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Abstract

Restricted mean survival time (RMST) is often of great clinical interest in practice. Several 

existing methods involve explicitly projecting out patient-specific survival curves using parameters 

estimated through Cox regression. However, it would often be preferable to directly model the 

restricted mean for convenience and to yield more directly interpretable covariate effects. We 

propose generalized estimating equation methods to model RMST as a function of baseline 

covariates. The proposed methods avoid potentially problematic distributional assumptions 

pertaining to restricted survival time. Unlike existing methods, we allow censoring to depend on 

both baseline and time-dependent factors. Large sample properties of the proposed estimators are 

derived and simulation studies are conducted to assess their finite sample performance. We apply 

the proposed methods to model RMST in the absence of liver transplantation among end-stage 

liver disease (ESLD) patients. This analysis requires accommodation for dependent censoring 

since pre-transplant mortality is dependently censored by the receipt of a liver transplant.
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1 Introduction

The Cox proportional hazards model (Cox 1972, 1975) is the strong default for analyzing 

time to event data with covariate adjustment. A key motivation for the hazard ratio (HR) is 

its connection to the ordering of the survival functions, under the assumption of proportional 

hazards. However, when there are departures from proportional hazards, this connection is 

lost and it is then difficult to interpret the HR. A HR estimated by ignoring the non-

proportionality will be a poorly specified mixture of the survival distribution and censoring 

distribution (Gillen and Emerson 2007), such that the resulting inference may then differ for 
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studies with identical survival time distributions but different censoring patterns. In the 

presence of non-proportionality, alternatives to the HR include the ‘average effect’ (Xu and 

O’Quigley 2000), or applying a ‘stopped Cox model’ (Van Houwelingen 2007; Van 

Houwelingen and Putter 2015).

Covariate effects that are cumulative in nature are often of greater interest than instantaneous 

effects, especially in the presence of non-proportionality (Schaubel and Wei 2011). In 

particular, the contrast in restricted mean survival time (RMST) is a useful alternative. The 

RMST is defined as the average survival time up to a fixed point L and can be written as the 

area under the survival curve on [0, L]. RMST is an easily interpretable and clinically 

relevant measure for summarizing the mortality over a fixed follow-up time period of 

interest. Most existing methods estimate RMST indirectly through hazard regression (e.g., 

Zucker 1998; Chen and Tsiatis 2001; Zhang and Schaubel 2011). These approaches start by 

estimating the regression parameters and baseline hazard from a Cox model, calculating the 

cumulative baseline hazard, transforming it to obtain the survival function and, finally, 

integrating the survival function to obtain the RMST. Such indirect RMST estimation is 

inconvenient and computationally cumbersome, even for obtaining a point estimate, let 

alone its corresponding asymptotic standard error. Hence, it may be preferable to directly 

model RMST itself (Andersen et al. 2004; Tian et al. 2014).

The majority of existing methods for directly modeling RMST require assumptions 

regarding the censoring mechanism, which are often untenable. Censoring may result from 

multiple sources in an observational study. The simplest type would be covariate-
independent censoring, which occurs independently of the death time and all the covariates. 

When this is the only type of censoring present, one can conduct regression analysis of 

RMST using imputed event times based on pseudo-observation methods (Andersen et al. 

2004), or one can construct estimating equations for RMST based on Inverse Probability of 

Censoring Weighting (IPCW; Robins and Rotnitzky 1992; Robins 1993; Robins and 

Finkelstein 2000) as in Tian et al. (2014). However, in observational studies, censoring will 

often depend on the covariate vector. Censoring can depend on baseline covariates, but be 

conditionally independent of the event time given such covariates; this is referred to as 

covariate-dependent censoring. For example, it is common to have staggered entry in an 

observational study with a fixed calendar period, such that subjects who enter later would 

have a different censoring distribution than those who enter earlier; e.g., registration date on 

the wait-list for a liver transplant. Since mortality is often subject to calendar time trends, 

covariate-dependent censoring would be expected to be a frequent occurrence in 

observational studies. Andersen and Perme (2010) and Binder et al. (2014) conducted 

simulation studies to examine the bias and efficiency of the pseudo-observations approach 

for competing risks, in the presence of covariate dependent censoring. A third type of 

censoring is dependent censoring, which is often correlated with the event time through a 

mutual association with time varying covariates. Covariate-dependent and dependent 

censoring have been overcome in many applications by IPCW. Through pseudo-

observations, Xiang and Murray (2012) modeled a standard linear regression of restricted 

survival time on the logarithm scale and handled dependent censoring through IPCW. 

Specifically, we connect the RMST and covariate vector through a user-specified link 

function, while Xiang and Murray (2012) model log restricted survival time through linear 
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regression. In addition, being based on a pseudo-observation approach, their work has no 

systematic procedure for evaluating the asymptotic properties. To our knowledge, there is no 

existing method to directly model RMST in the presence of dependent censoring, or even 

covariate-dependent censoring.

The setting which motivated the proposed methods involves mortality in the absence of liver 

transplantation among End-Stage Liver Disease (ESLD) patients. Since the number of 

patients in need of liver transplantation is much greater than the number of available 

deceased-donor livers, medically suitable ESLD patients are placed on a wait-list. Priority 

for transplantation is then determined by medical urgency, as quantified by the Model for 

End-Stage Liver Disease (MELD) score. This score is calculated using bounded versions of 

serum bilirubin, serum creatinine, international normalized ratio for prothrombin time (INR) 

and dialysis status (Kamath et al. 2001; Wiesner et al. 2003). The MELD score has been 

shown to be strongly predictive of pre-transplant survival among chronic ESLD patients 

(Wiesner et al. 2001). For a given ESLD patient, the MELD score is updated frequently, 

such that MELD constitutes a time-varying covariate. Since wait-listed patients are 

sequenced on the wait-list in decreasing order of current MELD score, MELD is strongly 

associated with transplant rate. As the organ assignment is correlated with pre-transplant 

mortality through its mutual association with time varying MELD score, dependent 

censoring occurs through the receipt of a liver transplant, which precludes the observation of 

pre-transplant death. We are interested in the effect on pre-transplant mortality of prognostic 

factors observed at the time of wait-listing, as such information would be useful to 

hepatologists and transplant surgeons for counseling patients.

We propose semi-parametric regression methods for directly modeling RMST given baseline 

covariates in the presence of both covariate-dependent and dependent censoring. The 

proposed methods can be used to evaluate the cumulative effect of baseline covariates and to 

quantify treatment effects in terms of contrasts in RMST. Our proposed methods do not 

require any distributional assumption on the death variates and, analogous to generalized 

linear models, allow for different link functions.

The contribution of our proposed work, compared to Tian et al. (2014), is that the latter 

requires that censoring does not depend on the covariate vector. Although random censoring 

may be a reasonable assumption in clinical trials, it will often fail in observational studies. 

Our methods not only allow for covariate-dependent censoring, but also allow for dependent 

censoring (e.g., dependence between the death and censoring times not captured by the 

covariates used in the death model). In Tian et al. (2014), the weight function is the inverse 

of the Kaplan-Meier estimator. In the methods we propose, we distinguish between covariate 

dependent and dependent censoring; in particular, a double inverse weight is required and 

estimated through separate Cox models for the two types of censoring.

The remainder of this article is organized as follows. In Section 2, we formulate the data 

structure, define the necessary assumptions and then describe the proposed methods. 

Asymptotic properties are given in Section 3. In Section 4, we conduct simulation studies to 

evaluate the accuracy of the proposed procedures in finite samples. In Section 5, we apply 

our methods to the motivating ESLD data to determine the effect on pre-transplant mortality 

Wang and Sehaubel Page 3

Lifetime Data Anal. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of several clinically meaningful variables. We conclude this paper with a brief discussion in 

Section 6. Derivation of the asymptotic properties and additional results for ESLD data 

analysis are provided in the Supplementary Materials.

2 Proposed Methods

We begin with the necessary notation. Let Di be the treatment-free survival time for subject i 
from a cohort of sample size n. We consider two types of censoring. One potential censoring 

time, denoted as Ci, is independent of Di conditional on the baseline covariates; this type of 

censoring includes loss to follow-up or administrative censoring on the day the database 

closes. The other potential censoring, denoted as Ti, is not conditionally independent of Di 

given baseline covariates; one example would be treatment time, which may dependently 

censor pre-treatment mortality. The observation time for subject i is Xi = Di ∧ Ti ∧ Ci, where 

a ∧ b = min{a, b}; and the indicators for at risk status, pre-transplant death, dependent and 

independent censoring are denoted by Ri(t) = I(Xi ≥ t), , 

 and  respectively. We denote the covariates 

predicting Di, Ti and Ci by ,  and  respectively. Although we have defined 

these notations to accommodate time varying covariates, some elements of each may be time 

constant; e.g., gender or race. In some practical studies, the investigators might want to use 

the same covariate set for censoring and death time; however, we will distinguish these 

covariate sets for the purpose of generality. Stacking these covariates together and removing 

any redundancy, we obtain Zi(t) and the corresponding covariate history as 

. Our observed data are then given by {Xi, , , ,  : i = 

1, …, n}.

Let L be a pre-specified time point of interest, before the maximum follow-up time τ = 

max{Xi : i = 1, …, n}. Denote the restricted observation time as Yi = Xi ∧ L and its 

corresponding indicator Δi = I(Di ∧ L ≤ Ti ∧ Ci). We are interested in the average survival 

time up to L and will model this measure through baseline covariates :

Analogous to a generalized linear model, we assume a direct relationship between this 

RMST and baseline covariates as follows:

(1)

where g is a strictly monotone link function with a continuous derivative within an open 

neighborhood  of βD. Examples of link functions include g(x) = x (identity link), g(x) = 

log(x) (log link) and g(x) = log(x/(L − x)) (logistic link). We choose to model the impact of 

baseline covariates for many reasons. First, our intention is to develop a model useful for 

application at the start of follow-up. For example, modeling (1) such modeling could be used 

in counseling ESLD patients regarding their prognosis in the absence of liver 
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transplantation, given the information observed at the time of wait-list registration. Second, 

RMST predictions based on time-dependent covariates are difficult to interpret, at least for 

internal time varying factors (Kalbfleisch and Prentice, 2002). The role of Zi(t) depends on 

the model being considered. In model (1), only baseline values are used and we average over 

the time-varying process. However, time-dependent values are needed to accommodate 

dependent censoring, as explained in the paragraphs below.

The choice of L requires careful thought. One would normally choose a time point of 

clinical relevance or, at least, of particular interest to the investigators, respecting the bound 

at the maximum follow-up time. If too small an L value is selected, D ∧ L = L for most 

subjects, leading to a largely uninformative analysis. Conversely, if too large an L value is 

selected, Ŝ(L) ≈ 0. Setting L too large or too small will generally result in attenuated 

covariate effects. The choice of link function also requires some consideration. The identity 

link is usually the most interesting because of its straightforward interpretation. However, it 

has the problem of unbounded predicted values. From this perspective, the logistic link may 

be a better choice, at least for the purposes of prediction. In addition, practitioners can 

conduct sensitivity analyses and model diagnostic procedures to test the performance of 

different link functions, as we demonstrate in Section 5.

Note that we do not make any assumption about the error structure, in the interest of 

flexibility and robustness. Although it might be difficult to envision an arbitrarily truncated 

variate having a well-behaved distribution, it is reasonable to assume that the corresponding 

mean has a convenient form. Framing the model in terms of g[E(Di ∧ L)] instead of E[g(Di 

∧ L)] is very important in our settings. For example, if , the 

parameters in βD can be interpreted as the multiplicative effect on RMST per unit increase in 

the corresponding covariate. This is quite different from the model assumption 

, where βD equals the average change in logarithm of restricted 

survival time per unit increase in . The latter interpretation is much less intuitive, since 

back-transforming is invalid in the light of Jensen’s Inequality.

We now derive the estimating equation for the parameter of interest, βD. In absence of 

censoring, based on (1), βD could be estimated via the following estimating equation:

(2)

Although connected to generalized linear models, (2) is more accurately interpreted as a 

generalized estimating equation due to the absence of distributional assumptions on Di ∧ L.

However, we will not observe Di for all patients due to the occurrence of censoring. Instead 

we may observe either independent censoring time Ci or treatment time Ti. Provided that a 

rich set of variables is included in Zi(0), we assume that Ci is conditionally independent of 

Di, given the baseline covariate vector. Such an assumption is not assumed to hold for Ti; 

however, we can assume that the dependence of Ti and Di occurs through (and only through) 
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the time varying process . That is, conditional on , we assume “no unmeasured 

confounders”, which can be formulated as follows:

This essentially assumes that the hazard of being censored by Ti at t depends only on the 

observed covariate history up to t and not additionally on future data. For example, based on 

the current liver allocation system, the receipt of a deceased-donor transplant depends only 

on the patient’s current prognostic factors, and not the future disease pathology.

Denote the hazard functions for Ci and Ti at time t as  and , respectively; i.e.,

with corresponding cumulative hazards,  and . 

Although  in the presence of censoring, we can show 

that under our assumption the IPCW weighted expectation is still zero; i.e., 

, where , 

 and . Therefore, the following equation is 

unbiased for βD:

(3)

provided that the weight function  is known. However, 

and  are rarely known in practice and therefore must be estimated from the observed 

data. For this purpose, we assume Cox models for  and . Cox regression is a 

natural choice for modeling censoring times since it is a well established approach, 

especially in the context of IPCW. Besides its computational convenience, Cox regression 

can flexibly accommodate both time constant and time varying covariates. We assume the 

following Cox models, for Ti through time-dependent covariates , and for Ci based on 

covariates :
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Using partial likelihood (Cox 1975) and the Breslow estimator (Breslow 1972), we can 

estimate  and  from data , and  and 

from data  respectively. Plugging , , ,  into (3), we 

obtain the following estimating equation,

(4)

where ,  and . The solution to 

(4) provides for consistent estimation of βD, with its asymptotic properties discussed in 

Section 3. The use of a double inverse weight has some similarity to Schaubel and Wei 

(2011). However, unlike the methods we propose, the first weight in Schaubel and Wei 

(2011) is derived from Inverse Probability of Treatment Weighting (IPTW) and serves to 

balance treatment-specific covariate distributions.

3 Asymptotic Properties

Before presenting the asymptotic properties of our proposed estimators, we specify the 

following regularity conditions (a)–(g) for i = 1, …, n.

a.  are independently and identically distributed.

b. P(Ri(t) = 1) > 0 for t ∈ (0, τ].

c.  for i = 1,…,n, where Zik(0);Zik(t) are the kth 

components of Zi(0) and Zi(t), respectively.

d. ,  and ,  are absolutely continuous for t ∈ (0; τ ].

e. There exist neighborhoods  of βT and  of βC such that for k = 0; 1; 2,

where υ⊗0 = 1, υ⊗1 = υ, υ⊗2 = υ′υ and

f. Define h(x) = ∂g−1(x)/∂x, where h exists and is continuous in an open 

neighborhood  of βD.

g. The matrices A(βD), ΩT (βT), ΩC(βC) are each positive definite, where
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and

Condition (a) can be relaxed at the expense of additional technical development. Condition 

(b) is needed for the purpose of identifiability. Conditions (c)–(f) ensure the convergence of 

several stochastic integrals used in the proofs. The matrices A(βD), ΩT (βT), ΩC(βC) in 

condition (g) are at least non-negative definite and will be positive definite under any non-

redundant specification of the respective covariate vectors. Our main asymptotic results are 

summarized in Theorems 1 and 2 below, with the proofs presented in Web Appendix A.

Theorem 1

Under regularity conditions (a)–(g), as n → ∞,  converges to a zero-mean Normal 

with variance B(βD) = E{Bi(βD)⊗2}, for any subject i = 1, …, n,

where we define

with ΩT (β), ΩC(β) defined in Condition (g).

Here we use the usual counting process notations, where  and 

 are observed counting processes for Ti and Ci respectively, with 

Wang and Sehaubel Page 8

Lifetime Data Anal. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



 and  being the 

corresponding zero mean processes. The proof utilizes various results derived in Zhang and 

Schaubel (2011), primarily the asymptotic expression of the empirical weight in terms of the 

true weight. The main purpose of Theorem 1 is to set up Theorem 2.

Theorem 2

Under regularity conditions (a)–(g), as n → ∞,  converges in probability to βD and 

 converges to a zero-mean Normal with variance A(βD)−1B(βD)A(βD)−1 with 

A(β) defined in condition (g) and B(β) defined in Theorem 1.

The proof of consistency of  follows primarily from the Inverse Function Theorem (Foutz 

1977) while the proof of asymptotic normality follows through the combination of various 

Taylor series expansions and the Cramér-Wold Theorem.

We propose two versions of asymptotic standard error (ASE) estimators for our proposed 

estimator . The first ASE is derived from (3) and, as such, treats the IPCW weights as 

known:

where . The second ASE is based on (4) and derived in Theorem 2:

where . These two ASEs can be obtained by plugging all the 

undetermined terms with their respective estimators. More detail about the calculation 

procedures is provided in Web Appendix B. These two versions of sandwich ASEs share the 

same second derivative matrix, A(β), but differ with two different middle matrices. The first 

version, ASE1, which results from the weight function being known as opposed to estimated, 

treats the weights as fixed and therefore its middle matrix involves εi only. The second 

version, ASE2, contains several extra terms in its middle matrix, in order to account for the 

variation due to estimating the weights. Although ASE2 should be closer to the truth, it adds 

the complexity of middle matrix and is usually more complicated to calculate in practice 

than ASE1. In contrast, ASE1 can be easily computed with built-in commands from many 

statistical software packages (e.g., SAS, R) and therefore serves as a useful approximation of 

ASE2. We evaluate the performance of both ASE1 and ASE2 through simulations presented 

in the next section.

Wang and Sehaubel Page 9

Lifetime Data Anal. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4 Simulation Study

We conducted simulations to evaluate the performance of the proposed methods in finite 

samples. Two different percentages of right censoring were considered, moderate and heavy 

censoring. For each simulated subject i = 1, …, n, two baseline covariates Zi1, Zi2 were 

generated from Bernoulli(0.5) distributions. The death time, Di, was generated from Di = g−1 

(α0 + α1Zi1 + α2Zi2)+ε1i, where ε1i ~ Uniform(−σ, σ), α = [α0, α1, α2]′ and σ were 

chosen in accordance with the particular link function. More specifically, α = [5.5, 0.25, 

0.25]′ was tested for the linear link, and α = [−0.63, .08, .08]′ was tested and for log link. 

This death generator was used to induce the same mean structure for Di and Di ∧ L, as the 

mean structure of the former, g{E(Di|Zi1, Zi2)} = α0 + α1Zi1 + α2Zi2, is similar to that of the 

latter,

(5)

Because the above model (5) is saturated, due to an extra interaction term Zi1Zi2, the true 

values of βD = [βD0, βD1, βD2, βD3]′ can be determined computationally and are calculated 

using Monte Carlo methods with size 10 million. We set L = 10 to yield a reasonable range 

of P (D > L). We evaluated the linear and log links, since they would be the most popular 

choices in practice.

We generated the independent censoring time Ci from a Cox model with the following 

hazard,

(6)

where  ranged from 1/36 to 1/21 and βC1 ranged from −log(3) to log(2). We generated a 

time-dependent covariate which was correlated with death time Di and treatment time Ti 

even after conditioning on baseline covariates Zi1, Zi2. First, let Vi = −V0 log{(εi1 + σ)/

(2σ)} + εi2, where V0 is a constant ranging from 40 to 100 and εi2 ~ Uniform(0, 1). Then 

define a time-dependent variable Vi(t) = I(t ≤ Vi). Thus Vi(t) is still correlated with Di, 

through εi1, even after conditioning on Zi1, Zi2. Treatment time Ti was generated from a Cox 

model with the following hazard,

(7)

where  ranged from 1/35 to 1/18, βT1 ranged from −log(4) to log(3) and βT2 ranged from 

log(2) to log(3). Therefore Ti is correlated with Di conditional on Zi1, Zi2, through a mutual 

unobserved variable εi1.

We present results for samples sizes n = 250 and n = 500, under moderate and heavy 

censoring. For the linear link, P (D > 10) ≈ 11%, approximately 10% Ci and 21% Ti are 

observed in the moderate censoring scenario, and 15% Ci and 36% Ti are observed in the 
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heavy censoring scenario. For the log link, P (D > 10) ≈ 10%, approximately 8% Ci and 

24% Ti are observed in the moderate censoring scenario, with 15% Ci and 35% Ti observed 

in the heavy censoring scenario. As displayed in Tables 1 and 2, the estimates for βD are 

approximately unbiased, with the magnitudes of any bias generally decreasing with 

increasing sample size. The calculated ASE1s and ASE2s are very close to their 

corresponding empirical standard deviations (ESD), and therefore their empirical coverage 

probabilities CP1 and CP2 are close to 95%. The implications from our simulation studies 

are that, in moderate samples, the proposed methods result in unbiased estimation, and that 

the easily computed ASE1 is a useful approximation to the more complicated ASE2. In our 

real-data application presented in Section 5, the sample size far exceeds 1,000, which would 

render finite-sample bias in ASE1 much less of an issue than in our simulation studies.

Mis-specification of the censoring model is a common issue in IPCW methods, in which 

case bias will generally exist in the estimation of the mortality model parameters. To 

evaluate how much bias is introduced by such mis-specification, we conducted additional 

numerical studies. In particular, we considered 3 different types of mis-specification:

i. Model for independent censoring, C, is mis-specified: add a covariate, Zi2, to the 

censoring hazard ; i.e., Zi2 was added to the generator, but not the model for 

Ci being fitted.

ii. Model for dependent censoring, T, is mis-specified: add a covariate, Zi1, to 

censoring hazard , but not to the Ti model being fitted.

iii. Models are mis-specified for both C and T simultaneously, per (i) and (ii) above.

Figure 1 displays the bias for sample size N = 250 calculated with 1, 000 replications for the 

4 scenarios in Table 1 and 2, after introducing mis-specification (i)–(iii). In general, bias 

exists when the censoring model is not correctly specified, and is more pronounced when 

both types of censoring are incorrectly modeled.

An interesting comparison is between our methods and those proposed by Tian et al. (2014). 

Methods of Tian et al. (2014) were developed in the context of covariate-independent 

censoring and, thus, proposed IPCW weights based on Kaplan-Meier estimators. When the 

censoring mechanism is more complicated than independent censoring (i.e., in presence of 

either covariate-dependent or dependent censoring), then our methods should perform better 

than Tian’s methods. We illustrated this phenomenon with additional simulations; 

specifically, we ran the simulation studies in Table 1 and 2 again, applied Tian et al. (2014), 

and then plotted the resulting bias along with the bias from our methods. As shown in Fig 2, 

Tian et al. (2014) has quite severe bias for N = 250 cases, with similar results obtained for 

the N = 500 case. This is expected, since we are testing Tian et al. (2014) outside the set-up 

for which the methods were developed.

In presence of only covariate-independent censoring, both our methods and those of Tian et 

al. (2014) should apply. In evaluating our methods, we blindly added non-predictive 

covariates into the censoring model, in order to assess the degree of efficiency loss. We 

generated death time with Di = g−1 (5.25 + 0.5Zi1 + 0.5Zi2) + ε1i, where Zi1, Zi2 ~ 

Bernoulli(0.5) and ε1i ~ Uniform(−5.25, 5.25). We chose L = 9 and introduced a simple 
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censoring pattern (Exponential, rate 0.05). Approximately 79% D’s are observed, with P (D 
> L) ≈ 19%. In Table 3, Bias1 and ESD1 are bias and empirical standard deviation (ESD) 

calculated by our methods with futile covariates Zi1, Zi2 in the censoring model, and Bias2 

and ESD2 are calculated using Tian et al. (2014) with a correctly specified non-parametric 

censoring model. The last column is Empirical Relative Efficiency (ERE) between Tian et 

al. (2014) and our methods, computed as the ratio of mean square error. Examining various 

replicates, the estimated regression coefficients for the C model tends to be very close to 0, 

with large p values. In practice, users would feel inclined to drop them from the model, due 

to their negligible effect on C. Since these non-zero censoring coefficients are actually 0, our 

methods have a little bit greater bias than Tian et al. (2014). Regarding efficiency, our 

methods exhibited approximately the same efficiency as Tian et al. (2014), despite including 

the two irrelevant covariates in the C model.

5 Analysis of Liver Disease Data

We applied the proposed methods to directly estimate RMST among End-Stage Liver 

Disease (ESLD) patients. Of interest was survival in the absence of liver transplantation. We 

obtained data from the Scientific Registry of Transplant Recipients (SRTR). The SRTR data 

system includes data on all donors, wait-listed candidates, and transplant recipients in the 

U.S., as submitted by the members of the Organ Procurement and Transplantation Network 

(OPTN), and has been described elsewhere. The Health Resources and Services 

Administration (HRSA), U.S. Department of Health and Human Services provides oversight 

to the activities of the OPTN and SRTR contractors.

The study population consisted of all chronic ESLD patients initially wait-listed for 

deceased-donor liver transplantation in U.S. at age ≥ 18 between January 1, 2005 and 

December 31, 2012. For each patient, the time origin (t = 0) is the date of wait-listing, with 

each patient followed from that date until earliest of death, receipt of a liver transplant, loss 

to follow-up, or the end of the observation period on 12/31/2012. Independent censoring 

occurs through loss to follow-up, administrative censoring, or receipt of a living-donor liver 

transplant. Note that living-donor transplantation is usually carried out with a liver segment 

donated by a family member or a close friend, such that the process is not systematically 

influenced by MELD score trajectory conditional on baseline covariates. As described in 

Section 1, dependent censoring occurs through the receipt of a deceased-donor transplant, 

which is correlated with pre-transplant mortality through its mutual association with time 

varying MELD score. A total of n =55,651 patients were included in our study population. 

Among them, 13,640 (25%) died before receipt of a transplant, 23,335 (42%) received a 

liver transplant, and 18,676 (34%) were independently censored.

We constructed our independent censoring model and pre-transplant mortality model using 

baseline covariates historically reported to be important prognostic factors, including age, 

gender, race, blood type, United Network for Organ Sharing (UNOS) Region, calendar year 

of listing, underlying diagnosis, body mass index (BMI), dialysis, sodium, hospitalization 

status and MELD score at listing (t = 0). The liver transplant hazard model incorporated 

additional time-dependent covariates, including MELD score, dialysis, sodium, ascites and 

encephalopathy. UNOS has established 11 geographic Regions for administrative purposes. 
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The availability of deceased-donor organs and the distribution of mortality is quite different 

across these 11 Regions. This therefore suggests the necessity of adjusting for UNOS 

Region in both our censoring and mortality models:

(8)

(9)

where the subscript j = 1, 2, …, 11 stands for UNOS Region, while the indicator Ai(t) 
records whether the patient is active and not removed from the wait-list at time t. Patients 

generally start follow-up as active, such that Ai(0) = 1, but may be made temporarily inactive 

due to illness (Ai(t) = 0), in which case the patient retains his/her position on the wait-list but 

cannot receive deceased-donor liver offers. A patient whose health condition declines to the 

point where liver transplantation is considered futile may be permanently removed from the 

wait-list (Ai(u) = 0 for any time point u after the time of removal). Therefore Ai(t) serves as 

a time varying at-risk indicator for transplantation. Subintervals during which a given patient 

is in-active make no contribution to the fitting of model (8). We then compute cumulative 

hazard functions as  and 

 and obtain the IPCW weight as 

. Since more than 99% of the estimated IPCW weights are 

below 10, we cap the weights by 10 in order to reduce variance.

We modeled restricted mean survival time at L = 1, L = 3, L = 5 years post wait-list 

registration, which are reasonable time windows in the ESLD setting. Overall crude survival 

probabilities are approximately 79%, 62% and 51% for the 3 time windows respectively. We 

present the parameter estimates for the pre-transplant mortality model using three link 

functions, including linear, log and logistic. As shown in Table 4, the covariate effects 

demonstrate the same trends across the different link functions. The average pre-transplant 

survival time out of the next 3 years is estimated as approximately 33, 35.8, and 33 months 

using the three link functions respectively, for a ‘reference’ patient; i.e., a white male wait-

listed at age 50, registered in Region 5 (the Region with the largest population) during year 

2005, diagnosed as none of the listed types, not hospitalized, not on dialysis, with blood 

Type O, BMI between 20 and 25, sodium level at 130 mmol/l and MELD score 6 (the 

minimum possible value). For another patient with the same profile but a different MELD 

score (e.g., MELD=30), the average pre-transplant survival time out of the next 3 years is 

estimated as approximately 11.6, 9.8, and 7.5 months respectively. This discrepancy in 

predicted RMST underscores the importance of the MELD score. The linear link does not 

always result in fitted RMST values within an admissible range (0, L]. This could perhaps be 

remedied by transforming various covariates, or by simply bounding estimated RMST. The 
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remaining parameter estimates for the 1- and 5-year windows are provided in Web Appendix 

E.

Figure 3 plots fitted RMST values (L = 3 years) by MELD score (ranging from 6 to 40; i.e., 

for all possible MELD scores), for the above-described reference patient. For all the three 

link functions, RMST decreases strongly with increasing MELD score, as anticipated. The 

fitted values based on all the three links result in fitted values which tail off at higher MELD 

scores. Among the three link functions, the linear link may be most appealing in terms of its 

straightforward interpretation. For example, for per unit increase in a patient’s MELD score, 

the average survival time (capped at 3 years) will decrease approximately 0.9 months; for a 

5-year increase in age at wait-listing, 3-year RMST decreases by approximately 1 month. 

Analogous trends are also observed in the models using the other two link functions. We will 

further compare the model adequacy using different link functions in terms of discrimination 

ability and prediction accuracy.

To evaluate each model’s discrimination ability, we compute the Index of Concordance 

(IOC), also known as the C statistic (Harrell et al. 1996; Heagerty and Zheng 2005; Uno et 

al. 2011), denoted by:

This statistic converges to a censoring distribution free quantity, 

, measuring the agreement of predictions with 

observed failure order. Quantities frequently used to evaluate model prediction accuracy 

include the mean absolute deviation (MAD) and mean squared deviation (MSD) (see 

Davison and Hinkley 1997; Tian et al. 2007), formulated as:

which converge to  and 

respectively, quantifying the “distance” between predicted and observed outcomes. Proof 

sketches of the convergence of IOC, MAD and MSD are provided in Web Appendix C.

In Table 5, we calculate these three statistics for the 9 models (3 link functions, with 3 values 

of L) through 2-fold cross validation. Specifically, we split our data by randomly selecting 

half of patients (n =27,825) into a “training” set (to which the models are fitted), and using 

the remaining half (n =27,826) as the “validation” set (to which the discrimination and 

predictive accuracy measures are applied). For L = 1, IOC=0.82 for all three link functions. 

For L = 3 and L = 5, IOC is largest for the log link, although not by a wide margin. As L 
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increases, the IOCs decrease, for all link functions; this makes sense intuitively since 

covariate measurements at times more distant in the past should correspond to reduced 

discrimination. In terms of both MAD and MSD, the logistic link has the best prediction 

accuracy by a fair margin.

6 Discussion

We have proposed methods to model restricted mean survival time as a function of baseline 

covariates, using techniques that are valid under a wide variety of censoring mechanisms. 

RMST is often of inherent interest to investigators, especially in settings where cumulative 

covariate effects are appealing. RMST is also an attractive alternative when the proportional 

hazards assumption does not hold. We have constructed double IPCW weights to 

simultaneously account for independent and dependent censoring. This general setup is 

frequently necessary in applications, and failing to account for either type of censoring may 

result in biased estimation of the mortality model. In studies with only one type of 

censoring, one would need to calculate the corresponding IPCW weight and set the other to 

1. In the interests of flexibility and robustness, our proposed approach does not assume a 

model for the death time D∧L but for its mean E(D ∧ L). This, however, sacrifices some 

efficiency in settings wherein a (correctly specified) parametric model is assumed.

Stemming from our current work are several interesting directions worth exploring in the 

future. One is to consider ‘residual’ RMST (Grand and Putter 2015); i.e. conditional RMST 

given that the patients is still alive at a later time point after being wait-listed. This could be 

achieved by applying our methods to landmark analysis, which incorporates time-varying 

covariates in the mortality model. For instance, results from this landmark analysis should be 

of interest to patients (already wait-listed for a period of time) who want to know the effect 

of MELD on residual survival time. It would also be interesting to contrast RMST to the 

analogous number, expectancy of life lost before time L, which is the area under the curve of 

cumulative incidence functions rather than marginal survival functions. Andersen (2013) has 

discussed decomposition of number of life years lost using pseudo-observations in the 

context of competing risk. Assuming the absence of time-varying covariates (as needed in 

Andersen 2013) and the use of a simple linear link, we expect the estimated covariate effects 

from modeling number of life years lost would remain the same magnitude but change the 

sign, and the intercept would change to L subtracted by the intercept in RMST model. 

Furthermore, one recent paper by Zhao et al. (2016) proposed to infer RMST curves as a 

function of L. Following this direction, extension of our methods to RMST curves might be 

worth further consideration.

We have applied our proposed method to ESLD data to study pre-transplant mortality. Such 

data requires consideration not only of independent censoring, but also of dependent 

censoring, where the receipt of a transplant precludes observation of wait-list mortality. This 

is the first paper to directly estimate RMST in the ESLD setting. The R code to implement 

our methods is available upon request to the first author.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Bias of [βD0, βD1, βD2, βD3]′ when censoring models are mis-specified

Wang and Sehaubel Page 18

Lifetime Data Anal. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Bias comparison between our and Tian’s methods in presence of dependent censoring
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Fig. 3. 
Fitted RMST (L = 36 months) by MELD score for a reference patient: white, male, age=50, 

Region=5, year=2005, not hospitalized, not on dialysis, blood Type=O, BMI ∈ (20, 25], 

sodium=130
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Table 5

Index of Concordance (IOC), Mean Absolute Deviation (MAD) and Mean Squared Deviation (MSD): 

Comparison of link functions by L (years)

Measure L Linear Log Logistic

IOC 1 0.82 0.82 0.82

3 0.77 0.78 0.77

5 0.72 0.75 0.74

MAD 1 1.52 1.67 1.36

3 5.08 5.05 4.58

5 7.19 6.56 6.06

MSD 1 6.66 6.97 6.42

3 70.10 69.51 66.02

5 153.25 145.78 139.75

Lifetime Data Anal. Author manuscript; available in PMC 2019 January 01.


	Abstract
	1 Introduction
	2 Proposed Methods
	3 Asymptotic Properties
	Theorem 1
	Theorem 2

	4 Simulation Study
	5 Analysis of Liver Disease Data
	6 Discussion
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5

