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ABSTRACT
....................................................................................................................................................

Objectives The verification of biomedical ontologies is an arduous process that typically involves peer review by
subject-matter experts. This work evaluated the ability of crowdsourcing methods to detect errors in SNOMED CT
(Systematized Nomenclature of Medicine Clinical Terms) and to address the challenges of scalable ontology verification.
Methods We developed a methodology to crowdsource ontology verification that uses micro-tasking combined with a
Bayesian classifier. We then conducted a prospective study in which both the crowd and domain experts verified a
subset of SNOMED CT comprising 200 taxonomic relationships.
Results The crowd identified errors as well as any single expert at about one-quarter of the cost. The inter-rater
agreement (j) between the crowd and the experts was 0.58; the inter-rater agreement between experts themselves
was 0.59, suggesting that the crowd is nearly indistinguishable from any one expert. Furthermore, the crowd identified
39 previously undiscovered, critical errors in SNOMED CT (eg, ‘septic shock is a soft-tissue infection’).
Discussion The results show that the crowd can indeed identify errors in SNOMED CT that experts also find, and the
results suggest that our method will likely perform well on similar ontologies. The crowd may be particularly useful in
situations where an expert is unavailable, budget is limited, or an ontology is too large for manual error checking.
Finally, our results suggest that the online anonymous crowd could successfully complete other domain-specific tasks.
Conclusions We have demonstrated that the crowd can address the challenges of scalable ontology verification, com-
pleting not only intuitive, common-sense tasks, but also expert-level, knowledge-intensive tasks.
....................................................................................................................................................
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OBJECTIVE
Work in biomedicine to retrieve, integrate, and analyze datasets
often requires domain-specific ontologies that define the enti-
ties and relationships in the discipline. Constructing such ontol-
ogies is an arduous task that typically requires substantial
expert involvement. Recently, researchers have shown how
anonymous online crowds can complete pattern-recognition
tasks, such as image identification, in a scalable and inexpen-
sive manner.1–4 In this work, we evaluated the ability of the
crowd to perform the engineering task of ontology verification
(ie, finding errors). To that end, we asked both the crowd and
domain experts to verify a subset of SNOMED CT (Systematized
Nomenclature of Medicine Clinical Terms), an ontology that the
US government now mandates for use in the clinic as part of
‘Meaningful Use’ of electronic health records.

BACKGROUND AND SIGNIFICANCE
Ontology
Ontologies provide a means by which experts can specify enti-
ties in some domain, their properties, and their relationships to
other entities in a formalized manner. An ontology allows its
users to ‘speak the same language,’ so that they use uniform
terminology to refer unambiguously to the same entities. Using
this powerful property, its users can refer to the same data ele-
ments consistently, and can integrate them readily. Thus,
ontologies facilitate data access, integration, and reasoning.5

Ontologies are vital to many industries, from e-commerce to
biomedicine, from education to security to e-science. For
example, ontologies support indexing systems such as the
Google Knowledge Graph and Medline. Ontologies provide a
generalized, portable, and reusable method to apply knowledge
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computationally, while abstracting that knowledge from any
particular implementation.

In research, the use of ontologies is widespread. Google
Scholar reveals over 60 000 publications since 2012 that refer-
ence ’ontology’. In biomedicine, ontologies combat the ’data
deluge’ and play a key role in describing and integrating data
related to organisms, anatomy, clinical encounters, genes, and
chemicals.6–9 In a high-impact study, Segal et al10 relied on
the Gene Ontology to further the understanding of genetic regu-
latory modules and to identify novel regulatory roles for previ-
ously uncharacterized proteins. Ontologies are central to the
early-warning pharmacovigilance methods recently developed
by Shah and colleagues.11 Finally, quantifying the ubiquity and
diversity of ontologies, the National Center for Biomedical
Ontology’s BioPortal repository contains over 380 ontologies
that describe various subdomains of biomedicine.12

The application of ontology in healthcare dates back to
1893, with the introduction of the Bertillon Classification of
Causes of Death, now the International Classification of
Diseases (ICD), which is in its 10th revision. Today, ontologies
underpin almost all aspects of healthcare including billing,
publication indexing, patient care, epidemiology, laboratory
testing, and prescribing. For example, a healthcare system
may use an ontology to reason about drugs and the classes to
which they belong. Representing this relationship is key when
a computer alerts a physician about possible drug interac-
tions, given a set of patient prescriptions. In fact, the US
Government is mandating the use of such systems through
Meaningful Use criteria.13 These standards require that
healthcare providers use electronic healthcare records in
meaningful ways. One criterion requires use of standardized
vocabularies and ontologies including the ICDs, SNOMED CT,
RxNorm, and LOINC (Logical Observation Identifiers Names
and Codes). Thus, ontologies are a critical component of
healthcare and its technology.

The construction of any ontology is a labor-intensive task
that requires the involvement of domain experts. In addition, as
ontologies become larger and more complex, the challenge of
their development increases, as does the likelihood that they
contain errors. Many biomedical ontologies contain hundreds of
thousands of concepts and relationships among those con-
cepts. At such scale, no single expert can understand the state
of an entire ontology or perform quality assurance adequately
in an unaided manner. As a result, many large biomedical
ontologies, such as the National Cancer Institute Thesaurus
(NCIt)14 and SNOMED CT,15 have been shown to contain sub-
stantial errors in their previous versions. In addition, large
ontologies typically use simplified logic, which makes them
computationally tractable, but increases the risk that they con-
tain errors that cannot be detected computationally. Thus, find-
ing such errors is an arduous process requiring not only
considerable human effort but also a bit of serendipity. Current
methods attempt to detect these errors indirectly and automati-
cally focus on finding inconsistencies in ontology syntax and
structure.16,17 The gold standard for finding errors in semantics
still requires some form of human peer review.

Crowdsourcing
As the internet has grown, crowdsourcing, the process of ‘tak-
ing a job traditionally performed by a designated agent and out-
sourcing it to an undefined large group of people’, has
emerged.1,2 With vast numbers of workers available online,
crowdsourcing now empowers the scientific community to
complete tasks that before were too large, too costly, or too dif-
ficult computationally. To crowdsource a problem in practice, a
requester decomposes a problem into small subtasks, referred
to as micro-tasks, and submits each task to an online com-
munity or marketplace, offering compensation or reward (eg,
money, enjoyment, or recognition). Multiple workers then com-
plete the task and, in aggregate, produce a final result. This
process has enabled the success of popular websites such as
Wikipedia, Kickstarter, and reddit. Researchers are now using
crowdsourcing as an essential tool. For example, in
GalaxyZoo,3 citizen scientists from the crowd help astronomers
to identify and classify galaxies in hundreds of thousands of
images; in Foldit,4 online gamers perform three-dimensional
protein folding for fun. The success of these efforts clearly
shows the power of crowdsourcing in advancing research.

Crowdsourcing typically solves only tasks that are intuitive
(eg, image identification) or that have easily verifiable solutions
(eg, a protein conformation that satisfies predefined con-
straints). Crowdsourcing is generally not applied to tasks that
require a trained expert to use domain-specific knowledge. We
hypothesized that crowdsourcing can indeed solve such less
intuitive problems, and therefore we applied the approach to
ontology engineering. Specifically, we focused on the impor-
tant, challenging task of identifying errors in biomedical ontolo-
gies (ie, ontology verification).

METHODS
We devised a method for scalable ontology verification that
integrates several approaches from crowdsourcing research
into a unified framework (figure 1). We applied this method as
part of a prospective study wherein the crowd verified relation-
ships between entities in SNOMED CT, a large clinical ontology
mandated by the US Department of Health and Human
Services for Meaningful Use of electronic health records.9 In
addition, we compared the crowd with a panel of five clinical
experts who performed the same task, thereby providing a
peer-review standard against which to compare the crowd. A
description of each step in the methodology and prospective
study follows.

Materials
To begin, we selected a portion of the January 2013 version of
SNOMED CT upon which to perform the verification. In particu-
lar, we performed a basic filtering process (figure 2) to select a
random subset of 200 previously unverified, complex, fre-
quently used, entailed hierarchical relationships (eg, ‘pneumo-
nia is a kind of disease of the lung’). Hierarchical relationships
are the dominant type of relationship in biomedical ontologies;
thus we only consider hierarchical relationships in this study.18
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In addition, Rector et al15 have demonstrated previously that
such relationships are particularly prone to error.

Specifically, we began with the SNOMED CT CORE Problem
List Subset (http://www.nlm.nih.gov/research/umls/Snomed/
core_subset.html), a subset of SNOMED CT. The CORE subset
is a selection of the most frequently used terms and concepts
across multiple large US healthcare providers. Next, we used
Snorocket19 to find all hierarchical entailments in that subset
with the following characteristics:

• non-asserted (ie, not directly stated in the ontology);
• non-trivial (ie, every justification has at least two axioms);
• direct (as described in the OWL API)20;
• both the parent and child of the entailment is directly listed

in the CORE.

To create a manageable study size for the experts, we
randomly sampled 200 relationships from the final filtered
subset.

The second component necessary for verification is context.
In previous work, we showed that the crowd performs best

when provided with additional domain information related to
the relationship.21 In this task, we provided users with context
by offering English language definitions for each concept (eg,
‘pneumonia’) in the relationships of interest. Because SNOMED
CT did not have definitions available for the concepts in the
final relationship set, we selected definitions from either (1) the
Medical Subject Headings (MeSH) or (2) the National Cancer
Institute Thesaurus (NCIt), both found in the Unified Medical
Language System (UMLS). If neither source contained a defini-
tion, we did not provide one.

Experiment
We then devised a micro-task with which to perform verification.
We presented each worker (either the crowd or expert) with con-
cept definitions and an English language statement of a relation-
ship (figure 3). In previous work, we determined the optimal
fashion in which to present this task to a worker.21 The worker
then indicated whether the statement was correct or incorrect,
thereby verifying the ontological relationship. We recruited a
crowd workforce through CrowdFlower, an online meta-platform
with access to a large online labor force. We did not select

Figure 1: Overview of the method. We devised a standard workflow with which to perform crowdsourcing tasks. We then
adapted this workflow to the task of ontology verification, shown above. To note, in this work we combine ‘Optimization
Algorithm’ and ‘Spam Removal & Filtering’ in the ‘Response Aggregation’ step. However, we still highlight them because
they are integral components in the generalized crowdsourcing workflow. Specific details of each item in the workflow are
discussed after the overview section of the Methods.
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workers by prespecifying any defining features; thus our work-
force represented reasonable worker diversity. In practice, for
US$0.02/relationship, workers filled out a basic web form (figure
3) that selected a SNOMED CT relationship at random, reformu-
lated the relationship as an English sentence, provided defini-
tions of the SNOMED CT entities when such definitions were
available, and asked whether the sentence was ‘True’ or ‘False’.
Twenty-five workers verified each individual relationship for a
total cost of US$0.50/relationship.

Asking 25 separate workers to complete a single task may
seem gratuitous; however, the power of the crowd lies in its
composite response. We aggregated worker responses using a
Bayesian method developed by Simpson et al,22 which consid-
ers each worker as an imperfect classifier. The method
predicts the difficulty of each verification task, the consistency
of each worker, and the posterior probability of a relationship
being correct or incorrect. Of note, this method performs better

than simple majority voting and mitigates the effect of spam-
ming, a common phenomenon in paid online crowdsourcing.

Concurrently, we asked a panel of five experts (MJ, EPM,
MAM, ALR, and TES) in both medicine and ontology to perform
the same verification task that the crowd performed. These
experts are representative of domain experts who assist with
the development and maintenance of biomedical ontologies.
The experts completed a randomly ordered online survey pre-
sented in a fashion identical with the survey that we adminis-
tered to the crowd, but through a Qualtrics online survey.
For purposes of the study, experts also answered questions
about the relevancy of the definitions of the terms in the rela-
tionship and they provided justifications for their entries. After
the experts completed the tasks, we used the Delphi method
to assist experts in arriving at a single final judgment.23 In
Delphi, we presented each expert with an anonymized sum-
mary of expert responses, including expert-entered comments,
and asked the subjects to update their responses, if necessary.

Analysis
We evaluated the votes from the experts and from the crowd in
three ways: (1) inter-rater agreement, (2) consensus standard,
and (3) cost. For inter-rater agreement, we selected the free
marginal j.24 The free marginal j does not assume a fixed
number of labels for each rater (expert/crowd) to assign, as is
the case for this study––a priori, we do not know the correct
labeling nor how many labels there are. Next, we created a con-
sensus standard from the expert majority vote and the result of
the Delphi session. Specifically, we included only those relation-
ships in the consensus standard upon which experts reached
supermajority (4:1 or 5:0) agreement after Delphi. We then com-
pared the crowd and individual experts against the consensus
standard using sensitivity and specificity. In particular, because
of the relatively small sample size, we bootstrapped the samples
(relationships) to obtain a mean area under the receiver operat-
ing characteristic (ROC) curve. By bootstrapping, we were able
to estimate how our method would perform, on average, when
verifying other relationships not in the experiment. To evaluate
whether our method performs better than random, we used per-
mutation testing to compare the null distribution with the boot-
strapped distribution.25 In addition, we bootstrapped the workers
to estimate how well our method would perform, on average,
when other workers performed the same verification task.
Finally, we measured the cost of verifying relationships. To do
so, we tracked the number of crowd workers required to com-
plete the task and multiplied by the fixed remuneration of
US$0.02/worker/relationship. Likewise, we asked experts to
track their time in completing the task. Then, using the mean
expert time to completion, we arrived at the approximate cost
per relationship using the average hourly salary of a medical
expert in California (Bureau of Labor Statistics, http://www.bls.
gov/oes/current/oes291069.htm).

RESULTS
Together, the crowd and experts identified 39 critical errors in
200 SNOMED CT relationships (table 1). For instance, the

Figure 2: Filtering steps to select relationships for veri-
fication. The process of selecting a set of relationships
follows a basic filtering strategy. First, we created a
syntactic ontology module for the SNOMED CT CORE
Problem List. Next, we used Snorocket19 to find all
entailments from the CORE subset. From the entire set
of entailments, we then removed all asserted axioms
and any trivial entailments (those where the entail-
ment’s justification contains only one axiom). From
this set, we removed all entailments that were indirect
as defined in the OWL API.20 Finally, we required that
both the parent and child of a relationship be con-
tained in CORE, as some entailments contain concepts
that are not in CORE but are necessary for the syntac-
tic module. To create a manageable study size for the
experts, we subsampled this filtered dataset to 200
relationships.
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relationship ‘short-sleeper is a kind of brain disorder’ is not
true in all cases, and therefore incorrect. Likewise, ‘septic
shock is a kind of soft-tissue infection’ mistakes causality with
taxonomy. Septic shock may be caused by a soft-tissue infec-
tion but itself is not an infection. Generally, these errors are the
result of subtly incorrect logical definitions that have unin-
tended effects on computed logical conclusions. We have con-
tacted the International Health Terminology Standards
Development Organization (IHTSDO), which develops SNOMED
CT, and provided them with the errors and expert justifications.
We anticipate that these errors will be corrected in future ver-
sions of SNOMED CT. We used results of the Delphi round to
produce a consensus standard among the experts against
which to compare each individual expert and the crowd. After
the Delphi round, the experts reached supermajority agreement
(ie, 4:1 or 5:0) on the truth value of 187 of the 200 relation-
ships from SNOMED CT that we studied. We used these 187
relationships as a consensus standard set of relationships. For
the remaining 13 relationships, definitions were unavailable in
both MeSH and NCIt, explaining why the experts may not have
been able to reach agreement.

We then compared the responses of the crowd with the
initial expert responses in three ways: inter-rater agreement
within groups, performance on the consensus standard, and
estimated cost. The average pairwise free marginal j of the
crowd fell within the range of that of the experts (table 2).
Furthermore, the crowd identified errors with a bootstrapped
mean area under the ROC curve (AUC) of 0.83 (p<2� 10�16).
Generally, each individual expert performed marginally better
than the crowd at various points on the ROC curve (figure 4).
When bootstrapping the performance of the workers, the
crowd performed with a mean AUC of 0.78 (p<2e�16). Note
that this result provides a lower bound estimate of how other
workers may have generally performed on the same task.

However, the workers are not independently distributed and
therefore the bootstrapped result should only serve as a
guide. A real-world replication would likely have a higher
AUC. Finally, in comparison with cost of the crowd at
US$0.50/relationship, experts cost �US$2.00/relationship,
based on average task completion time (4.5 h) and average
salary of a general practice physician in California
(�US$182 580).

DISCUSSION
In this work, we used both experts and crowdsourcing to per-
form quality assurance on a 200-relationship subset of
SNOMED CT. We found that the crowd is nearly indistinguish-
able from any single expert in the ability to identify errors in a
random sample of SNOMED CT relationships. This subset con-
tained terms used frequently in many hospitals (as the terms
were derived from the SNOMED CT CORE Subset). Moreover,
this random sample is representative of SNOMED CT and of
many other large complex ontologies in its logical structure. Of
note, nearly 20% of the relationships were in error as judged
by the experts. While this error rate is likely higher than the
overall error rate among relationships in SNOMED CT, it still
indicates that further quality assurance of SNOMED CT is
essential. The presence of such errors, although not unex-
pected based on the literature,14–17 is concerning and elicits
some open questions about SNOMED CT and about biomedical
ontologies in general.

• At what rate would experts identify errors in all biomedical
ontologies or of those ontologies required in electronic
health records?

• What is the impact of ontology errors on downstream meth-
ods? (For example, could a clinical decision support system
misclassify a patient because of ontology errors?)

Figure 3: Online web form for ontology verification. Online workers visited an HTML webpage provided by CrowdFlower
(a portion of which is shown here). We required workers to select ‘True’ or ‘False’ or explain why they did not know. For
each response, we paid a worker US$0.02. Each worker saw the questions in a different, random order. Experts viewed a
similar page but with additional fields for comments.
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Table 1: Listing of errors found by both the crowd and experts in a subset of SNOMED CT

Child Parent

Anterior shin splints (disorder) Disorder of bone (disorder)

Short-sleeper (disorder) Disorder of brain (disorder)

Frontal headache (finding) Pain in face (finding)

Local infection of wound (disorder) Wound (disorder)

Anal and rectal polyp (disorder) Rectal polyp (disorder)

Malignant neoplasm of brain (disorder) Malignant tumor of head and/or neck (disorder)

Diabetic autonomic neuropathy associated
with type 1 diabetes mellitus (disorder)

Diabetic peripheral neuropathy (disorder)

Placental abruption (disorder) Bleeding (finding)

Impairment level: blindness one
eye—low vision other eye (disorder)

Disorder of eye proper (disorder)

Gastroenteritis (disorder) Disorder of intestine (disorder)

Microcephalus (disorder) Disorder of brain (disorder)

Thrombotic thrombocytopenic purpura (disorder) Disorder of hematopoietic structure (disorder)

Fibromyositis (disorder) Myositis (disorder)

Lumbar radiculopathy (disorder) Spinal cord disorder (disorder)

Vascular dementia (disorder) Cerebral infarction (disorder)

Chronic tophaceous gout (disorder) Tophus (disorder)

Full thickness rotator cuff tear (disorder) Arthropathy (disorder)

Disorder of joint of shoulder region (disorder) Arthropathy (disorder)

Injury of ulnar nerve (disorder) Injury of brachial plexus (disorder)

Basal cell carcinoma of ear (disorder) Basal cell carcinoma of face (disorder)

Bronchiolitis (disorder) Bronchitis (disorder)

Migraine variants (disorder) Disorder of brain (disorder)

Gingivitis (disorder) Inflammatory disorder of jaw (disorder)

Septic shock (disorder) Soft tissue infection (disorder)

Cellulitis of external ear (disorder) Otitis externa (disorder)

Inguinal pain (finding) Pain in pelvis (finding)

Disorder of tendon of biceps (disorder) Disorder of tendon of shoulder region (disorder)

Pain of breast (finding) Chest pain (finding)

Injury of ulnar nerve (disorder) Ulnar neuropathy (disorder)

Injury of back (disorder) Traumatic injury (disorder)

Achalasia of esophagus (disorder) Disorder of stomach (disorder)

Pneumonia due to respiratory syncytial virus (disorder) Interstitial lung disease (disorder)

Sensory hearing loss (disorder) Labyrinthine disorder (disorder)

Degeneration of intervertebral disc (disorder) Osteoarthritis (disorder)

Disorder of sacrum (disorder) Disorder of bone (disorder)

Peptic ulcer without hemorrhage,
without perforation AND without obstruction (disorder)

Gastric ulcer (disorder)

Diabetic autonomic neuropathy (disorder) Peripheral nerve disease (disorder)

Cyst and pseudocyst of pancreas (disorder) Cyst of pancreas (disorder)

Calculus of kidney and ureter (disorder) Ureteric stone (disorder)

MeSH, Medical Subject Headings; NCIt, National Cancer Institute Thesaurus; SNOMED CT, Systematized Nomenclature of Medicine Clinical Terms.
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• What incorrect analytical conclusions could be made because
of ontology errors? (For example, might Gene Ontology
enrichment analysis mischaracterize microarray data?)26

• What are the most important kinds of errors to detect and
eliminate?

• What is the best approach to reduce or avoid such errors
(eg, crowdsourcing, experts, automated algorithms, best
practices)?

Potential impact of an ontology error
The errors the crowd identified are particularly interesting
because they involve concepts in the SNOMED CT CORE
Subset, indicating (1) that these concepts are used very fre-
quently across many hospitals, and (2) that these concepts
and relationships will likely play a role in the clinical decision
support systems required by Meaningful Use. To illustrate the
significance of the errors identified, we describe two hypotheti-
cal situations focused on ‘short-sleeper is a kind of brain
disorder.’

A. A clinical decision support system suggests the immobili-
zation of all persons with a brain disorder. Using the error
above, the system would improperly recommend the immobi-
lization of those who experience shortened sleep. This incor-
rect recommendation would certainly cost practitioner time
and trust and may even cause an unwarranted procedure.

B. When querying patient data to extract cohorts (eg, with tools
such as i2b2),27 the query results on persons with brain disor-
ders would entirely mischaracterize the population, classifying
short sleepers into the ‘cases’ instead of the ‘controls’. This mis-
classification could lead to incorrect hypotheses about the popu-
lation or even an extremely biased retrospective study result.

These two situations show how the errors the crowd
identified could affect healthcare today and how the errors are
especially important to identify as we move forward with ontol-
ogy-based health information technology.

Ontology and ground truth
Evaluating ontology verification methods remains a
challenge—there is no ground truth or absolute truth against
which to compare methods. No common biomedical ontology
verification standard is available outside of peer review.
Because ontologies reflect a shared (expert) consensus about a
domain, an absolute truth about what is right or wrong cannot
exist. Instead, we view an error as a statement in the ontology
with which domain experts do not agree (ie, the statement con-
tradicts expert understanding of the domain). In light of this sit-
uation, single-expert verification is the most common method
to identify an error and to determine if an error is ‘real’. In our
work, we use a multi-expert consensus to serve as the approx-
imation of ground truth. One should not consider our results
(either performance metrics or actual errors) as truth but
instead a reflection of how well the crowd compares with
experts in what they interpret to be an error.

Crowd-assisted ontology engineering
The cost of ontology engineering and maintenance is
considerable—for example, hiring a single physician to perform
engineering and verification costs of the order of US$200 000/
year. It is unlikely that a single physician working full time could
properly verify the entirety of SNOMED CT, let alone have deep,
extensive knowledge about all its varied topics. Indeed, the cost
to build large artifacts such as SNOMED CT and the ICDs is
orders of magnitude greater than that of hiring a single physi-
cian. Given these high costs, it is encouraging to see the crowd
perform so well at identifying errors at a lower cost. We found
that the crowd costs about a quarter of that of an expert, yet per-
formed comparably. These results suggest that the crowd can
function as a scalable assistant to ontology engineers. Our
crowd-based method is especially appropriate in situations
where an expert is unavailable, budget is limited, or an ontology
is too large for manual error checking. While this study focused
on one particular type of relationship, our methodology is general
and thus could be applied readily to other ontology-verification or

Table 2: Mean free marginal j between experts themselves and the crowd

Relationship set Crowd j Expert j

All (n¼ 187) 0.58 (0.55, 0.61) 0.57 (0.49, 0.66)

Easy (n¼ 105) 0.9 (0.9, 0.9) 1 (1, 1)

Delphi–Agreement (n¼ 48) 0.15 (0.08, 0.29) 0.07 (�0.12, 0.25)

Delphi–Near Agreement (n¼ 34) 0.19 (0.12, 0.29) �0.05 (�0.35, 0.24)

With the expert votes obtained, we determined the mean free marginal j between experts (ie, the average agreement of an expert with another
expert). On correct relationships, expert j was �0.7 before Delphi, and �0.9 after. On incorrect relationships, expert j was �0.0 before Delphi,
and �0.69 after. We then calculated the mean free marginal j between the final crowd response and each expert (ie, the average agreement
of the crowd with each expert). Note that the mean crowd inter-rater agreement (0.58) falls well within the range of the expert agreement (0.49,
0.66). Finally, we stratified by subsets of relationships. Again, note that, on each subset, the mean crowd inter-rater agreement falls well within
the range of the experts. Terminology: ’Easy’—relationships for which experts reached immediate consensus; ’All’—entire set of relationships;
’Delphi–Agreement’—relationships for which experts reached complete agreement after Delphi; ’Delphi–Near Agreement’—relationships upon
which only a supermajority of experts reached agreement after Delphi.
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ontology-engineering tasks, thereby reducing costs even further.
In practice, an ontology-development environment would inte-
grate this crowdsourcing functionality directly, seamlessly allow-
ing crowd-based ontology error checking and engineering with
the click of a button.

Crowdsourcing expert-level tasks
Previous work with crowdsourcing has focused primarily on
intuitive, pattern-recognition tasks.1–4 For instance, common
sense tasks such image object recognition or text sentiment
analysis are readily solved with crowdsourcing. Encouragingly,
our results suggest that crowdsourcing can also solve more
complex, expert-level tasks. This result is especially relevant
for situations where experts are unavailable, expensive, or
unable to complete a large task. We identified two factors to
consider when one is developing a crowdsourcing solution to
knowledge-intensive tasks. First, it is non-trivial to reformulate
an expert-level task as one suitable for the crowd. We found
that rapid, iterative task design was essential for arriving at a
task formulation that the crowd could complete. The second

factor is knowledge type. Tasks that require synthesis of
knowledge, or that require background knowledge that cannot
be provided directly to workers, may not be appropriate. It is
likely that tasks that are self-contained (ie, all the necessary
information is immediately available) are most appropriate for
the crowd. For example, in the ontology-verification task, defi-
nitions provided all the necessary information with which to
complete the task. We cannot exclude the possibility that
crowd workers first accessed web-based resources such as
Wikipedia before responding to our online questions, however.
There are many expert-level tasks that are similarly ‘self-con-
tained’, and thus we are excited about the possibility of crowd-
sourcing other knowledge-intensive tasks.

CONCLUSION
Ontologies, which define for both people and computers the enti-
ties that exist in a domain and the relationships between them,
support many data-intensive tasks throughout biomedicine and
healthcare. The biomedical community, however, faces a chal-
lenge in engineering ontologies in a scalable, high-quality fash-
ion, particularly when mature ontologies may include many
thousands of concepts and relationships. We have shown that
crowdsourcing, which researchers use to provide solutions to
intuitive tasks in a scalable way, can address this engineering
challenge. We used crowdsourcing methods to solve the difficult
task of identifying errors in SNOMED CT, an important, large bio-
medical ontology. We then compared results from the crowd
with those offered by medical experts who performed the same
task, and we found that errors that the two groups identified
were concordant. The results suggest that crowdsourcing may
offer mechanisms to solve problems that require considerable
biomedical expertise. Additional material is published online
only. To view please visit the journal online (http://dx.doi.org/10.
1136/amiajnl-2014-002901)
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