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Functions of IQD proteins as hubs in cellular calcium and auxin signaling: A toolbox
for shape formation and tissue-specification in plants?
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ABSTRACT
Calcium (Ca2C) ions play pivotal roles as second messengers in intracellular signal transduction, and
coordinate many biological processes. Changes in intracellular Ca2C levels are perceived by Ca2C sensors such
as calmodulin (CaM) and CaM-like (CML) proteins, which transduce Ca2C signals into cellular responses by
regulation of diverse target proteins. Insights into molecular functions of CaM targets are thus essential to
understand the molecular and cellular basis of Ca2C signaling. During the last decade, IQ67-domain (IQD)
proteins emerged as the largest class of CaM targets in plants with mostly unknown functions. In the March
issue of Plant Physiology, we presented the first comprehensive characterization of the 33-membered IQD
family in Arabidopsis thaliana. We showed, by analysis of the subcellular localization of translational green
fluorescent protein (GFP) fusion proteins, that most IQD members label microtubules (MTs), and additionally
often localize to the cell nucleus or to membranes, where they recruit CaM Ca2C sensors. Important functions
at MTs are supported by altered MT organization and plant growth in IQD gain-of-function lines. Because IQD
proteins share structural hallmarks of scaffold proteins, we propose roles of IQDs in the assembly of
macromolecular complexes to orchestrate Ca2C CaM signaling from membranes to the nucleus. Interestingly,
expression of several IQDs is regulated by auxin, which suggests functions of IQDs as hubs in cellular auxin
and calcium signaling to regulate plant growth and development.
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The founding member of the IQD family, IQD1 from
Arabidopsis thaliana, was found in a screen of T-DNA
activation tagged lines for novel regulators of glucosinolates, a
class of defense-related metabolites, and overexpression of
AtIQD1 in transgenic Arabidopsis plants was reported to
stimulate glucosinolate accumulation and plant defense.1

Subsequently, IQD families have been systematically annotated
in the genomes of Arabidopsis and rice (Oryza sativa),2 and
more recently in several additional angiosperms, including
tomato (Solanum lycopersicum)3 and maize (Zea mays),4 where
they are encoded by multigene families of 23 to 67 members.
The protein family is defined by the central conserved
IQ67-domain, which spans 67 amino acids and contains up to
three IQ motifs required for binding to CaM Ca2C sensors.4,5

On both sites, the IQ67 domain is flanked by large regions of
predicted intrinsic disorder, interspersed only by short IQD-
specific motifs of unknown functions.2,6 Phylogenetic analyses
of IQD families from angiosperms indicate the presence of four
subgroups that mostly differ in the distribution of IQD-specific
motifs. Despite the large family sizes and their proposed impli-
cations in cellular Ca2C signaling however, functions of IQD
proteins are mostly elusive. We thus initially focused our analy-
ses on AtIQD1, and, in a previous study, demonstrated

localization of GFP-AtIQD1 to MTs and the nucle(ol)us.5

Intriguingly, we observed AtIQD1-dependent recruitment of
RFP-AtCaM2 to the MT cytoskeleton, which raised our partic-
ular interest as it suggested roles for AtIQD1 in Ca2C CaM-
dependent regulation of MT organization and dynamics, an
active area of current research.7 Functions of IQDs at the MT
cytoskeleton and in growth regulation are supported indirectly
by genetic studies in tomato, which identified SlIQD12/SUN as
a key regulator of fruit shape.8

IQD proteins control MT organization, cell shape
and plant growth

To study systematically IQD functions, we initiated a compre-
hensive characterization of the 33-membered Arabidopsis IQD
family using reverse genetics approaches. Analysis of the
subcellular localization of translational GFP fusion proteins in
transient expression assays in tobacco (Nicotiana benthamiana)
leaves revealed that most IQDs aligned uniformly along the MT
lattice, in patterns reminiscent of proteins with MT bundling
functions.9 For a subset of IQDs, we validated that subcellular
localization is independent of the position of the GFP tag
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(N- and C-terminal), of expression levels (cauliflower mosaic
virus (CaMV) 35S promoter and endogenous promoter), or of
the experimental system (tobacco and Arabidopsis). In agree-
ment with potential MT organizing functions, we observed dif-
ferential effects of IQD overexpression on MT patterns in
tobacco and in transgenic Arabidopsis plants, and phenotypes
of Arabidopsis IQD gain-of-function lines resembled mutants
defective in MT function, such as longifolia10 or tortifolia11

mutants.
Functions of IQD proteins, however, are not limited to

MTs, but additionally include membranes and the cell
nucleus, as evidenced by analysis of GFP-IQD fluorescence
(Fig. 1A). Intriguingly, we also observed altered cell shape
and plant growth in transgenic Arabidopsis plants overex-
pressing the exclusively plasma membrane (PM) localized
IQD member, IQD25. Possible explanations are functions
of IQD25 in PM tethering of MTs, in regulation of, e.g.,
cellulose deposition, in the establishment of cellular polarity

or symmetry breaking, or in the regulation of, e.g., endocy-
totic cycling of PM-localized receptors, as has been reported
for the PM subdomain localized scaffold protein AtFlotilin1
and the brassinosteroid receptor BRASSINOSTEROID-
INSENSITIVE 1 (BRI1).12

To gain insights into spatio-temporal expression patterns
of IQD genes, we generated a cellular expression map for a
subset of Arabidopsis IQD members in transgenic promoter
(Pro)IQD:GFP-GUS reporter lines. Promoter activity was
largely restricted to meristematic and actively elongating tis-
sues, e.g., in the root and shoot meristem, or in the stomata
lineage.6 Analysis of transgenic ProIQD:n3GFP (nuclear 3x
GFP) lines during embryo development in a recent study
from M€oller, et al.13 further indicates high tissue-specificity
of IQD gene expression in actively dividing tissues.
Together, we propose that IQDs control meristem functions
by integrating Ca2C CaM signaling at the PM and MTs to
shape tissues and organs.

Figure 1. Model of IQD scaffolding function. (A) IQD proteins localize to the PM, MTs and cell nucleus, where they recruit CaM2 (and possibly other CaM/CML isoforms) as
well as KLCR1/CMU1. Individual IQDs differentially affect MT organization and cell shape, which points to roles of plant-specific IQD families as a multifaceted toolbox for
the regulation of cellular growth. ARF-mediated transcriptional control of IQD gene expression possibly links auxin and Ca2C signaling. (B) IQD proteins share hallmarks of
scaffold proteins, and interact with apo-CaM and Ca2C-CaM in vitro. We hypothesize that IQD proteins sequester apo-CaM and related Ca2C sensors at distinct subcellular
sites of Ca2C influx to organize and integrate CaM/CML-dependent Ca2C signaling.
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IQD-CaM signaling pathways

Interestingly, our findings from coexpression analyses and
bimolecular fluorescence complementation assays indicated
IQD-specific recruitment of CaM Ca2C sensors to the distinct
sites of subcellular IQD localization, including MTs, cell nuclei
and PM subdomains.5,6 PM attachment of IQDs, either directly
or possibly stabilized via S-acylation, could serve to anchor
IQD-CaM complexes at sites where Ca2C enters cells via PM-
localized ion channels (Fig. 1B). Upon activation of the chan-
nels, steep concentration gradients in free Ca2C are generated
around entry sites, which can give rise to activation of Ca2C

sensor proteins. Notably, the two other main families of Ca2C

sensors in plants, i.e. Ca2C-dependent protein kinases (CPKs)
and calcineurin B-like (CBL) proteins are directly localized to
the PM through lipid modification by myristoylation and S-
acylation.14,15 With few exceptions, CaM/CMLs lack conserved
lipidation motifs,16 and transient expression of RFP-CaM2
fusions under the CaMV35S promoter results in cytosolic accu-
mulation.5,6 Thus, we speculate that IQD-dependent preassem-
bly of CaM signaling modules at sites of Ca2C influx enables
CaM/CML sensors to compete with CPK and CBL-CBL inter-
acting protein kinase (CIPK) signaling modules for incoming
Ca2C signals.

Functions of IQD proteins as platforms in cellular signaling
are supported by the large content of regions with predicted
intrinsic disorder, which is a hallmark of scaffold proteins that
assemble macromolecular complexes involved e.g., in the same
signaling cascade. Candidate constituents of IQD signaling
complexes are members of the kinesin light chain-related
(KLCR)/cellulose-microtubule uncoupling (CMU) protein
family, which interact with IQD proteins in yeast and in
planta.5,17,18 Work by Liu, et al.19 revealed localization of GFP-
CMU1 to MTs and the PM. Loss-of-function mutants of
cmu1cmu2 display defects in MT dynamics and MT-related
phenotypes, such as increased epidermal cell file rotation. Dis-
ruption of cellulose synthase attachment to MTs by introduc-
tion of the pom2/cellulose synthase interacting1 (csi1) mutation
rescues cmu1cmu2 phenotypes, and points to functions of
KLCR/CMUs in stabilization of MTs against the pushing force
of cellulose synthase complexes (CSCs) at the PM-MT nexus.19

Interestingly, we observed enhanced MT recruitment of RFP-
KLCR1 upon co-expression with GFP-AtIQD1 in tobacco
leaves, suggesting a role of IQDs in targeting and stabilizing of
KLCR at MTs and possibly at the PM.5 Collectively, the pros-
pect arises that IQD proteins, together with KLCR/CMU pro-
teins, regulate plant growth in meristematic tissues at the PM-
MT nexus, and possibly indirectly affect cellulose deposition
(Fig. 1A).

Interplay of IQD function and auxin signaling

Meristem identity and activity is controlled tightly during
development, and the plant hormone auxin plays an instru-
mental role in the regulation of cell division, cell expansion,
and cell identity establishment.20,21 Local auxin maxima
activate transcriptional reprogramming by release of Auxin/
Indole-3-acetic acid (Aux/IAA) dependent repression of auxin
response factor (ARF) transcription factors, which regulate the

expression of numerous target genes.22 Interestingly, a recent
study aimed at elucidating functions of ARF5/Monopteros
(MP) during embryo development identified several IQD genes
as potential ARF5/MP targets.13 Auxin-dependent regulation
of IQD gene expression may serve to fine-tune and to restrict
locally IQD protein abundance in specific cells or tissues to
orchestrate shape formation and cellular growth via IQD-medi-
ated control of the MT cytoskeleton (Fig. 1A). In addition,
auxin treatment induces an increase in cytosolic Ca2C concen-
trations,21 and thus may regulate IQD function posttranslation-
ally by activation of Ca2C CaM signaling. Ca2C CaM, on the
other hand, affects auxin output by direct interaction with com-
ponents of the auxin transport and signaling machinery, such
as PINOID (PID) or small auxin upregulated RNA 19
(SAUR19).21 However, the molecular mechanism of auxin and
Ca2C interplay remain largely obscure. The emerging evidence
for important functions of IQD proteins in cellular Ca2C signal-
ing during development, and the indications for auxin-depen-
dent regulation of IQD output make them promising
candidates for functions as a hub in cellular auxin and Ca2C

signaling. Elucidating their precise functions and molecular
mechanisms of action will thus be an interesting aspect of
future research.
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