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Abstract. Interactive segmentation is a promising approach to solving the pervasive shortage of reference anno-
tations for automated medical image processing. We focus on the challenging task of glioblastoma segmentation
in magnetic resonance imaging using a random forest pixel classifier trained iteratively on scribble annotations.
Our experiments use data from theMICCAI Multimodal Brain Tumor Segmentation Challenge 2013 and simulate
expert interactions using different approaches: corrective annotations, class-balanced corrections, annotations
where classifier uncertainty is high, and corrections where classifier uncertainty is high/low. We find that it is
better to correct the classifier than to provide annotations where the classifier is uncertain, resulting in signifi-
cantly better Dice scores in the edema (0.662 to 0.686) and necrosis (0.550 to 0.676) regions after 20 inter-
actions. It is also advantageous to balance inputs among classes, with significantly better Dice in the
necrotic (0.501 to 0.676) and nonenhancing (0.151 to 0.235) regions compared to fully random corrections.
Corrective annotations in regions of high classifier uncertainty provide no additional benefit, low uncertainty
corrections perform worst. Preliminary experiments with real users indicate that those with intermediate profi-
ciency make a considerable number of annotation errors. The performance of corrective approaches suffers
most strongly from this, leading to a less profound difference to uncertainty-based annotations. © 2017 Society

of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.4.3.034001]
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1 Introduction
Semantic segmentation is a key component of machine image
understanding. It is the separation of logically coherent struc-
tures that allows computers to deduce meaningful information
and relate it to the image’s individual components. Automated
machine learning methods such as convolutional neural net-
works have recently become extremely successful in a variety
of image segmentation problems, including those in the medical
domain,1 but they rely on large bodies of annotated data
for training, a resource that is typically scarce when it comes
to medical images. Interactive segmentation methods can be
used to create such training data from scratch, i.e., using
only live inputs from a user, but the process is often a time-con-
suming one. Most medical images can only be annotated by a
small number of trained experts, so it is crucial to have efficient
techniques that require as little time and effort as possible.
Because their output is guided by an expert user, such tech-
niques also lend themselves to applications that require both
speed and reliability, for example, radiologists performing fast
tumor volumetry to accurately monitor tumor progression. This
further leverages the high diagnostic potential of modalities such
as computed tomography, positron emission tomography, ultra-
sound or magnetic resonance imaging (MRI).

The purpose of this work is to establish methods that enable
expert users to generate high-quality segmentations of medical
image data with only a small number of input annotations. The
interactive segmentation technique we base our work on trains a
classifier on a small number of labeled pixels and predicts labels
for all remaining pixels. The user can see intermediate results
and the underlying data to perform additional interactions in
order to improve the resulting segmentation in an iterative fash-
ion. The question of what would be the optimal next annotation
pertains to the domain of active learning,2 where the premise is
that the algorithm can query an oracle (the user in this case) for
the correct label of some data point to improve its prediction, but
only at great cost, hence the need to keep the number of queries
minimal. Semantic segmentation is nontrivial in this context,
because the instances are strongly correlated and users will
rarely perceive them as separate entities. On top of that, the
large number of instances, especially when working in three-
dimensional (3-D), makes many computations infeasible. The
use of superpixels can reduce the complexity of the problem,
but previous studies focus more on generic computer vision
tasks,3,4 where the difficulty is not so much the correct delinea-
tion of an object—most have pretty clear boundaries—but
instead assigning the correct label out of a large number of
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possible categories. The challenge in medical images is often
not the large number of classes but instead to correctly identify
entities that exhibit no clear boundary and an appearance similar
to their surroundings. Work on a pixel-level basis using scribble
annotations and Gaussian processes was performed by Triebel
et al.,5 but they only work with two-dimensional images of
everyday objects.

Notable work in the medical domain was put forward by
Top et al.,6,7 who rely on an active contour for segmentation
and construct a measure of uncertainty that is then used to
identify a plane (which can be oblique) of maximal uncertainty,
in which the user is asked to provide additional inputs. Their
work was implemented in the software TurtleSeg. While
their measure of uncertainty should generalize to various seg-
mentation techniques, the authors use a contour-based approach,
which is suboptimal for problems like ours, where there are no
clear boundaries. Additionally, radiologists are trained to assess
images in the predefined orientations, so that oblique planes
might be more confusing than helpful. We choose to restrict
ourselves only to axial, sagittal, and coronal planes for
annotation.

Konyushkova et al.8 worked with superpixels and specifi-
cally incorporated correlations with neighboring superpixels
into a measure of geometric uncertainty that is then used to iden-
tify a plane for optimal annotation, which will again be generally
oblique. Interestingly, the authors evaluate their approach on
MRI data of glioblastoma patients, the same task we will
work on. We will compare our results with theirs in Sec. 4.
Note, however, that their mode of interaction is binary, meaning
the user must only decide on a boundary between the inside and
outside of a target object. Our segmentation approach naturally
incorporates multiclass segmentation.

Maiora et al.9 and Chyzhyk et al.10 both combined a random
forest classifier with active learning to segment abdominal aortic
aneurysm and stroke lesions, respectively. Both also employ
pixel-level annotations and an interactive workflow but require
users to annotate with single pixel accuracy. The segmentation
problems they tackle are binary and their query measure is the
standard deviation of the class labels, which, if at all, makes
sense only for binary categorization (using 0 and 1 as numerical
values).

We focus on glioblastoma segmentation as a task that has
been quite extensively studied in the context of the brain
tumor segmentation (BraTS) challenge11 and that poses a chal-
lenging multiclass segmentation problem in medical image
analysis. We base our interactive segmentation process on a ran-
dom forest classifier, which has proven to be the best overall
choice of classifier on a wide range of tasks12 and has achieved
very good results for the specific task of glioblastoma
segmentation.13–16 An implementation of such a segmentation
scheme using random forests is offered by the open source ilas-
tik framework.17 The classifier predicts labels for all pixels in an
image based on a few manually annotated pixels. In an iterative
process, the user is asked to provide additional annotations to
improve the segmentation. Normally, the choice of where to
annotate next in the process is left entirely to the user. Our con-
tribution is the proposal of five interaction methods to ensure
optimal usage of user inputs that use the classifier uncertainty,
an expert user’s knowledge of the correct segmentation and also
a combination of both. To the best of our knowledge, we are the
first to evaluate how useful uncertainty information is compared
to correctness information in this setting.

2 Materials and Methods
We compare five different methods of placing annotations in an
online interactive segmentation task. In an iterative process, a
user annotates a small part of an image (i.e., a small number
of pixels) and a classifier is trained on these inputs to predict
labels for all image pixels. The result is displayed back to
the user so they can input additional annotations to refine the
result until satisfied. In this setting, we compare interaction
modes (i.e, certain rules users adhere to in the annotation proc-
ess) based on the classifier uncertainty as well as the user’s
knowledge of the correct segmentation. The specific task
we investigate is the segmentation of MRI brain scans of
glioblastoma (high-grade glioma) patients into multiple tissue
categories.

All data and the experiment script can be found online.18–20

2.1 Data

We conduct our experiments using data from the 2013 BraTS
challenge11 comprising MRI scans of glioblastoma patients.
The entire dataset consists of both real (acquired at field
strengths of 1.5 T or 3 T) and synthetic MRI data for both
low-grade and high-grade glioma patients. In our experiment,
we intentionally leave out the synthetic data, because they
“are less variable in intensity and less artifact-loaded than the
real images,”11 as well as the low-grade glioma data, because
we find the high-grade ones to be more challenging.

The remaining data comprise 20 individual subjects, for
each of which there are four 3-D image volumes of different
MR contrasts available: native T1-weighted (T1), contrast-
enhanced (Gadolinium) T1 (T1ce), native T2 (T2), and native
T2-weighted fluid attenuation inversion recovery (FLAIR).
An example of what these contrasts look like is given in Fig. 1.

The available data for each patient are already coregistered,
resampled to 1-mm isotropic resolution, and skull-stripped
by the challenge authors, we further apply the following
preprocessing:

• Compute the T1ce to T1 difference map as a fifth channel
as proposed in Ref. 21.

• Perform N3 bias-field correction for T1, T1ce, T2, but not
FLAIR, because edema signatures can look similar to
field inhomogeneities in this contrast.

• Apply histogram-matching (3-D-slicer’s22 Histo-
gramMatching routine), excluding voxels below mean
intensity.

• Normalize intensities by mean cerebral spinal fluid value
(which is obtained by automatic segmentation).

For a more detailed description of the effect of these process-
ing steps, see Ref. 15. We then compute the following
feature maps:

• Gaussian smoothing (σ ¼ ½0.7; 1.6�);
• Gaussian gradient magnitude (σ ¼ ½0.7; 1.6�);
• Laplacian of Gaussian (σ ¼ ½0.7; 1.6�);
• Hessian of Gaussian eigenvalues (three feature maps,

σ ¼ ½0.7; 1.6�);
• Structure tensor eigenvalues (three feature maps,

σ ¼ ½0.7; 1.6�).
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This results in a feature vector length of 95. Most image vol-
umes have a size of 176 × 216 × 176 (some patients differ
slightly), so that a patient is described by a 176 × 216 × 176 ×
95 matrix.

Our choice of features is motivated by their success in
earlier15,23 work. We do not perform any feature selection on
the above set of features, which might show some redundancy
among the maps and would allow us to select an equally per-
formant subset, but in this work, we are not interested in the
most computationally efficient implementation of the interaction
process and simply accept that there is room for optimization in
this regard. Similarly, we are aware that there could be features
that would potentially improve our results, for example, features
that better capture long-range correlations24 or learned features
from neural networks. The latter approach can yield very rich

and descriptive features, but for amounts of data as small as
ours, there is a chance that the learned features are more dis-
criminative (i.e., telling one image from another) than descrip-
tive (i.e., describing the semantic contents of an image). Instead,
we opt for easy to compute and reliable features.

For each of the 20 patients, there is a groundtruth segmen-
tation available that was obtained by manually merging segmen-
tations from four different raters. The segmentations describe
five different tissue categories:

0. healthy tissue/background;
1. necrosis;
2. edema;
3. nonenhancing abnormalities;
4. enhancing tumor.

Fig. 1 Exemplary segmentation results after 5 to 30 interactions for each annotation mode (patient
HG0004, axial slice 101, third run) along with the corresponding groundtruth segmentation and the
four base channels. The results are not representative of the overall segmentation quality for a given
method, but show that in general the algorithm needs little data to roughly approximate the solution
and that most annotations only refine the result. In almost all cases, there remain very small falsely clas-
sified regions throughout the healthy brain, indicating that our results would benefit from postprocessing.
We neglect postprocessing in this work, as it is more appropriate at the end of the interactive routine, not
in every step.
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We additionally define the whole tumor region as the union
of all four nonbackground classes. Figure 1 shows an example
of a groundtruth segmentation and the corresponding MR con-
trasts. The enhancing tumor is best identified from hyperinten-
sities in the T1ce image within the gross tumor region. The
necrosis and the nonenhancing tumor regions typically exhibit
very similar signatures and are often hard to distinguish. They
are hypointense in T1-weighted images and hyperintense in T2-
weighted images with heterogeneous texture. In the given exam-
ple, the necrotic region looks smoother with more pronounced
intensity anomaly compared to the nonenhancing tumor, but
both are often more similar. Note that this patient is unusual,
because in the majority of cases, the central part of the tumor
is dominated by necrosis with less pronounced nonenhancing
regions. The edema can be identified from hyperintense signa-
tures in T2-weighted images, especially FLAIR, that do not
belong to the other tumor regions.

2.2 Classifier

The classifier we employ is a random forest,25 an ensemble clas-
sifier that builds multiple decision trees from randomly boot-
strapped samples of the training data. Random forests have
proven to be the best generic choice of classifier12 and were
also used very successfully for glioblastoma segmentation.13–16

Our decision for random forests is further supported by the
availability of toolkits for interactive segmentation that also
employ random forests and scribble annotations.17,26

The classifier works on a per-pixel basis, meaning that each
pixel, represented by a 95-dimensional feature vector (see pre-
vious section), is treated as a separate instance, and all MRI
channels and precomputed features are used simultaneously.
The decision trees are built from the annotated pixels, which
constitute the training set in each case. A single decision tree
is formed from a number of training instances by repeatedly
looking at one or more feature dimensions (note that each in-
stance is usually a point in a high-dimensional space, in our
case 95 dimensions). The set is then split into two subsets at
the point that maximizes or minimizes a desired criterion (e.
g., resulting in feature 9 ≤ 1.82 versus feature 9 > 1.82), creat-
ing two nodes. The process is repeated at each node with the
remaining training instances until the tree has reached a prede-
fined depth or nodes contain only a single instance and cannot
be split further. A single tree makes a class prediction by simple
lookup, i.e., it checks for each split, in which of the two subsets
the new instance belongs and follows those splits until it arrives
at a leaf node, i.e., one that is not split further and assigns the
new instance whatever label the majority of training instances at
the final node have.

A random forest is simply a collection of decision trees that
were built on a randomly drawn subset of the training data (with
replacement, so training instances can contribute to more than
one tree), making it a bagging classifier. A prediction by the
forest is made (for all unannotated pixels in each step) by letting
each decision tree vote for a class. The relative number of votes a
label/class receives is treated as its probability and the label with
the highest number of votes is assigned to the tested instance.
A good overview of random forests and related classifiers can be
found in Ref. 27.

To see the influence of the random forest parameters on our
experiments, we performed a coarse grid search with the two
parameters we expect to be most relevant, the number of
trees in the forest and the maximum depth of the trees.

Deeper trees generally mean that the forest fits more closely
to the training data and in turn loses generalization ability.
Because our experiments always treat one subject at a time,
this is desired behavior. Figure 2 shows the median Dice scores
along with lower and upper quartile ranges for the best perform-
ing method in the interval between 10 and 30 interactions, using
data for the necrotic, edema, and enhancing region (we left out
the nonenhancing region because of very low scores and the
whole tumor region to not effectively count the edema
twice). The depth of the trees seems to have virtually no influ-
ence on the results in the tested range. Performance increases
with the number of trees, especially for smaller N, but the
differences are not statistically significant. While a smaller num-
ber of trees speed up the training and prediction, we choose to
work with 50 trees and a maximum depth of 10. We utilize the
prediction probabilities, which are simply determined by count-
ing votes in the forest, so that a small number of trees essentially
round those probabilities to less accurate values. We further use
the Gini impurity as a split criterion and look at

ffiffiffiffiffi
95

p
≃ 10

features in each split.
Note that in our experiments we build an entirely new forest

after each new input. There are approaches that do not require
rebuilding the forest entirely, making the process much faster.
However, these online forests28,29 always try to approximate
the results of completely rebuilding the forest, so we chose
to not include them as an additional possible source of error.

2.3 User Interactions

Our goal is to simulate experts in an interactive annotation and
segmentation process. We want to establish how the expert
should interact with the algorithm and whether uncertainty
information from the algorithm can be used to guide the user
in the process. Because we assume the user to be an expert radi-
ologist, we also assume they are able to see and interact with all
three orientations (axial, coronal, and sagittal) as well as all
four MRI channels simultaneously. This depends on the

Fig. 2 Results of the parameter grid search. We repeated our experi-
ments with different combinations of the number of trees and the
maximum depth of the forest. The results here show the median
Dice score with boxes extending from lower to upper quartile values
for the best performing methodMISCLASS-B over the interval from 10
to 30 interactions, taking into consideration data from necrotic,
edema, and enhancing regions. The depth of the forest (increasing
from left to right in each group) has little influence on the results,
while they seem to improve with the number of trees, especially
from 10 to 30. However, the differences are not statistically significant.
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implementation; typical medical image viewers use a layout
with four views, so one possible configuration—the one we
chose—is that the orientations occupy three views (leaving
the fourth for arbitrary information) and the users can use hot-
keys to cycle through the MRI channels. Alternatively, the user
could select a single orientation and view all four channels in
parallel. Most importantly, we assume that the experts possess
knowledge of the correct segmentation that they wish to transfer
onto the image. The basic concept of the iterative segmentation
process is that in each step the user sees the current output of the
algorithm, ideally as an overlay, to compare it with the under-
lying data, and then interacts with the algorithm by providing
additional training instances.

The interaction process is based on scribble annotations. That
means that the user can impaint pixels in the image to label them
as belonging to a certain class (note that we use the terms class
and label interchangeably), similar to a paintbrush tool found in
almost any image editing application. Theoretically, this would
allow the user to paint in any way they desire (single discon-
nected pixels, large round blobs, etc.), but the most common
and intuitive way to annotate in such a scenario is by painting
lines, or scribbles. The classifier is trained on the labeled pixels
and the resulting segmentation is presented to the user so they
can add a new input to improve the output.

We deliberately choose to oversample the interaction process
by allowing only very short scribbles of 10 connected pixels and
by updating the prediction after each scribble annotation.
Experienced users usually make multiple annotation scribbles
before updating the prediction, especially in the beginning,
where the algorithm requires at least some data from all classes
for a somewhat reasonable prediction. In our simulation, we skip
this initial step by initializing the algorithm with 50 randomly
drawn pixels, weighted by class occurrence so that each class
receives at least one training instance. (For each class, we
count the relative number of pixels belonging to the class
and multiply it by 50. The rounded result is the number of pixels
we draw randomly from within the class. Should the number be
zero, we draw one pixel from the class and in turn draw one
fewer from the largest class, which is always the background.
The classifier is trained once with these 50 instances after
which the simulated interactions start.) We found 50 to be
the lowest number of initial training points to achieve a reason-
able initialization. The purpose of this step is to skip those inter-
actions in which the classifier does not have knowledge of all
classes. All methods use the same set of initial points, of course.
We discuss this further in Sec. 3.

Now that we have established how the users place their anno-
tations, i.e., by painting a small number of connected pixels with
the correct label, we come back to the question of where user
inputs should be given to create a high-quality segmentation
with the least amount of interactions. To this end, we define
five interaction modes, each characterized by a region in
which the user will place their annotation randomly in each
step, based on classifier uncertainty (information the algorithm
possesses) or on correctness (information the user possesses).
These regions will of course change in each step. Abstract exam-
ples for all methods are given in Fig. 3. While the simulated
users will generally annotate randomly within a specified
region, we place some further constraints on the inputs to
make them more realistic. The scribbles, which we fix at a
length of 10 pixels, must be connected. They must further be
in one of three main planes (axial, sagittal, and coronal).

They must lie entirely within the specified region and finally
they must not cross classes.

1. UNCERTAIN: Place annotations randomly in regions
of high classifier uncertainty. To simulate this, we first
divide the uncertainty into five quantiles and keep only
the regions belonging the highest quantile. We then
find the largest connected region of those and ran-
domly annotate within this region. The dividing into
five quantiles might seem somewhat arbitrary, but
we empirically found that using the top 20% of the
uncertainty still resulted in large enough regions
that one could comfortably annotate, while smaller
numbers would often yield very small and thin regions
that require pixel accuracy annotations. There is cer-
tainly room for optimization, perhaps by using an
adaptive uncertainty threshold, but we leave this prob-
lem for future research.

2. MISCLASS: The user identifies falsely classified
regions in the segmentation overlay from the previous
step and then randomly annotates anywhere in the
entire error region. This implicitly weights classes by
occurrence. This method depends on our assumption
that the user has knowledge of the correct segmenta-
tion and is able to falsely identify classified regions in
the segmentation overlay. It does not use uncertainty
information.

3. MISCLASS-B: The algorithm chooses a class at ran-
dom and the user identifies and annotates in falsely
classified regions (both false positive and false nega-
tive) for that particular class in the segmentation over-
lay. This weights classes equally. The method also
depends on the assumption that the user has knowl-
edge of the correct segmentation and is able to identify
falsely classified regions. It does not use uncertainty
information.

4. UNCERTAIN-MB: A combination of UNCERTAIN
and MISCLASS-B; annotations are placed where
the region identified by UNCERTAIN and the error
region for a randomly chosen class intersect. Should
there be no intersection, ignore uncertainty region, i.
e., fall back to MISCLASS-B. This method utilizes
both uncertainty and correctness information.

5. CERTAIN-MB: Essentially the same as
UNCERTAIN-MB, but now we identify the region
where the classifier is most certain, meaning the lowest
of five quantiles of the uncertainty. This might seem
counterintuitive, but we hypothesize that if the classi-
fier is very certain about an error, the corrective anno-
tation should have a much stronger effect. Again, if
there is no intersection, fall back to MISCLASS-B.

To get an idea of how users would annotate intuitively, we let
four users (1 to 4 years experience working with glioblastomas)
annotate a subset of randomly selected patients. In total, we
recorded four separate assessments for each of four different
patients, where each rater performed two assessments on a given
patient, first with no instructions and then following the
UNCERTAIN approach as a comparative baseline. The result

Journal of Medical Imaging 034001-5 Jul–Sep 2017 • Vol. 4(3)

Petersen et al.: Effective user interaction in online interactive semantic segmentation. . .



Fig. 3 Visualization of the interactive annotation process. Starting with the input data (1.), the process is
first initialized (2., see Sec. 2.3 for details) to get an initial prediction. Then, the interactive annotation loop
begins. Depending on the annotationmode either the algorithm or the user selects a region for annotation
(3a.) and annotates randomly within that region (3b.). From there, a new classifier is trained on all
annotated pixels for an updated prediction. The process is repeated N times, after which the current
segmentation (4.) is taken as the final segmentation (5.). For each annotation mode, an exemplary
region is shown, in which the simulated user will annotate, based on an abstract groundtruth and
corresponding example segmentation. Note that for demonstration purposes there is only low and
high uncertainty, and no intermediate region, hence the regions for UNCERTAIN-MB and CERTAIN-
MB share a border.
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for the whole tumor region is shown in Fig. 6 and we will
discuss it in Sec. 4. The measure of uncertainty we use is the
probability entropy

EQ-TARGET;temp:intralink-;e001;63;719HðxÞ ¼ −
X

i∈C
pðyijxÞ log½pðyijxÞ�; (1)

where pðyijxÞ is the probability that pixel x belongs to class i.
We also tried confidence and probability margin2 as uncertainty
measures, but the results were not meaningfully different. The
work presented here uses the probability entropy.

2.4 Evaluation

We wish to evaluate the quality of the segmentation over time,
i.e., as a function of the number of interactions. The de facto
standard for segmentation assessment in the medical domain
is the Sørensen–Dice coefficient, for two binary segmentations
S1, S2 defined as

EQ-TARGET;temp:intralink-;e002;63;548DiceðS1; S2Þ ¼ 2 ·
S1 ∩ S2

jS1j þ jS2j
: (2)

It is a binary measure, and in each case, we compute the
scores for all classes separately. We also evaluated Jaccard
index, precision, and recall but could not find anything that
would meaningfully add to our findings, so we elect not to show
those results.

For each patient and for each interaction method, we evaluate
the Dice scores over the course of 50 interactions. After each
interaction step, the classifier is trained on all pixels that were
annotated in the current and the previous interactions. We use no
training data from other patients or from earlier assessments of
the same patient. A prediction is always made on the entire 3-D
image volume for the current patient that is then compared with
the corresponding groundtruth segmentation. We repeat the
process five times for each patient and average the results to
suppress random variations, treating the 5-run average as a sin-
gle measurement. For our first analysis, we then also average the
scores for all patients and compare the different interaction
methods by means of the Dice score as a function of the number
of interactions.

For our second analysis, we do not average scores across
patients. We perform a statistical comparison of the methods
after 20 interactions. The findings are not very dependent on
the evaluation point and after roughly 20 interactions the benefit
of additional annotations becomes rather small. For each pair of
methods and each region, we use aWilcoxon signed-rank test30 to
find the likelihood p that the two sets of measurements (a set of
measurements meaning the scores for the 20 different patients of a
given method) originate from the same distribution (not all our
measurements are normally distributed). We choose a base sig-
nificance threshold of p < 0.05 and apply Bonferroni correction
for 50 individual tests (5 regions times 10 comparisons), resulting
in an adjusted threshold of p < 0.001. Note that the results are not
independent, so the correction is likely stronger than necessary.

3 Results
Figure 1 shows exemplary segmentation results for a single
patient (HG0004, axial slice 101) and a randomly chosen run
for 30 interactions in steps of 5. For comparison, the groundtruth
segmentation and the four base channels (features) are dis-
played. These results of course are only a single sample from

a stochastic process and are not necessarily representative of
the overall performance of the approaches. However, a few
things can be seen that were similar in the majority of cases.
In general, very little training is necessary to get a rough esti-
mate of the desired result (with the exception of CERTAIN-MB
in this case). Most later inputs introduce rather small changes
and only refine the segmentation. The segmentation does not
necessarily improve in each step; in most cases, this is due
to considerable changes in the edema region. Finally, there
are almost always a number of very small false positive regions
dispersed throughout the healthy part of the brain. We will
discuss these findings in detail in Sec. 4.

To obtain quantitative results, we simulate the interactive
segmentation process 5 times for 20 different patients. Note
that the classifier uses only live input annotations for the
current subject and does not incorporate knowledge from
other patients or earlier assessments. In each step, the training
set consists of all pixels annotated by the simulated user
and the test set is the remainder of unannotated pixels. The
results from the 5 runs are averaged and treated as single
measurements.

Figure 4 shows the Dice score over time for all methods
and tumor classes including the 1σ standard deviation of the
5-run patient means for the overall best performing method
MISCLASS-B to illustrate how scores vary across different
patients. Other methods’ standard deviations are comparable.
Figure 5 represents a cross section of Fig. 4 and shows mean
Dice scores after 20 interaction cycles for all methods and
classes. Highlighted are all pairs of methods with a significant
(p < 0.001) performance difference. For a full overview of test
scores (p-values, test statistics, and difference of medians), see
Table 1. The section is split into (1) a comparison of annotations
in uncertain regions (UNCERTAIN) and corrective annotations
(MISCLASS and MISCLASS-B) and (2) a comparison of the
best of those methods (MISCLASS-B) with corrective annota-
tions in very uncertain (UNCERTAIN-MB) and very certain
(CERTAIN-MB) regions.

3.1 Annotating Uncertain Regions Versus Classifier
Correction

In both Figs. 4 and 5, it can be seen that annotations in
uncertain regions (UNCERTAIN) perform worse than class-
balanced classifier corrections (MISCLASS-B) across all cat-
egories and over time, and the difference after 20 interactions
is significant in all regions but the enhancing tumor with
−0.024 ≤ Δmedian ≤ −0.126.

Annotations in uncertain regions (UNCERTAIN) also per-
form worse than random corrective annotations (MISCLASS)
in the whole tumor region and the edema. The difference
after 20 interactions is significant for both the whole tumor
(Δmedian − 0.073) and the edema (Δmedian − 0.038). Perfor-
mances are roughly on par in the smaller necrosis, enhancing
and nonenhancing regions.

Random classifier corrections (MISCLASS) perform signifi-
cantly worse than class-balanced corrections (MISCLASS-B) in
the necrotic core regions (Δmedian − 0.175) and the nonen-
hancing regions (Δmedian − 0.086). They also perform worse
in the enhancing tumor region but without a significant differ-
ence after 20 interactions. In the larger whole tumor and edema
regions, both are roughly on par.

Journal of Medical Imaging 034001-7 Jul–Sep 2017 • Vol. 4(3)

Petersen et al.: Effective user interaction in online interactive semantic segmentation. . .



3.2 Combination of Uncertainty-Based Annotations
and Classifier Correction

As outlined above, MISCLASS-B is among the top performing
approaches in all tumor regions. We now compare it with
UNCERTAIN-MB and CERTAIN-MB; both methods are
designed to work like MISCLASS-B and to additionally incor-
porate uncertainty information to improve segmentation results.
We intentionally leave out the comparison of UNCERTAIN-MB
and CERTAIN-MB with MISCLASS and UNCERTAIN.

Figures 4 and 5 show that CERTAIN-MB, the class-balanced
corrective annotations in the most certain regions, is always
among the poorest performing approaches and performs signifi-
cantly worse than balanced corrections (MISCLASS-B) as well
as balanced corrections in uncertain regions (UNCERTAIN-
MB) after 20 interactions across all classes except for the
necrotic core, where p ¼ 0.001 (but not p < 0.001) for the com-
parison between CERTAIN-MB and UNCERTAIN-MB.

Balanced classifier corrections (MISCLASS-B) and the com-
bination of that approach with annotations in uncertain regions
(UNCERTAIN-MB) perform similarly well across class with a
slight advantage for the former over the latter in the whole tumor
and edema regions. However, the difference after 20 interactions
is not significant in any of the tissue classes.

We mentioned in Sec. 2.3 that we initialize the algorithm
with 50 random training instances, distributed among the classes
by their relative occurrence. The purpose of this is to skip the
initial steps where the classifier has too little information about a
given class and essentially stays constant at 0 or a very low
score. This can be seen in Fig. 4 in the necrotic region. The score
appears to be at a constant low before increasing quite sharply.
Without initialization, this effect would be much more pro-
nounced and visible in all classes. The best final Dice scores
out of all methods after 50 interactions for each class are
0.870 for the whole tumor, 0.771 for necrosis, 0.789 for the

(b)

(a)

Fig. 4 Dice score as a function of the number of interactions for (a) whole tumor and (b) other tumor
regions. Filled area shows 1σ standard deviation of patient means for MISCLASS-B to give an estimate of
the spread of scores across patients. Standard deviations for other methods are comparable.
MISCLASS-B and UNCERTAIN-MB show the overall best performance in all regions. In the larger
regions edema and whole tumor, MISCLASS performs similarly, in smaller regions (necrotic core,
enhancing, and nonenhancing tumor) MISCLASS and UNCERTAIN perform comparably. CERTAIN-
MB is always among the poorest performing methods.
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edema, 0.400 for the nonenhancing abnormalities, and 0.833 for
the enhancing tumor.

4 Discussion
In this work, we propose five different methods of providing
annotations in the context of online interactive segmentation
based on a pixel classifier that receives inputs in the form of
annotation scribbles. We compare them with respect to their
ability to evoke inputs that let the classifier make faithful pre-
dictions with minimal interactive effort. Our analysis is based on
a random forest classifier and the challenging task of segment-
ing multiple glioblastoma tissue classes in magnetic resonance
images.

The methods we propose use uncertainty information from
the classifier and correctness information from the user.
Interactive segmentation based on scribbles is not a new concept
and neither is the usage of uncertainty information in interactive
segmentation.5,9,10 But to the best of our knowledge, we are the

first to compare in this context the merits of inputs in regions of
high uncertainty and inputs that correct the classifier.
Consequently, we know of no prior work that attempts to com-
bine both in this context.

We recognize that our approach is quite specific in the sense
that we tested methods that could be applied to almost any
choice of classifier only on a single one, namely a random for-
est; however, this was motivated by this classifier’s remarkable
performance across a multitude of challenges (see Sec. 2.2).
Indeed, the final Dice scores we obtain after 50 interactions
compare favorably to previously reported results on the same
dataset.11,31 It should also be noted that our methodology is
such that it does not translate easily to larger datasets, because
it requires the user to have knowledge of the full dataset at a
given time, so we can only treat a single image volume at
once. We further make the assumption that the user knows
the correct segmentation and is able to identify falsely classified
regions, which is not a trivial assumption for complicated tasks
like tumor segmentation. Finally, it should be noted that what we

(a)

(b)

Fig. 5 Dice score after 20 interaction cycles for (a) whole tumor and (b) other tumor regions. Errors show
standard error of the mean. Horizontal bars indicate that p < 0.001 for the Wilcoxon signed-rank test of
the two methods, with a dash indicating the method with poorer performance. This is essentially a cross
section of Fig. 3 after 20 interactions. Again, in the larger regions (edema and whole tumor) MISCLASS,
MISCLASS-B, and UNCERTAIN-MB perform comparably while in the other region MISCLASS-B and
UNCERTAIN-MB dominate and UNCERTAIN and MISCLASS perform similarly. CERTAIN-MB performs
poorly in all regions.
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define as uncertainty, i.e., the probability entropy, is not an
uncertainty in the Bayesian sense but only a measure of how
confident the classifier is in its prediction. In other words,
this type of uncertainty tells us how certain the prediction is,
given our model, but not how certain we can be that our
model is correct. A potential bias of our model would mostly
stem from the features we employ, and there is no reasonable
way to test if a given combination of model and features is
ideal because of the sheer number of possible combinations.
There is of course the possibility to perform feature selection
on a given set of features to make the representation more effi-
cient, but that was not our goal. We rely on what has worked
well in the past and recognize that there might be even better
approaches.

We observe that in general the algorithm needs relatively lit-
tle training data to get a rough estimate of the correct segmen-
tation (especially the whole tumor region) and that most later

inputs only refine the segmentation. Interestingly, while the
results on average improve over time, this is not necessarily
the case for any single experiment. Especially decisions with
unclear boundaries, for example the transition from the
edema to healthy tissue, can change quite drastically with
small changes in the training set. This behavior can be seen
in the exemplary results in Fig. 1 for MISCLASS between
steps 20 and 25. Note that the classifier finds edema regions
throughout the brain. That is because we do not enforce conti-
guity. Indeed, almost all segmentations have at least some small
false positive regions that are not connected to the main tumor.
Clearly, our segmentations would benefit from postprocessing
to ensure connectedness and to create smoother boundaries,
but such a step would be appropriate only after a workflow
like the one we present and is hardly feasible in an interactive
setting, which is why we intentionally exclude it from our
experiments.

Table 1 Pairwise comparison of all methods for each tumor region after 20 iterations, using a Wilcoxon signed-rank test and 5-run averages for
each patient. Displayed are test statistic and p-value results as well as the difference of the medians for each comparison. Highlighted in bold are
comparisons where p < 0.001. This threshold is the result of a base significance level of p < 0.05, Bonferroni corrected by 50 individual
comparisons.

Methods

Whole tumor Necrosis Edema
Nonenhancing
abnormalities Enhancing tumor

Statistic p Statistic p Statistic p Statistic p Statistic p

ΔMedian ΔMedian ΔMedian ΔMedian ΔMedian

UNCERTAIN versus MISCLASS 11 <0.001 101 0.881 13 <0.001 88 0.526 81 0.370

−0.073 0.049 −0.038 −0.031 −0.014

UNCERTAIN versus MISCLASS-B 12 <0.001 12 <0.001 13 <0.001 10 <0.001 45 0.025

−0.041 −0.126 −0.024 −0.114 −0.058

UNCERTAIN versus UNCERTAIN-MB 45 0.025 4 <0.001 58 0.079 4 <0.001 32 0.006

−0.026 −0.156 −0.002 −0.176 −0.060

UNCERTAIN versus CERTAIN-MB 19 0.001 99 0.823 33 0.007 45 0.025 57 0.073

0.150 −0.002 0.100 −0.062 0.114

MISCLASS versus MISCLASS-B 65 0.135 15 <0.001 62 0.108 15 <0.001 40 0.015

0.031 −0.175 0.015 −0.084 −0.044

MISCLASS versus UNCERTAIN-MB 32 0.006 19 0.001 36 0.010 11 <0.001 38 0.012

0.047 −0.205 0.040 −0.145 −0.046

MISCLASS versus CERTAIN-MB 0 <0.001 78 0.313 0 <0.001 96 0.737 12 <0.001

0.222 −0.051 0.138 −0.031 0.129

MISCLASS-B versus UNCERTAIN-MB 30 0.005 100 0.852 32 0.006 84 0.433 100 0.852

0.016 −0.030 0.025 −0.061 −0.002

MISCLASS-B versus CERTAIN-MB 0 <0.001 7 <0.001 0 <0.001 12 <0.001 0 <0.001

0.191 0.124 0.123 0.052 0.173

UNCERTAIN-MB versus CERTAIN-MB 2 <0.001 18 0.001 1 <0.001 12 <0.001 0 <0.001

0.176 0.154 0.098 0.114 0.175
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Another interesting observation one can make in the exam-
ples we present is that the algorithm picks up a patch of necrosis
in the center of the tumor, whereas the groundtruth segmentation
classifies it as nonenhancing tumor. The two classes have very
similar imaging signatures, and judging from the MRI channels,
it would be an entirely reasonable decision to classify the patch
as necrosis. Evidently, the interactive segmentation workflow
can serve to give the user feedback on their perceived correct
segmentation. In a comparable setting, this was shown to reduce
inter- and intrarater variability.23

We compare the following annotation methods: annotations
where the classifier uncertainty is highest (UNCERTAIN),
annotations that randomly correct the classifier (MISCLASS),
annotations that correct the classifier, but with equal distribution
of inputs among classes (MISCLASS-B) as well as balanced
corrections in regions of high uncertainty (UNCERTAIN-
MB) as well as regions of low uncertainty (CERTAIN-MB).
Note that we first compare UNCERTAIN, MISCLASS, and
MISCLASS-B, where MISCLASS-B emerges as the best per-
forming approach, and then compare only MISCLASS-B with
UNCERTAIN-MB and CERTAIN-MB, neglecting the remain-
ing comparisons.

4.1 Annotating Uncertain Regions Versus Classifier
Correction

Comparison of annotations in regions of high classifier
uncertainty (UNCERTAIN), random corrective annotations
(MISCLASS), and class-balanced corrective annotations
(MISCLASS-B) indicates that it is generally preferable to let
users annotate falsely classified regions, assuming the user
has complete knowledge of the correct segmentation, because
MISCLASS-B performs better than UNCERTAIN in all regions
and significantly so in all but the enhancing tumor region,
whereas MISCLASS performs significantly better than
UNCERTAIN in the whole tumor and edema regions. The dif-
ference between MISCLASS and MISCLASS-B can be attrib-
uted to the fact that the problem is one with a large class
imbalance. The edema and whole tumor regions are generally
large or not much smaller than the background, and hence
are automatically balanced with respect to the background,
in which case there is no functional difference between
MISCLASS and MISCLASS-B. This is reflected in the
results where both exhibit very similar performance in those
two classes. In the smaller regions on the other hand,
MISCLASS-B performs better (significantly so in the necrotic
and the nonenhancing region), because purely random annota-
tions are more likely to miss those regions, resulting in fewer
training data from which the classifier can learn to discern
them. This will likely hold true for most scenarios with a strong
class-imbalance. Note that our findings also suggest that
classifier uncertainty and classification error are generally not
congruent.

4.2 Combination of Uncertainty-Based Annotations
and Classifier Correction

Because MISCLASS-B, the class-balanced corrective annota-
tions, proved to be such a successful approach, we were curious
if it could be combined with knowledge about the classifier
uncertainty. We had two opposing hypotheses in this regard:
either that performing the corrective annotations in the most
uncertain regions could boost the performance or, to the

contrary, that doing so in the most certain regions could improve
the performance, because the corrective effect should be
stronger in the latter case. The second idea is clearly refuted
by our results as CERTAIN-MB was among the poorest per-
forming approaches for all tissue classes and performed signifi-
cantly worse than MISCLASS-B and UNCERTAIN-MB across
all classes. UNCERTAIN-MB on the other hand performed
about as well as MISCLASS-B, but did not improve upon
the performance of MISCLASS-B, so that both of our hypoth-
eses can be dismissed. Because of the additional computational
cost of computing the uncertainty, it is beneficial to prefer
MISCLASS-B over UNCERTAIN-MB.

Out of the publications mentioned in Sec. 1, Konyushkova
et al.8 are the only ones who report the Dice score as a function
of the number of interactions for a comparable task and we will
compare our results with theirs in some detail. Konyushkova
et al. apply their geometric uncertainty sampling to the 2012
BraTS challenge data while we use data from the following
year. It is not immediately clear what their segmentation objec-
tive is, as the 2012 BraTS challenge specifies two tumor catego-
ries. We assume the authors just segmented both tumor classes
as a union, like the whole tumor category we evaluate. In visual
comparison, the curves Konyushkova et al. obtain exhibit the
same characteristics as ours, with a steep incline in the begin-
ning that gradually becomes smaller. Interestingly, the methods
they compare perform virtually the same for the first 10 inter-
actions up to a Dice score of 0.4, which is exactly the range of
scores we skip by providing initial training samples. The authors
compare four different query methods, one of which is very sim-
ilar to UNCERTAIN, as it always selects the most uncertain
superpixel for annotation. Not including the first 10 interactions,
their method achieves scores of (0.4, 0.5, 0.6, and 0.65) in the
first steps of 10 interactions while ours achieves (0.4, 0.65, 0.7,
and 0.75) in the same interval (rounded to 0.05 accuracy). Their
method seems to asymptotically approach a score of 0.75, ours
tends toward 0.8. Their best performing method stays just below
0.8, whereas ours is again at an advantage of about 0.05 points.
Note that this comparison is based on a visual assessment of the
results of Konyushkova et al. Interestingly, they also report that
random sampling results in an almost constant Dice score. We
could confirm this, but chose to omit the result, as it is in no way
representative of a realistic user.

To get an estimate of how a real user would approach the
problem, we let four different users with varying experience
(1 to 4 years in the relevant domain) annotate four randomly
selected patients, first without instructions (see Fig. 6). Our
hypothesis was that users would intuitively tend to a corrective
annotation style, but because the individuals cannot all be con-
sidered experts, we let them annotate using the UNCERTAIN
method as a baseline, as it does not rely on correctness infor-
mation. Users did indeed annotate in a corrective manner but
less pronounced than expected. In total, 79/197 annotations
were fully corrective (compared to 54/212 for UNCERTAIN)
and 146/197 majority corrective (compared to 116/212 for
UNCERTAIN), but of course we cannot assess whether noncor-
rective annotations were intended to be that way. The strokes
users placed were mostly between 10 and 25 pixels in length,
so that our simulations are in fact quite realistic in this regard,
but this could be due to demonstration bias.

It would be interesting to know how the mistakes our users
made correlate with the uncertainty the experts exhibited in the
creation of the groundtruth segmentations. Unfortunately, the
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challenge organizers did not make any predictions available that
would allow us to compute actual uncertainties, so we can only
get a qualitative estimate of this by creating a consensus map
from the four raters’ final segmentations. We assigned every
pixel the number of raters that agreed on its label, from 1 (com-
plete disagreement) to 4 (complete agreement) and found that of
the errors our raters made intuitively, 30.7% (36.2% for
UNCERTAIN) were in regions with full expert agreement,
53.7% (49.8% for UNCERTAIN) where three experts agreed,
15.1% (12.8% for UNCERTAIN) where two experts agreed,
and 0.5% (1.2% for UNCERTAIN) where experts disagreed
completely. Considering that the groundtruth experts showed
full agreement in 98.9% of the images (due to large and unam-
biguous background classes), it is clear that many of our raters’
mistakes can be explained by an inherent uncertainty in the
groundtruth data. This is not surprising as it highlights one
of the major challenges in medical image computing: the virtu-
ally complete absence of true groundtruth data. We could argue
that because using the UNCERTAIN method our raters made
fewer mistakes in ambiguous regions, our algorithm’s guidance
mitigates this effect to an extent, essentially leading to segmen-
tations that are more consistent with the underlying data, but the
data are too few to make a statistically relevant statement about
this.

As seen in Fig. 6, intuitive annotations by our raters only
showed a slight margin over uncertainty-guided annotations;
however, the data we collected are again too few in number
to support this finding in a statistically significant manner,
which is why we excluded them from Sec. 3. The scores
obtained for the UNCERTAIN approach were lower than in
our simulation, which is not surprising, as not all our users

can be considered experts. Except for the first few interactions,
the simulated UNCERTAIN interactions lie well within the stan-
dard deviation of the simulated ones; however, we wish to
emphasize that this does not imply any statistical meaning.
The number of data we collected for real user interactions dis-
allow a rigorous analysis and the comparison is to be understood
qualitatively. The same holds for the comparison of the users’
intuitive approach with simulated MISCLASS interactions,
which were methodically the most similar to the users’ largely
corrective annotations. Here, the difference between simulated
and real interactions is even larger than for UNCERTAIN, most
likely because users did not exclusively employ corrective anno-
tations. This is, in part, due to the fact that not all users can be
considered full experts in the domain and suggests what we
would expect to find in a more rigorous real user study: methods
that rely solely on correctness information and hence on the user
will suffer more strongly if our assumption of perfect expert
knowledge is violated. Consequently, we would expect to see
a strong decrease in the performance of MISCLASS and
MISCLASS-B while UNCERTAIN-MB should be less and
UNCERTAIN least affected. That could also mean that for non-
expert users, UNCERTAIN-MB could in fact be the best
approach, unlike in our experiments, as we discuss below.

Overall, our simulations showed that correcting the classifier
is significantly more efficient than providing inputs where it is
uncertain. This is not too surprising; it is easy to imagine that
corrections will on average effect stronger change in the model
than assertive ones. More surprising was the fact that a combi-
nation of both yielded no additional benefit. We assume
that corrections will on average happen automatically at points
where the classifier is uncertain about its output, which would
result in MISCLASS-B and UNCERTAIN-MB performing sim-
ilarly, which is what we observed. At the same time, we found a
significant difference between UNCERTAIN and MISCLASS-
B. This would then imply that on average the error regions are a
subset of the high uncertainty regions. In the cases we inspected
visually, we found most of the error regions to overlap with the
uncertainty regions to a large extent but not entirely.

Our findings could give the impression that uncertainty infor-
mation is virtually useless to query inputs from a user, which
would let them stand in contrast to existing literature in the
active learning domain. But that is not the case, because we
strongly rely on the assumption that the user possesses knowl-
edge of the correct segmentation. If we were to omit this con-
straint and compare our UNCERTAIN method with completely
random annotations, it would fare much better. We tested this,
and completely random annotations performed even worse than
CERTAIN-MB (in line with the findings by Konyushkova
et al.8), obviously because small regions will almost never be
annotated. However, it is in no way reasonable to assume
that a real user would just place random annotations, which
is why we did not include these results.

We chose the probability entropy as a measure of uncertainty
mainly because it is very easy to compute. The question remains
whether there are other, maybe more complex, measures of
uncertainty or ways to query inputs from the user at certain
points that would achieve even better results. This is of course
the key objective in active learning, where numerous methods to
tackle this problem have been proposed (Settles2 gave a good
introduction to the different groups of approaches). The ones
that formulate most precisely what we want to achieve, like
expected model change and expect error reduction, are

Fig. 6 Interactions by real human users with between 1 and 4 years
experience working with glioblastomas for whole tumor region. Users
were first asked to annotate without instructions, then used
the UNCERTAIN method in separate runs. For comparison, the simu-
lated UNCERTAIN (along with 1σ standard deviation) as well as
MISCLASS annotations are given. The latter is methodically most
similar to the users’ intuitive approach. Intuitive annotations perform
better than annotations in uncertain regions, likely because the major-
ity of annotations users provide are corrective. Overall scores are
lower than what was achieved in the simulations, likely because
users do not fully satisfy our assumption that they possess knowledge
of the correct segmentation. Because the number of data collected
from real users was small in number, the comparison to simulated
interactions should be understood qualitatively. Inlay: the distribution
of scribble lengths.
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unfortunately also among the most computationally expensive.
We see potential in methods that exploit committees such as the
random forest classifier we are using. It might be worth explor-
ing ways to intelligently reweight individual trees based on how
well they agree with new inputs and criteria to reject existing and
to build new trees. As an additional benefit, this could also speed
up the training and prediction steps.

To summarize, we found that interactive semantic segmen-
tation of glioblastoma MRI based on a pixel-wise random forest
classifier should be performed such that the user annotations
correct the classifier with a roughly equal number of inputs
for all tissue classes. This finding will be relevant for any similar
problem with a large class imbalance. For problems with a bal-
anced class distribution, it will still be advantageous to prefer
corrective annotations over ones where the classifier exhibits
high uncertainty. Applications that benefit from these findings
are those that seek to create segmentations quickly but with reli-
ability that renders automatic methods inapplicable. The crea-
tion of high-quality training data for the latter is one such
example. In a clinical setting, interactive segmentation could
be used for accurate tumor volumetry and, consequently, for
accurate tumor progression monitoring.

It is quite evident that future work with extensive real user
studies is necessary to confirm our preliminary findings with
real human users as well as the results we obtained in user sim-
ulations. It should also be possible to further improve user sim-
ulations, for example, by letting the simulated users make
erroneous annotations in a frequency similar to real users.
This would also allow the exploration of our methods with
users of varying skill level, not just experts. Our work should
constitute a solid starting point for such investigations.
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