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A B S T R A C T

Objective: To examine the prognostic capabilities of intravoxel incoherent motion (IVIM) metrics and their
ability to predict response to neoadjuvant treatment (NAT). Additionally, to observe changes in IVIM metrics
between pre- and post-treatment MRI.
Methods: This IRB-approved, HIPAA-compliant retrospective study observed 31 breast cancer patients (32 le-
sions). Patients underwent standard bilateral breast MRI along with diffusion-weighted imaging before and after
NAT. Six patients underwent an additional IVIM-MRI scan 12–14 weeks after initial scan and 2 cycles of
treatment. In addition to apparent diffusion coefficients (ADC) from monoexponential decay, IVIM mean values
(tissue diffusivity Dt, perfusion fraction fp, and pseudodiffusivity Dp) and histogram metrics were derived using a
biexponential model. An additional filter identified voxels of highly vascular tumor tissue (VTT), excluding
necrotic or normal tissue. Clinical data include histology of biopsy and clinical response to treatment through
RECIST assessment. Comparisons of treatment response were made using Wilcoxon rank-sum tests.
Results: Average, kurtosis, and skewness of pseudodiffusion Dp significantly differentiated RECIST responders
from nonresponders. ADC and Dt values generally increased (∼70%) and VTT% values generally decreased
(∼20%) post-treatment.
Conclusion: Dp metrics showed prognostic capabilities; slow and heterogeneous pseudodiffusion offer poor
prognosis. Baseline ADC/Dt parameters were not significant predictors of response. This work suggests that IVIM
mean values and heterogeneity metrics may have prognostic value in the setting of breast cancer NAT.

1. Introduction

Diffusion weighted imaging (DWI) can be useful in characterizing
cancerous tissue heterogeneity, motivating its broad adoption in on-
cologic management. While random water diffusion is found in all
fluids, biological tissues can contribute to both active transport or
pseudodiffusion effects to which DWI is sensitive; this is especially true
with highly vascularized cancer tissue. Through DWI, biomarkers have
been developed that are sensitive to microvascular flow via intravoxel
incoherent motion (IVIM) analysis [1].

Using IVIM, one can quantify the tumor hypervascularity and

hypercellularity, which has been shown in a range of breast cancer
studies [2–8]. Furthermore, histogram analysis of the spatial distribu-
tion of IVIM parameters can provide additional markers (e.g. skewness
and kurtosis) for characterization of the heterogeneity of the tumor
microenvironment [2–12].

While IVIM metrics can distinguish between benign and malignant
breast lesions [2,3,5,11,13], there is also interest in determining whe-
ther these IVIM metrics can predict treatment response or segment
patient populations based on degree of response to treatment. Neoad-
juvant treatment (NAT), which has traditionally been used for locally
advanced breast cancer [14], is increasingly used in operable breast
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cancer because it can be as effective as adjuvant chemotherapy. Ad-
ditionally, it allows breast conservation in women who historically re-
quired mastectomy. Moreover, response to NAT has been shown to vary
with breast cancer molecular subtype with the best possible outcome,
pathological complete response (pCR), being associated with improved
disease free survival [14,15]. However, pCR rates after NAT are around
20–30% [15,16], and broken down by molecular subtype, they range
from less than 10% for Luminal A to 50–60% for Her2-positive, ER
negative subtypes [17,18]. Accordingly, NAT can be used as an in vivo
test for chemo-sensitivity, thereby providing prognostic information
with respect to long term response to treatment [16]. Therefore, there is
motivation to better understand, segment, and develop prognoses for
the patient population that does not report pCR.

A key advantage of an imaging marker of response to NAT is an
early stratification between patients who have pCR, those who show
response to NAT, and those who do not. Such a biomarker will provide
utility in treatment planning as clinicians can assess the effectiveness of
treatments early to avoid debilitating side effects, minimize treatment
costs, and expedite alternative treatment protocols to increase overall
survival. At present, pre- and post-NAT contrast-enhanced MRI (CE-
MRI) are commonly used to evaluate response of a tumor to NAT [19].
However, there are limitations to CE-MRI as well as risks in using
contrast agents for the minority of patients with impaired kidney
function. Therefore, finding an alternative non-contrast imaging tool
capable of predicting treatment response in the NAT setting is highly
valued. Finally, beyond the highly desirable outcome of pCR in NAT,
quantitative imaging can provide guidance on improved operability
through tumor size reduction. Even when pCR is not achieved in the
pre-surgical period, tumors can be dramatically downsized for excision
and adjuvant treatment. The ability of quantitative imaging, such as
IVIM, to stratify these partial responders is an area of great potential.

Conventional diffusion weighted imaging quantified by apparent
diffusion coefficient (ADC) has an increasing track record in prognostic
applications with a growing literature in the case of breast cancer
[20–22]. The IVIM method has recently been applied to neoadjuvant
response prediction in breast cancer studies after therapy [10,23],
considering mean values of IVIM metrics. To more extensively explore
the prognostic utility of IVIM, in this study, we examine breast cancer
patients using pre- and post-treatment imaging and compare the me-
trics from IVIM histogram analysis with treatment response.

2. Methods

2.1. Patients

This IRB approved, HIPAA-compliant retrospective study observed
31 breast cancer patients with 32 lesions (31 invasive ductal carcinoma
and 1 invasive lobular carcinoma). All patients underwent two sets of
MRI scans during April 2011 to March 2013 (‘pre-treatment scans’ and
‘post-treatment scans') accompanied by dose-dense adjuvant doxor-
ubicin-based treatments (N = 24), taxol-based treatments (N = 9), and
docetaxel-based treatments (N = 3). All patients had their first treat-
ment within 30 days of their first MRI exam. Patients were diagnosed
with breast cancer through stereotactic, US, or MRI core biopsy. Table 1
shows patients’ lesion characteristics and scanner magnetic field values.
Final histopathology diagnosis was confirmed through histology, sur-
gery, and clinical follow-up. Additionally, 6 of these patients underwent
an extended post-treatment MRI scan with a multi b value diffusion-
weighted imaging (DWI) approximately 16 weeks after the initiation of
therapy (‘post-treatment IVIM scans’).

2.2. MRI scans

All patients underwent two standard bilateral breast MRI (pre-/post-
treatment) using contrast enhancement in a full body 1.5 or 3T MRI
scanner system (Discovery MR450/750; GE Healthcare, Waukesha, WI)

with either an 8 (3T) or 16 channel (1.5T) breast coil (Sentinelle
Medical, Toronto, Canada), MR examinations included fat-suppressed
T1- and T2-weighted imaging before and at three time points after the
administration of intravenous contrast. All patients (n = 31) also un-
derwent a multi b value DWI protocol ('pre-treatment IVIM scans')
consisted of a single shot spin echo EPI sequence (TR/TE = 4000/
85.3 ms; 4 averages; FOV = 28 × 28 to 36 × 36 cm2; slice thickness:
4–5 mm; acquired matrix: 128 × 128, interpolated to 256 × 256;
19–35 slices; and 10 b values, with b = 0, 30, 60, 90, 120, 250, 400,
600, 800, 1000 s/mm2), while 6 of 31 patients underwent a second
multi b value DWI protocol ('post-treatment IVIM scans').

2.3. Image analysis

A breast radiologist (L.G..) identified lesions on anatomical post
contrast T1 weighted images based on hyperintense signals from axial
images, then region of interests (ROIs) were drawn on the DWI by
another operator (G.Y.C.). Quantitative analysis of DWI was performed
with custom analysis code (Igor Pro 6, Wavemetrics, Inc., Portland,
USA) [2]. Images were first analyzed voxel-by-voxel using a mono-
exponential decay model with all b values to produce apparent diffu-
sion coefficient (ADC) maps for all slices:

=
− ⋅M M e/ b ADC

0 (1)

ADC maps, DWI images, and post-contrast T1-weighted images
guided lesion segmentation for quantitative IVIM. ROIs were drawn on
the largest single slice tumor area and analyzed for all b values. The
cross-sectional area of the lesion as measured on DWI was recorded for
each patient.

Table 1
Patient Lesion Characteristics. Numbers reported are N (%)a.

All patients
(N = 32)

Patients with ‘post-treatment
IVIM scans' (N = 6)

Type
IDC 31 (96.9) 6 (100)
ILC 1 (3.1) 0 (0)

Histology Grade
2 2 (6.2) 0 (0)
3 28 (87.5) 6 (100)
NA 2 (6.2) 0 (0)

Nuclear Grade
2 8 (25) 2 (33.3)
3 18 (56.2) 4 (66.7)
NA 6 (18.8) 0 (0)

Subtypes
HER2+ 4 (12.5) 1 (16.7)
Luminal-A 12 (37.5) 1 (16.7)
Luminal-B 8 (25) 3 (50)
Triple Negative 8 (25) 1 (16.7)

LVI
Negative 7 (21.9) 0 (0)
Positive 24 (75) 6 (100)
NA 1 (3.1) 0 (0)

Pathological Complete
Response
pCR 4 (14.5) 0 (0)
No pCR 28 (87.5) 6 (100)

RECIST
CR or PR 27 (84.4) 5 (83.3)
PD or SD 5 (15.6) 1 (16.7)

Magnetic Field
1.5T 7 (21.9) 2 (33.3)
3T 25 (78.1) 4 (66.7)

a Abbreviations: IDC − Invasive Ductal Carcinoma, ILC − Invasive Lobular
Carcinoma, SD/PD − Stable/Progressive Disease, PR/CR − Partial/Complete Response,
LVI − Lymphovascular invasion, NA − Not Available.
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To distinguish signal attenuation due to microcirculation-induced
spin dephasing from diffusion induced signal attenuation, a biexpo-
nential analysis was used to quantify microvascular and tissue struc-
tural properties. The signal decay curve was measured as a function of
increasing b value and fitted to a biexponential equation:

= ⋅ + −
− − ⋅M M f e f e/ (1 )·p

b D
p

b D
0 p t.

(2)

where M0 is total reference magnetization, fp is perfusion fraction, Dp is
pseudo-diffusivity, and Dt is tissue diffusivity. For all analyses, a “seg-
mented” approach was employed by fitting the higher b value region
(b > 200 s/mm2) to calculate IVIM parameters, fp and Dt, and then
extracting Dp from a constrained fit to the entire b value set [2].

In addition, implementation of a vascular tumor tissue (VTT) filter
was used for parametric map analysis [24]. Since voxel-wise IVIM
analysis allows the delineation of viable tumor tissue within a typically
heterogeneous texture of cellularity, necrosis, and normal tissue, one
can apply a filter (VTT filter) that selectively chooses voxels that are
most critical or relevant, i.e. highly vascular tissue that signifies the
most aggressive regions of the cancer. This filter, based on the Aikake
information criterion to test applicability of each voxel’s biexponential
fit [24] provided the number of voxels of vascular tumor tissue, as a
fraction of total lesion voxels. Finally, histogram analysis on all lesion
voxels was performed to quantify tumor heterogeneity [2] with mean,
maximum, minimum and heterogeneity metrics (standard deviation,
skewness and kurtosis). The full workflow employed was described
previously [2].

2.4. Clinical data

Data collected include histology of biopsy and surgical specimens to
determine pathological complete response, (pCR). Another method of
observing response was the RECIST criteria, where tumor size reduction
was measured using pre- and post-treatment post-contrast T1 images
[Complete response (CR) − disappearance of target lesion; partial re-
sponse (PR) − at least 30% decrease in the sum of diameters of the
target lesion, taking as reference the baseline sum of diameters; pro-
gressive disease (PD)− at least 20% increase in the sum of diameters of
the target lesion; and stable disease (SD) − neither sufficient shrinkage
for PR or sufficient enlargement for PD] [25]. One patient was excluded
for lack of response data while 1 smaller lesion (< 2 cm) was excluded.
Table 1 shows patients’ prognostic factor data. IVIM biomarkers were
tested for prognosis of response as defined by RECIST criteria.

2.5. Statistical analysis

One subject contributed two observations due to bilateral breast
cancer; all other subjects contributed only one observation. Differences
in IVIM parameters by treatment response were tested using the
Wilcoxon rank-sum test. Adjustment for multiple comparisons was
made using the false discovery rate (FDR) method, which controls the
expected proportion of null hypotheses that are incorrectly rejected. A
p-value< 0.05 was considered statistically significant. P-values are
shown both before and after adjustment for multiple comparisons.
Statistical analyses were conducted in R software version 3.1.1 (R Core
Development Team, Vienna, Austria).

3. Results

3.1. Patients

Mean age of all patients was 47.40 ± 8.84 years
(50.18 ± 10.51 years for responders, 46.26 ± 11.66 years for non-
responders) with a range of 28–66 years. All analyzed lesions had a
diameter that was greater than 2 cm on contrast-enhanced imaging and
median (minimum, maximum) ROI size from DWI segmentation was

13.84 (3.43, 44.45) cm2. Additionally, all patients with pCR were
considered responders according to RECIST criteria (all patients with
RECIST criteria of CR were determined to be pCR); all other patients
with other RECIST criteria were reported to have no pCR. A total of
twenty four patients underwent a 3T MRI pre-treatment scan, while
seven patients underwent a 1.5T MRI pre-treatment scan. Among the
six patients who had both a pre- and post-treatment scan, two patients
underwent a 1.5T MRI pre-treatment then a 3T MRI post-treatment scan
while one patient had a pre-treatment 3T scan and a 1.5T post-treat-
ment scan. The other three patients all received 3T MRI pre-/post-
treatment scans.

For the pre-treatment data, the median (minimum, maximum) value
of average ADC found for all lesions was 1.10 (0.56, 2.18) μm2/ms, with
1.11 (0.56, 2.18) μm2/ms for all 3T results and 1.10 (0.76, 2.17) μm2/
ms for all 1.5T results. The median (minimum, maximum) values of
average Dt, fp, and Dp found for all lesions were 1.02 (0.55, 2.16) μm2/
ms, 8.8 (4.8, 19.3) %, and 25.05 (15.99, 37.14) μm2/ms, respectively.
The median (minimum, maximum) values for IVIM metrics stratified by
field strength were Dt = 1.02 (0.55, 2.15) μm2/ms, fp = 8.9 (4.8, 15.8)
%, and Dp = 25.52 (15.99, 37.14) μm2/ms for 3T, and Dt = 1.04 (0.71,
2.16) μm2/ms, fp = 8.7 (5.1, 19.3) %, and Dp = 22.04 (20.11, 35.73)
μm2/ms for 1.5T. The values at different field strengths were similar
(Fig. 1), and no significant differences were found between metrics
obtained from different magnetic field strengths.

3.2. Comparison of pre-treatment IVIM with clinical response to treatment

The median (minimum, maximum) values of average ADC for
RECIST nonresponders versus responders to treatment was 1.14 (1.11,
1.28) μm2/ms versus 1.07 (0.56, 2.18) μm2/ms. For median (minimum,
maximum) values of average Dt, fp, and Dp, the average values were
1.05 (0.96, 1.21) μm2/ms, 11.7 (5.2, 14.2)%, and 17.16 (16.9, 25.79)
μm2/ms for nonresponders, while for responders they were 0.99 (0.55,
2.16) μm2/ms, 8.7 (4.8, 19.3)%, and 25.54 (15.99, 37.14) μm2/ms. The
pre-treatment median (minimum, maximum) lesion size on DWI was
13.80 (3.43, 37.0) cm2 for RECIST responders and 23.98 (8.73, 44.45)
cm2 for RECIST nonresponders; these values were not found to be sig-
nificantly different. Table 2 shows ADC and IVIM average and histo-
gram metric median values as well as VTT% and lesion size as a func-
tion of response to treatment. Average, skewness, and kurtosis of the Dp

parameters significantly differentiated between RECIST responders and
nonresponders to treatment before adjustment for multiple compar-
isons (Fig. 1). Furthermore, VTT% nearly significantly differentiated
(p = 0.52) between RECIST responders and nonresponders (median
values − 30.0% versus 40.7%, respectively) prior to adjustment for
multiple comparisons. These significant findings also held true when
selecting for patients who underwent 3T MRI scans. Once the results
were adjusted using multiple comparisons, none of the findings were
considered significant though Dp skewness merits further study. In
addition, ADC and Dt had lower values for responders to treatment, but
were not found to be significant response predictors.

3.3. Comparison of pre- and post-treatment IVIM

Next, we observe that the IVIM parameters changed when com-
paring between pre- and post-treatment MRI scans in six patients. Fig. 2
shows the parametric maps of pre- and post-treatment of a RECIST
responding patient with invasive ductal carcinoma (IDC), while Fig. 3
shows the pre- and post-treatment maps of a RECIST nonresponding
patient with IDC. Lesion size reduction is clearly observable in the re-
sponding patient while ADC and IVIM parameters also show noticeable
differences with treatment (Fig. 2). ADC and Dt values show increases
while fp and Dp are more heterogeneous in the post-treatment maps. In
the nonresponding patient, the change in lesion size is not noticeable;
however, some increased heterogeneity is seen in the post-treatment
maps (Fig. 3). At the group level, ADC and Dt values increased
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(+70.4% and +74.1%, respectively) and VTT% values decreased post-
treatment (−21.0%). Average tumor size reduction was −40.2%. Five
dual scanned patients were responders while one patient was a non-
responder. Fig. 4 shows IVIM, VTT%, and lesion size values for each
patient before and after treatment. Dp values generally decreased post-

treatment (Fig. 4).

4. Discussion

Comparisons of IVIM metrics with clinical response results showed

Fig. 1. IVIM metrics in breast cancer patients stra-
tified by field strength and RECIST response group.
Unadjusted p-values for comparison of responders
(R) to non-responders (NR) are shown.

Table 2
Pre-treatment IVIM average and histogram metric median (min, max) values between RECIST responders and non-responders. Raw and adjusted p-values for Wilcoxon rank-sum test
comparing responders to non-responders are given, with significant group differences in bold.

Overall (N = 32) Responders (N = 27) Nonresponders (N = 5) p adj. p

ADC (μm2/ms) Maximum 2.16 (1.15, 3.00) 2.20 (1.15, 3.00) 2.13 (1.65, 2.93) 0.938 0.938
Minimum 0.49 (0.01, 1.34) 0.48 (0.01, 1.34) 0.54 (0.05, 0.67) 0.697 0.914
Kurtosis 0.98 (−1.17, 4.90) 0.97 (−1.17, 4.90) 1.07 (−0.30, 4.83) 0.815 0.938
Skewness 0.73 (−1.33, 2.05) 0.78 (−1.33, 2.05) 0.21 (−0.72, 1.80) 0.337 0.914
Average 1.10 (0.56, 2.18) 1.07 (0.56, 2.18) 1.14 (1.11, 1.28) 0.103 0.453
St. Dev. 0.30 (0.10, 0.61) 0.30 (0.10, 0.61) 0.31 (0.14, 0.37) 0.856 0.938

Dt (μm2/ms) Maximum 1.91 (1.12, 2.89) 1.90 (1.12, 2.89) 1.96 (1.64, 2.35) 0.452 0.914
Minimum 0.42 (0.01, 1.37) 0.4 (0.01, 1.37) 0.48 (0.05, 0.62) 0.938 0.938
Kurtosis 0.76 (−1.08, 4.52) 0.74 (−1.08, 4.43) 1.01 (−0.42, 4.52) 0.736 0.914
Skewness 0.64 (−1.23, 1.94) 0.78 (−1.23, 1.94) 0.27 (−0.61, 1.36) 0.659 0.914
Average 1.02 (0.55, 2.16) 0.99 (0.55, 2.16) 1.05 (0.96, 1.21) 0.287 0.914
St. Dev. 0.26 (0.08, 0.59) 0.25 (0.08, 0.59) 0.26 (0.14, 0.35) 0.938 0.938

fp Maximum (%) 29.8 (12.2, 83.1) 29.6 (12.2, 83.1) 32.5 (15.9, 69.2) 0.622 0.914
Kurtosis 0.72 (−0.85, 23.56) 0.62 (−0.85, 23.56) 3.37 (−0.85, 5.61) 0.697 0.914
Skewness 0.96 (0.04, 4.54) 0.96 (0.27, 4.54) 1.73 (0.04, 1.88) 0.622 0.914
Average (%) 8.8 (4.8, 19.3) 8.7 (4.8, 19.3) 11.7 (5.2, 14.2) 0.483 0.914
St. Dev. (%) 5.6 (2.5, 17.0) 5.2 (2.5, 17.0) 7.2 (3.2, 11.4) 0.586 0.914

Dp (μm2/ms) Maximum 96.43 (71.36, 99.94) 96.42 (71.36, 99.8) 97.42 (80.7, 99.94) 0.659 0.914
Minimum 0.66 (0.01, 3.07) 0.80 (0.03, 3.07) 0.27 (0.01, 2.16) 0.186 0.690
Kurtosis 2.37 (−0.15, 17.33) 1.98 (−0.15, 6.99) 4.29 (2.73, 17.33) 0.021 0.181
Skewness 1.42 (0.52, 2.98) 1.24 (0.52, 2.31) 2.04 (1.55, 2.98) 0.005 0.143
Average 25.05 (15.99, 37.14) 25.54 (15.99, 37.14) 17.16 (16.9, 25.79) 0.018 0.181
St. Dev. 17.04 (7.49, 23.44) 16.82 (14.38, 23.44) 19.24 (7.49, 19.71) 0.622 0.914

VTT% 35.0 (10.3, 72) 30.0 (10.3, 64.8) 40.7 (38.4, 72) 0.052 0.335
Lesion Size (cm2) 13.84 (3.43, 44.45) 13.80 (3.43, 37.00) 23.98 (8.73, 44.45) 0.248 0.607
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that certain IVIM parameters were able to differentiate between RECIST
responders and nonresponders. Among baseline measurements, Dp and
VTT% were the most prognostic as high vascularity with slow and
heterogeneous pseudodiffusion offering poor prognosis; in a related
sense, decreases in Dp occurred in all dual-scanned responders.
Moreover, the heterogeneity metrics of Dp showed the most interesting
results and demonstrated the utility of using advanced metrics within
IVIM analysis. The significant findings from histogram analysis show
the potential to identify differences in tumor heterogeneity between
responders and nonresponders. These Dp and VTT% results illustrate

that the vascular entities from lesions may be most useful at predicting
response to NAT, and characterization of heterogeneous distribution of
blood volume may be an ideal predictor of response. Some recent
cancer studies have noticed IVIM differences when comparing between
responders and nonresponders [10,26], showing that vascular, along
with cellular, IVIM parameters can be predictive of response [10].
These observations are similar to the results found in this study. Beyond

Fig. 2. Pre- and post-treatment IVIM maps for a RECIST responding patient (no pCR) with
invasive ductal carcinoma.

Fig. 3. Pre- and post-treatment IVIM maps for a RECIST nonresponding patient with
invasive ductal carcinoma.
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this trend, the expansion of IVIM analysis using histograms in this study
can lend further support to better characterize the lesion vascularity.

It should be noted that breast diffusion MRI studies in the neoad-
juvant setting used different ways to define response: four studies used
pCR [10,23,27,28] and three studies used RECIST [20–22]. In our
study, we focused on RECIST to illustrate the potential of IVIM-MRI in
predicting improved surgical operability of breast lesions. However,
RECIST and pCR criteria did correlate in terms of those exhibiting
complete response. Therefore, there remains strong motivation for
having markers of response to NAT to improve treatment planning for
surgery, increase operability, avoid debilitating side effects and ex-
pedite alternative treatments.

The IVIM parameters changes in patients who underwent pre- and
post-treatment MRI scans may be due to the effects of doxorubicin,
herceptin, or taxol-based NAT, which is known to change both the
vascularity and cellularity of tumors based on their anti-angiogenic and
cytotoxic effects [21,29]. While the sample size (six patients), protocol
variations (e.g. type of treatment, scan time after treatment, field
strength, etc.), and infeasibility of inter-scan image registration (due to
large morphologic changes) limited strong conclusions, general trends
could still be observed between pre- and post-treatment scans.

Unlike previous studies [21], baseline values of ADC or Dt were not
predictive of response in our cohort, although early increases in ADC
and Dt values were observed to be largest in dual-scanned responders,
suggesting a decline in cellularity. Baseline ADC trended towards sig-
nificance, but in our cohort, this trend seems to have been dominated
by vascular rather than cellular component as Dt showed no trends.
Additionally, Che et al. [10] found baseline fp, mid-treatment fp and Dt,
and pre/post changes to Dt and fp to predict response, while Bedair
et al. [23] found baseline ADC, Dt, and stretched exponential dis-
tributed diffusion coefficient (DDC), as well as pre/post changes in
ADC, DDC and fp to predict response. The lack of uniformity of protocol
and patients in this study may have contributed to our different find-
ings. However, this present study highlights the fact that both mean
values and heterogeneity metrics from microvascular DWI parameters
can have useful prognostic value in the setting of breast cancer.

This study was limited by several factors. First, patient population
size was small, limiting statistical power and precluding multivariable
analysis. Neither field strength nor neoadjuvant treatment protocol was

controlled for in the enrollment paradigm; however, our initial ob-
servations showed very little bias based on these differences in field
strength and studies have shown that protocols can be used to diminish
the variations caused by differing field strength [29]. Future work will
explore a standardized, uniform IVIM approach in the setting of breast
cancer for more robust results. All of the significant findings did not
persist when using multiple group comparison corrections; however,
some findings, i.e. Dp skewness, showed results that are worthy of
further study. Moreover, multiple comparison correction methods may
often be too conservative for empirical research, especially in our case,
when statistical tests are only performed where there is strong knowl-
edge or understanding for expecting a certain result. While these cor-
rections control for false positives, they do so at the potential expense of
many more false negatives. Finally, there have been some concerns in
regards to the low repeatability/reproducibility of certain IVIM para-
meters (fp, Dp) in some contexts [30] and we have not considered this
aspect in this study.

In conclusion, this work represents a step forward in understanding
the utility of diffusion MRI and IVIM. These tools can provide useful
clinical, non-invasive biomarkers during cancer diagnosis and treat-
ment. We demonstrate that several IVIM biomarkers show potential as
predictors of treatment response to NAT. We also illustrate spatially
dependent physiological changes that are observed after treatment.
Further studies should be conducted to solidify the prognostic value of
the IVIM biomarkers in longitudinal breast cancer studies for treatment
and outcome monitoring.
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