
tract, such as luminal pH, gastric emptying time, intestinal transit time, intestinal surface
area, presence of gastrointestinal disease and mesenteric blood flow. Other influences may
include the presence of food and/or drugs, and gut metabolism and microflora
characteristics.[50]

After oral administration MMF is rapidly absorbed after being completely hydrolysed to its
active form MPA by carboxyesterases found in the stomach, small intestine, blood and
liver.[12] However, there is ongoing debate whether only MPA and/or MMF are absorbed
across the gastrointestinal membrane. Studies undertaken by Lee et al.[5] and Bullingham et
al.52] suggest that MMF is also absorbed intact. Accordingly, MPA or a combination of both
MMF and MPA is likely absorbed from the intestine.

Both MMF and MPA are classified as class Il drugs under the Biopharmaceutics Drug
Disposition Classification System predicting metabolism as the main route of
elimination.[34:36.53] This is based on reasonable bioavailability, high permeability and low

Clin Pharmacokinet. Author manuscript; available in PMC 2017 August 21.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Sherwin et al.

Page 5

solubility (r-octanol-water partition coefficient of 238 at pH 7.4 and 570 at pH 2, for MMF
and MPA, respectively).[51]

The transport of MPA across the membrane of enterocytes can be influenced by the affinity
of the molecule to plasma membrane absorptive and efflux transporters.[>3] Due to its high
permeability, MPA can easily cross the gut membranes. Therefore, gut uptake transporters
are unlikely to have a major clinical impact.[5354] However, the low solubility of MMF and
MPA limits the amount of drug entering the enterocytes and prevents saturation of efflux
transporters. Generally, it is expected that gut efflux transporters have an effect on oral
bioavailability. With respect to MMF, bioavailability is reasonable, suggesting the effects are
most likely minor. Several studies have demonstrated that MPA is a substrate for the
multidrug resistance transporters which are expressed in various tissues such as liver, brain,
kidney and intestine.[5%] These transporters are potential candidates to efflux MPA back into
the intestinal lumen as both transporters are expressed on the membrane of
enterocytes.[23.56-58]

In addition to hepatocytes, human intestinal microsomes are capable of forming the
metabolites MPAG and AcM-PAG,[30:34] albeit with large interindividual variation in these
formations. This may be related to the reduction in the amount and activity of enzymes
found along the intestine.[39.60] Given that the intestine represents a large external surface
and is highly exposed to MPA through enterohepatic recycling, it is probable that, despite
low UGT activity in intestinal micro-somes, the latter may still contribute to the overall
metabolism of MPA.

Uptake into the liver is of significant relevance as hepatic blood flow influences hepatic
extraction, hepatocyte permeability and biliary or metabolic elimination.[5%] Generally, drugs
like MPA, which undergo enterohepatic recirculation, are transported as unchanged
compounds or as solutes by different carrier-mediated systems. In humans, these systems
include liver-specific transporters, OATPs/solute carrier organic anion transporters (SLCOs).
There are also certain MRPs which are found at the plasma membrane.[30]

Like the transporters found in the gut, uptake and efflux transporters in the liver can also
influence the disposition of drugs like MPA.[53:54] Uptake capacity of MPA may influence
the rate of the metabolism.[24] The exact process by which a solute like MPA moves from
the hepatocyte to reach the drug-metabolizing site in the endoplasmic reticulum or bile
canaliculae is still unknown. Roberts et al.[5% state that most pharmacokinetic studies do not
take into account the time between uptake from the blood and contact with the drug-
metabolizing enzymes located in the endoplasmic reticulum or bile canaliculae. This may
consequently bias estimates of clearance determined from these pharmacokinetic studies.

MPA is mainly metabolized by UGT1A9 and UGT2B?7 in the liver as mentioned above.[28]
Inhibition studies using mi-crosomes suggest UGT1AQ9 is responsible for 55% of MPAG
formation in the liver.[34 MPAG is excreted into the bile by active transport facilitated by
MRP2/adenosine triphosphate-binding cassette, sub-family C, member 2 (ABCC2).[23]
Transport of drugs like MPA from the hepatocyte back into the sinusoidal blood is mediated
by OATPs and can be bidirectional.[6] Although it has been suggested that the OATPs are
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driven by ion exchange, it is more likely that they predominantly act as uptake
transporters.[%2] The mechanisms involved in efflux of MPAG from the hepatocyte are still
under-investigated. As there is large unexplained variability in MPAG plasma
concentrations, further study accordingly appears warranted in this area.

A small fraction of bile is continuously excreted into the duodenum, with the majority stored
in the gallbladder.[%3] The sight, smell or ingestion of a meal results in the contraction of the
gallbladder and relaxation of the sphincter of Oddi.[9.63] Emptying of the gallbladder into
the duodenum is a sporadic process and is very difficult to predict. It has been demonstrated
that secondary MPA absorption peaks correspond well to food intake times. However, it is
difficult to obtain actual bile samples and information relating to biliary excretion or release
into the gut of drugs and metabolites from the bile into the gut.[50.64]

The conversion of MPAG back to MPA occurs in the gut. Metabolism by the intestinal
microflora can induce pharmacological changes, and the hydrolysis of biliary conjugates
impacts on the EHC of these compounds.[% Glucuronide conjugates such as MPAG are
converted between the proximal and distal regions of the intestine by the enzyme B-
glucuronidase.[®5] There is large BSV related to activity of gut enzymes.[9 Further research
is needed to describe the variability associated with differences in gut flora and MPA EHC.

5. Population Pharmacokinetic Modelling of MPA and Enterohepatic

Recycling

The process of MPA enterohepatic recycling is complex, and the impact on the
pharmacokinetics is not always predictable. The EHC comprises up to 60% (range 10-60%)
of total MPA exposure and can be influenced by a range of factors such as co-medication,
genetic variability and patient characteristics.[52] External factors can also influence MPA
EHC including the type of food eaten and the time of food intake, which makes predicting
MPA pharmacokinetics even more difficult.[50.66] To date there have only been a few
population pharmacokinetic models[26:4267-711 developed to try to accurately describe the
impact of EHC on the variability in pharmacokinetic and total drug exposure.

5.1 Empirical Approaches/Compartmental Models

The first population pharmacokinetic models used to describe the pharmacokinetics of MPA
were empirical models. The types of models developed were two- or three-compartment
models of drug disposition with first-order absorption.[% Other studies used two-
compartment models, extended by a chain of compartments describing the transport of the
drug from the gut to the central compartment. In some cases, more complex absorption
models are utilized.[12] The web-based tool developed by the Limoges groupl’ is one of
the few models that uses a dual input function that works quite well as part of a Bayesian
estimator.

5.2 Absorption Models

Modelling enteric drug absorption is complex, as the interplay between drug and patient
specific variables needs to be capturedin a physiologically meaningful and mechanism-based
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fashion. Nevertheless, most absorption models are generally outlined by using either a first-
order or zero-order absorption input. Other types of models have been used to describe
atypical absorption profiles, including parallel first-order, mixed first-order and zero-order
absorption or Weibull-type absorption models. It has been suggested that, although
frequently described as first order, the real process is neither first nor zero order but
predominantly time dependent.[73.74] The gamma distribution function is sometimes applied
as a probability for waiting times to describe oral absorption.[”> However, the most common
pharmacokinetic approach used to describe oral absorption delay is to use an absorption
model with a lag time parameter. In general, this helps describe the delayed absorption
profiles adequately.

5.2.1 Lag Time Models—Inclusion of lag time can improve estimations of the absorption
processes and also allows for shifting of the time of dosing.[76] It has been suggested by
inclusion of a lag time parameter that enterohepatic recycling models may account for the
effect of gallbladder emptying.[5% Simple two-compartment models with a very prolonged
lag time have been used to account for the occurrence of secondary peaks in plasma
concentration-time profiles.l”7] In relation to modelling enterohepatic recycling, lag times
have also been used to describe the expulsion time of MPA from the gallbladder back into
the gastrointestinal tract.[67.78]

5.2.2 Erlang Absorption Models and Transit Absorption Models—Erlang and
transit absorption models are used to describe skewed and delayed absorption profiles. The
Erlang absorption model is based on using analytical equations to define a chain of ‘n’
compartments between the depot and central compartment determined by serial addition.[79]
The transfer rate between the compartments is similar for each step and uses a constant. The
number of serial ‘n’ compartments is estimated by interposing and increasing the number of
compartments until there is no further statistical improvement.[8%:81] Transit compartment
models describe drug absorption as a multiple-step process, thus mimicking the time
dependency of the process. A chain of presystemic compartments is used to account for any
delay in the passage of a drug.[82] Savic et al.[7®] outlined a transit model where the number
of transit compartments could be automatically estimated. These types of absorption models
have been advocated as better reflecting physiological conditions, perhaps making them
better suited to describe the complex absorption profiles associated with MPA.

6. Outline of Population Pharmacokinetic Modelling of MPA Published to

Date

Over the last decade, various approaches have been pursued to develop (population)
pharmacokinetic models that could adequately describe and predict MPA’s complex
behaviour. Generally, the published pharmacokinetic models have used population nonlinear
mixed-effects modelling (NONMEM). For this review, a literature search was performed
using MEDLINE at Ovid. Abstracts were searched for the following keywords: ‘population
pharmacokinetics’, ‘mycophenolic acid’, ‘mycophenolate mofetil” and ‘model(l)ing’.
Seventeen published papers relating to population pharmacokinetic modelling of MMF were
found and reviewed. The specific details of each study are detailed in tables I and I1.
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The studies mainly involved adults, with only one study using data collected from paediatric
patients.[88] Studies involved healthy subjects, kidney transplant recipients and patients
treated with MMF for autoimmune diseases. Approaches to modelling included first- and
zero-order absorption models with and without lag time and more complex models used
gamma distribution/absorption phases. Only a couple of the published papers included
pharmacokinetic models developed to account for MPA enterohepatic recirculation (tables |
and I1).

One of the first population pharmacokinetic models for MPA that included an EHC
component was published in 1999 by Funaki.[87] The model included a gallbladder
compartment, which described the physiological process of enterohepatic recirculation and
biliary excretion (tables I and I, figure 2a). The release of bile was assumed to occur as a
bolus at time of gallbladder emptying, and was modelled by providing an expulsion time.
Funaki’s model only described one single episode of gallbladder emptying. However, the
fact that bile is continuously excreted and influenced by feeding habits, including difference
between high- and low-fat meals, would mean the model has limitations.[0]

In 2003, Shum et al.[83] described a two-compartment model with a lag time. They
considered modelling enterohepatic recirculation of MPA but concluded that their data did
not statistically support that type of model. They also investigated various other approaches,
including time-dependent absorption models, maximum effect (Emax), Weibull and a dual
sequential first-order absorption model. They found that none of these models improved the
fit statistically as much as the addition of lag time using their available data. The same
research group in 2005 developed a bi-exponential elimination model with first-order
absorption.[8%] They also described a single-exponential elimination model with first-order
absorption, but this did not improve the model fit. Moreover, the addition of lag time to
describe absorption did not improve the fit statistically, either (tables I and 11).

Le Guellec et al.[84] developed a two-compartment model with zero-order absorption (tables
I and I1). They also investigated one- and two-compartment first-order absorption models.
However, these models did not provide a good statistical fit. A model describing
enterohepatic recirculation was considered but not used as the observed secondary peaks in
the study patients were considered relatively small.

In one of the only published population pharmacokinetic models to include children, Payen
et al.,[58] determined that a two-compartment model with first-order absorption and a lag
time produced the best fit for their data. They also investigated a two-compartment model
with enterohepatic recycling and first-order absorption and a lag time (tables I and I, figure
2b). They determined that there was no statistical improvement seen when applying that
model to the data compared to the model without enterohepatic recycling.

The pharmacokinetic models outlined by van Hest et al.[86:88] hoth used a two-compartment
model with time-lagged first-order absorption. Enterohepatic recirculation was not included
in the models, as it was not considered to have a significant influence on the
pharmacokinetics of MPA in this renal transplant cohort. Other models investigated included
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one-, two- and three-compartment models with and without lag time and with first- and
zero-order absorption processes (tables I and I1).

In the first study to simultaneously model MPA and MPAG concentrations, Cremers et
al.,[42] used a four-compartment model describing the transfer of MPAG from the fourth and
first compartments to simulate enterohepatic recycling (tables I and 11, figure 2c). Due to the
relatively sparse available data, secondary peaks were not observed in the population.
Therefore, enterohepatic recycling was modelled by adding a rate constant between MPAG
in the fourth compartment and the gut compartment. Similar to the model developed by
Funaki,[87] this model assumed enterohepatic cycling as a constant process, when in
actuality gallbladder emptying is both constant and sporadic.

Most of the studies analysed used a population approach (NONMEM) for the
pharmacokinetic analysis. Only the study by Premaud et al.[87] used in-house software
(MMF®) to perform individual Bayesian pharmacokinetic modelling in renal transplant
recipients. They developed a double gamma absorption model in patients 3 months post-
transplant and a one-compartment model with single gamma absorption phase for stable
patients to successfully predict the contribution of MPA recycling (tables I and I). The
models outlined by Premaud et al.[87] were able to accurately fit the varying concentration-
time profiles observed between those patients who had recently received a renal transplant
(<30 days) compared to those who were considered stable (>3 months).

The gamma distribution model as part of the MMF® algorithm was also used by Zahr et
al.[% to describe the absorption profile of MPA in patients with systemic lupus
erythematosus (SLE). The application of Bayesian estimator[87] in a prospective
concentration-controlled study in adult renal transplant patients showed good predictive
performance resulting in significantly improved outcomes.[72] Zahr et al.[%] determined that
a triple gamma distribution model provided the best fit to the third peak in addition to the
first and second absorption peaks in these patients. The later peak or third peak is also
assumed to be due to enterohepatic recycling of MPAG and subsequent re-conversion to
MPA, representing, at least in the SLE study population, a significant proportion of the
AUC. Recently, the same software (MMF®) was utilized in the pharmacokinetic modelling
and development of a Bayesian estimator in haematopoietic stem-cell transplantation.[%3]

The 2008 study undertaken by de Winter et al.[8%] pooled data from patients treated with EC-
MPS and MMF. As expected, the study determined that absorption of MPA was more
delayed in those receiving EC-MPS compared to MMF. The model was also extended to
include a bile compartment to describe enterohepatic recirculation, but this did not improve
the fit of the model. The authors also investigated other modelling approaches, including
two-compartment models with zero-order, with and without lag time, Weibull absorption
and transit compartment models. A mixture model was also used to try to estimate time lag
with an approximate longer lag time in the evening compared to the morning to simulate
gastric emptying. The model estimated that gastric emptying was more delayed in the
evening. This result is in keeping with previous observations of MPA absorption being more
delayed at night in renal transplant patients receiving MMF.[94.95]
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A chain compartment model simultaneously modelled MPA and MPAG in healthy subjects
(tables I and 11, figure 2d).[26] As this study involved healthy subjects, predictions for
gallbladder emptying were set to meal times.[26] The investigators reported that they could
not detect the effect of UGT1A9 polymorphisms on the pharmacokinetics of MPA and
MPAG. However, this was probably related to the exclusion of subjects with functional
SNPs such as UG T1A9-275 and —331/-4400°6] from the study analysis. WinNonLin® was
used by Yau et al.[] to produce a five-compartment parent drug and metabolite EHC model
(tables I and 11, figure 2e). Simulations were used to investigate the influence of the time of
bile release after dosing and the gallbladder emptying interval on enterohepatic recycling of
MPA and MPAG. The model developed by Sam et al.l7% is the only population
pharmacokinetic model to include MPA, MPAG and AcMPAG. Unlike the majority of other
published studies, patients received EC-MPS rather than MMF (tables | and I, figure 2f).

In one of their recent studies, de Winter et al.["1] described MPA plasma concentrations in
adults treated for autoimmune disease. EHC was included by using a rate constant to
continuously fill the gallbladder from the central compartment. Emptying of the gallbladder
into the gastrointestinal compartment was defined by two time points using rate and duration
(tables I and 11, figure 2g). This model appears to build on the group’s previously published
model[89] by including a short and a long lag time. This concept is supported by the
physiological mechanisms associated with gastric emptying, which have been shown to have
variation related to the body's natural circadian rhythm.[97] It represents a more mechanism-
based approach compared to earlier published MPA pharmacokinetic models. In contrast to
other published pharmacokinetic models, this model was developed using data from patients
treated with MMF for autoimmune disease. This model is similar to that described
previously by Premaud et al.,[87] Zahr et al.[9% and Saint-Marcoux et al.,[%31 who used
different sets of gamma parameters to describe absorption rather than short and long lag
time.

The latest published studies investigating population pharmacokinetics of MPA and
including a mechanism-based model for EHC are those by Musuamba et al.[®1] and de
Winter et al.[%2] Musuamba et al.[1] developed a model with a compartment to describe
EHC in stable renal transplant recipients who were co-medicated with sirolimus (tables | and
I1). The application of Bayesian estimation allowed for accurate prediction of MPA AUC
from 0 to 12 hours (AUC1,) and individualized dosing. A complex mechanism-based model
describing the pharmacokinetic role of protein binding of MPA was described recently by de
Winter et al.[92] The model characterizes the relationship between total and unbound MPA
and MPAG. From within the renal transplant recipient population, the correlation between
the pharmacokinetic parameters, renal function, plasma albumin concentrations and co-
medication with ciclosporin were included in the model. The process of EHC describing the
reconversion of unbound MPAG to unbound MPA was included by using a gallbladder
compartment that emptied into the central compartment at defined time intervals post-MMF
dose. The model adequately described these complex relationships and allowed for the
influences of renal function, plasma albumin and co-medication with ciclosporin to be
quantified.
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The estimation of pharmacokinetic parameters has been shown to moderately predict the
outcome of MPA therapy.[16] The concentration-controlled study by LeMeur et al.l72] shows
significantly improved outcomes. This study by the Limoges group was the first to report
that TDM using a limited sampling strategy could be used to reduce the risk of treatment
failure in renal transplant recipients. The Bayesian estimator was successfully used to adjust
MMF doses in response to calculated MPA AUC. Yet, there are also conflicting results from
some preliminary intervention studies.[%] In general, the individual modelling of MPA
concentration-time profiles has been shown to predict MPA exposure expressed as an AUC1,
with acceptable precision using a compartmental model approach. There is obvious debate
about the inclusion or exclusion of enterohepatic recycling in a model. Currently, this
appears to be data-driven but may be a source of error if not included, leading to an
underestimation of clearance as well as exposure (AUC). Although the issue is complex,
some empirical models that do not account for EHC per se but use a double gamma input are
able to predict double peaks resulting in clinically acceptable AUC estimates. These models
also allow capturing of very early secondary peaks or those that are higher than the initial
peak.[5]

In summary, the review of the published papers found 12 studiesl26:42.67.68,70,71,83-89,91,92]
using NONMEM to describe the pharmacokinetics of MPA in renal transplant patients. Only
one study included children(®8] and one study used Win-NonLin.[6%] Two studies[87] used
MMF® software, with one of those studies investigating MPA pharmacokinetics in SLE
patients.[9 In total, only three published papers involved non-transplant patients.[26.71.90]
with two studies including patients treated with the EC-MPS formulation.[70:8] |n the renal-
transplant studies, time post-transplant ranged from 1 to 1538 days. Five
studiesl26.42.69.70.91] simyltaneously modelled MPA and MPAG, with one study undertaken
in healthy subjects.[26] One study included AcMPAGL® and one modelled total and
unbound MPA and MPAG.[92] Fourteen of the studies undertook sampling that is considered
adequate for seeing evidence of EHC in concentration-time profiles. The EHC peak was
typically observed in the post-absorption phase (6—12 hours post-dosing). Eight of the
studiesl26:42.67.69-71.91.92] jncluded an EHC function in the final model, although most
papers considered the inclusion of an EHC model during model development (tables I and

).

Importantly, in 15 of the studies, ciclosporin was used as co-therapy with MPA. In addition,
tacrolimus (six stud-ies),[42:68.70.85.89,92] sjrolimus (two studies)[®8:92] and everolimus (one
study)[89] were reported as concomitant therapies. Corti-costeroid co-therapy was reported
in nine studies (table 1). The estimated MPA apparent total oral clearance (CL/F) in adults
post-renal transplant receiving MMF concomitant therapy with ciclosporin without
corticosteroid therapy was 14.1-34.9 L/h[42:83-85] and with corticosteroid co-therapy was
15-42.85 L/h.[69.86-88] |n those receiving tacrolimus the mean CL/F estimates ranged from
11.9 to 25.4 L/h without corticosteroid co-therapy.[4285] In healthy subjects, MPA CL/F was
reported to be 10.2 L/h[26] and in patients with SLE receiving corticosteroid co-therapy was
40.3 L/h.[% |n the non-transplant recipient studies, the covariates identified most frequently
were bodyweight and creatinine clearance (CLcg) as influencing CL/F. In comparison, in
the MPA renal transplant studies, serum albumin concentrations, bodyweight and ciclosporin
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co-medication were reported to have significant effects on CL/F and apparent volume of
distribution in the central compartment after oral administration (V1/F) [table I1].

The various published models vary not only in structure but also in utilization of varying
populations for assessing MPA pharmacokinetics (table I1). Overall model performance was
highly variable with BSV mean estimates for MPA CL/F ranging from 28% to 50% (9-41%
coefficient of variation [CV]) in adults receiving MMF post-renal transplant.[42:83-86,88,91]
Five studies[83.85.86.88.91] renorted estimates for BOV, with high variability associated with
absorption rate constants. CL/F and V;/F estimates ranged from 13% t021% (10-26% CV)
and from 53% to 71% (12-17% CV), respectively. Some models provided a good fit to the
data but still had high residual variability, while other models reflected an adequate fit to the
data with low residual variability; estimates ranged from 26.5% to 69.9% (4-15.3%
CV).[42:83-86,88.91] A|| models utilized diagnostic plots to assess model fit. Other methods
used for model evaluation included bootstrapping and visual predictive checks. Only two
papers reported using a cross-validation method.[26:91]

7. Benefits of Modelling Enterohepatic Recycling

Few population pharmacokinetic analyses to date have used physiological or mechanism-
based models to describe the EHC of MPA. In models derived in some populations, evidence
of enterohepatic recycling — such as the characteristic secondary peak — are not as evident.
Accordingly, EHC is not included in the model. The question whether all models developed
for MPA should include enterohepatic recycling thus arises. On the other hand, inclusion of
enterohepatic recycling may make the model too complex, and estimates produced with
simpler models may still provide a reliable description of MPA pharmacokinetics. These are
intriguing questions, especially as use of concomitant immunosuppressant therapy is known
to decrease or inhibit enterohepatic recycling. As outlined previously, there are also other
factorstoconsider that may increaseordecrease EHC and thus influence MPA
pharmacokinetics. Can all these factors be included or estimated in a population
pharmacokinetic model? Several parameters can be fixed based on prior information, but
how much influence does this haveonthe estimates produced by the model?

MPA is quickly becoming standard therapy in solid-organ transplant patients and is
increasingly being prescribed to those with autoimmune disorders. The MPA concentration-
time profiles observed in kidney transplant patients include single-peak profiles, double-
peak profiles with an early or later secondary peak, and atypical profiles.[87] The profiles
from patients with SLE[®] or other autoimmune diseases[’2:9%] give a similar, if not more
exaggerated, profile, especially in regard to the occurrence of the secondary peak. Transplant
patients generally receive multiple drugs and experience post-surgical stress, further adding
to the variability that exists between and within these patients. As time after organ
transplantation lengthens, the proportion of patients with complex profiles tends to decrease.
This may partly be due to tapering of corticosteroid and ciclosporin doses, progressive
recovery of renal function and/or improvement in gastrointestinal motility after surgery. It is
also thought that factors like absorption windows in the gastrointestinal tract, pre-systemic
metabolism and efflux transports in mucosal epithelial cells may contribute to atypical drug
absorption profiles.[100]
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As outlined by van Gelder et al.,[®] optimal efficacy may require only a few dose
adjustments. However, studies like the one undertaken by Le Guellec et al.[84] have used a
population pharmacokinetic-based approach to demonstrate that Baye-sian estimation can
accurately predict AUC. If EHC of MPA can truly account for up to 60% of exposure, it
would be useful to be able to predict itl12] by the refinement of Bayesian en-terohepatic
recycling models, which would allow further development of algorithms. This would
facilitate the achievement of individualized MPA dosing.

Recently published pharmacokinetic models have advanced in their ability to
mathematically describe the process of en-terohepatic recirculation of MPA. To date, the
web-based Bayesian estimator developed by the Limoges group provides clinically robust
results.[”2] With incorporation of some genetic differences, e.g. UGTZA9and MRP2, our
ability to account for variability can be further improved.

8. Future Approaches

It is not easy to develop a mathematic model to fully describe the complex physiological
processes that occur in relation to absorption of MPA. To date, there are only limited data
available in regards to genetic differences in transporters and enzymes responsible for pre-
systemic metabolism. As data for individual patient characteristics are slowly accumulated,
these may further aid in describing the pharmacokinetics of MPA more accurately. However,
there are still several problems that have to be resolved before the entire process of
enterohepatic recycling of MPA will be able to be described in a model. NONMEM takes
mainly an empirical approach to describe the multifaceted processes related to MPA
pharmacokinetics, which has limitations. When using a compartment modelling approach it
is difficult to isolate each physiological step into a compartment and to define the complex
interactions between those compartments. Variability in model performance also exists, with
some models able to accurately fit and describe data whether they include an EHC model or
not, while other models contain high, unexplained residual variability even after modelling
EHC. There is large variability observed even in estimating gastric emptying based on time
of day as outlined by de Winter et al.,[89] and supported by results from other
pharmacokinetic studies.[%495] In addition, secondary peaks are not observed in all subjects
and the number of sampling points around the secondary peak is usually limited. Given the
complex physiology involved it makes sense to take a more physiologically and mechanism-
based approach. This will be required if progress is to be made in explaining the large BSV
and BOV observed in patients treated with MMF or EC-MPS.

Thus, it may be valuable to consider alternative, physiologically based approaches as offered
by software packages such as Simcyp® (Simcyp, Sheffield, UK), GastroPlus™ (Simulation
Plus, California, USA) and PKsim® (Bayer Technology Services, Leverkusen, Germany).
These packages may be able to provide more insight into the mechanisms associated with
the enterohepatic recycling of MPA. Literature is currently limited, as these packages have
only gained wider application in the past 10 years. Simcyp® is a platform that provides
whole-body physiologically based pharmacokinetic models that can incorporate enzyme
kinetic data from routine 7 vitro studies.[201] Simcyp® not only allows typical modelling of
absorption and distribution but also allows extensive simulation of metabolic drug-drug
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interactions and individual characteristics that determine the variability in drug exposure.
PK-Sim® is a whole-body physiologically based pharmacokinetic simulation software,
which derives models from parameters that are determined from a small set of
physicochemical properties plus /in vitro biochemical data, such as metabolic rates. It can be
used to predict fraction absorbed, bioavailability and organ-specific pharmacokinetics.

GastroPlus™ combines the chemical properties (formulation, dosage and particle size),
physiology (acid dissociation constant [pKa]) and kinetic information of a drug to simulate
concentration-time profiles. By combining the physicochemical information about a drug
and simulating a concentration-time profile, GastroPlus™ takes a more mechanism-based
approach. As explained by Parrott et al.,[192] programs like GastroPlus™ can be used to
predict the effect of food on the pharmacokinetics of a drug by using physiology-based
absorption models.

9. Conclusions

Generally, the published population pharmacokinetic studies, which have used mainly
empirical approaches, have not modelled MPA EHC physiology or have not had sufficient
power to support such models. Conventional empirical models are useful but may be limited
in their use to describe complex data that have multiple peaks. When evidence of EHC exists
in the concentration-time profiles, it is important to attempt to include an EHC model, to aid
in explaining high variability. It has become clear that, in order to describe the complex
disposition of MMF, all relevant pharmacokinetic information should be used in building a
model. Models need to not only include patient demographics but also other physiological
factors, specifically those related to the biliary excretion of MPAG and to the overall EHC
process. The influence of genetic differences and ontogeny in transporters and enzymes also
needs to be considered as factors potentially influencing the disposition of MPA and
affecting drug bioavailability and overall drug exposure as measured by the AUC.
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Fig. 1.

Outline of mycophenolate mofetil (MMF) absorption and dissolution in the body by known
or proposed drug-metabolizing enzymes and transporters. ABCB1 (formally, MDR1 =
multidrug resistance 1)=adenosine triphosphate-binding cassette, sub-family B, member 1;
ABCC?2 (formally, MRP2=multidrug resistance-associated protein 2) = adenosine
triphosphate-binding cassette, sub-family C, member 2; AcCMPAG = MPA acyl-glucuronide;

CES =carboxyesterases; IMPDH=inosine monophosphate dehydrogenase;

MPA=mycophenolic acid; MPAG=7- O-MPA-B-glucuronide; SLCO (formally,
OATP=o0rganic anion-transporting polypeptide)=solute carrier organic anion transporter

family; UGT =uridine diphosphate glucuronosyltransferase.
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Fig. 2.

Schematicsof mycophenolic acid (MPA) pharmacokinetic models describing enterohepatic
circulation (EHC). (a) 3-compartment EHC model based on a 1-compartment disposition
model (reproduced from Funaki,[67] with permission). (b) Proposed EHC, 2-compartment
structural model with first-order absorption with a lag time (tjog) [reproduced from Payen et
al.,[%8] with permission]. (c) 4-compartment model, with rate constant describing transfer
from fourth to first compartment [enterohepatic recycling] (reproduced from Cremers et
al.,142l with permission). (d) Chain compartment model (intestinal, gallbladder, central and
peripheral compartments for MPA and central compartment for 7- O-MPA-B-glucuronide
(MPAG) [reproduced from Jiao et al.,[26] with permission]. (e) 5-compartment drug and
metabolite EHC model with MPA and MPAG plasma concentrations simultaneously
(reproduced from Yau et al.,[89] with permission). (f) 2-compartment model with linear
elimination, with MPAG and MPA acyl-glucuronide (AcMPAG) produced from the central
compartment with EHC of MPA via the two metabolites (reproduced from Sam et al.,[70]
with permission). (g) 2-compartment model accounts for the enterohepatic recirculation of
MPA. The absorption of MPA was described with two first-order processes with a short and
a long tjag and subsequent first-order elimination (reproduced from de Winter et al.,[" with
permission). Abs comp=absorption compartment; C, = concentration of MPAG in central
compartment; ET = gallbladder emptying time; Gall = amount of MPAG in gallbladder
compartment; Gut= amount of MPA in gut compartment; k=first-order rate constant; kyy =
transfer rate constant from compartment xto y; k,= absorption rate constant; Ky;je= biliary
excretion rate; kq= excretion rate constant into gallbladder; kgg = rate constant for the
release of recirculated MPA from MPAG and AcMPAG; k, = formation rate; Ky, = renal
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excretion rate of MPAG; ty;, ans = absorption half-life; tgap = expulsion time of gallbladder;
tgp = time of gallbladder compartment opening; V= volume of MPAG in central
compartment.
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