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Abstract

Rationale: Compared with control subjects, patients with chronic
obstructive pulmonary disease (COPD) have an increased incidence
of falls and demonstrate balance deficits and alterations in
mediolateral trunk acceleration while walking. Measures of gait
variability have been implicated as indicators of fall risk, fear of
falling, and future falls.

Objectives: To investigate whether alterations in gait variability are
found inpatientswithCOPDas comparedwithhealthy control subjects.

Methods:Twenty patients withCOPD (16males;mean age, 63.66
9.7 yr; FEV1/FVC, 0.526 0.12) and 20 control subjects (9 males;
mean age, 62.56 8.2 yr) walked for 3minutes on a treadmill while their
gait was recorded. The amount (SD and coefficient of variation) and
structure of variability (sample entropy, a measure of regularity) were
quantified for step length, time, and width at three walking speeds (self-
selected and620% of self-selected speed). Generalized linear
mixed models were used to compare dependent variables.

Results:Patients withCOPDdemonstrated increasedmean and SD
step time across all speed conditions as compared with control
subjects. They also walked with a narrower step width that increased
with increasing speed, whereas the healthy control subjects walked
with a wider step width that decreased as speed increased. Further,
patients with COPD demonstrated less variability in step width, with
decreased SD, compared with control subjects at all three speed
conditions. No differences in regularity of gait patterns were found
between groups.

Conclusions: Patients with COPDwalk with increased duration of
time between steps, and this timing is more variable than that of
control subjects. They alsowalkwith a narrower stepwidth inwhich
the variability of the step widths from step to step is decreased.
Changes in these parameters have been related to increased risk
of falling in aging research. This provides a mechanism that
could explain the increased prevalence of falls in patients with
COPD.
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Chronic obstructive pulmonary disease
(COPD) leads to narrowing of the airways,
destruction of lung tissue, and dynamic
hyperinflation of the lungs. COPD also
affects the structure and function of skeletal
muscle (1–3). Patients with COPD
demonstrate muscle fatigue (4, 5) and
muscle weakness (6) and also manifest
gait abnormalities (7–11). These gait
abnormalities include biomechanical
alterations at the ankle, increased variability
of mediolateral trunk movement, a shorter
step length, more time spent in double
support, and slower cadence as compared
with healthy control subjects (8, 10–12).
Moreover, patients with COPD have
increased risk of falls compared with
healthy control subjects (13–17).

A number of gait abnormalities are
related to increased fall risk in the general
population, including alterations in gait
variability (18–24). Alterations in the
variability of step width have been
associated with fall risk, prediction of falls,
and fear of falling in older adults (18–21).
Step length variability is increased in
older adult fallers as compared with older
adult nonfallers (22). Increased swing
time and stride length variability have
predicted a higher risk ratio of future falls
in a population of adults aged 70 years and
older (23). Increased step time variability
has been associated with multiple falls (24).

Gait variability is defined as the
natural stride-to-stride fluctuations present
during walking. Traditional methods of
measuring variability include quantifying
the amount of variation (i.e., SD), providing
information regarding the magnitude of
variability around a central mean. In
addition, analysis of the structure of the
output provides insight into the control
of the system. Temporal variations of a
healthy biological system represent
the underlying physiological capability
to make flexible adaptations to everyday
demands (25, 26). Disease and aging
have been associated with a loss of
flexible adaptations, making movement
patterns either too rigid or too irregular
(27, 28). This can be determined by
assessing the amount and structure of
variability.

Speed of walking is one everyday
environmental situation that all persons
encounter to complete everyday activities.
Gait variability will change while walking at
a speed slower or faster than one’s self-
selected walking speed (29, 30). Because

speed is commonly used as a rehabilitation
tool and is a predictor of survival (31),
it is important to understand how
gait variability is affected by speed
perturbations. Challenging the body to
walk at speeds outside the self-selected
walking speed can reveal declines in gait
or associations in gait patterns that are
otherwise camouflaged at their self-selected
walking speed (32).

The aim of the present study was to
investigate whether changes in gait
variability are present in patients with
COPD as compared with healthy control
subjects. It was hypothesized that patients
with COPD would demonstrate alterations
in the variability of walking patterns as
compared with age-matched healthy control
subjects while walking at a self-selected
speed. It was postulated that patients
with COPD would demonstrate reduced
variability and a more predictable/regular
movement pattern that reflects a more
restricted and inflexible gait. Furthermore,
to understand the effect of speed on gait
variability, different speed perturbations
were used. If patients with COPD truly
do have less flexible and less adaptable
movement patterns, this would be better
demonstrated at walking speeds that are
slower or faster than their self-selected
walking speeds.

Methods

Study Subjects
A convenience sample of 20 patients with
COPD and 28 healthy control subjects was
recruited from the University of Nebraska
Medical Center and the Omaha Veterans
Affairs Medical Center outpatient clinics to
participate in this study. Healthy control
subjects were recruited from the nearby
community. The presence of COPD was
determined by previous diagnosis and
confirmed with spirometry using an
FEV1/FVC cutoff ratio less than 0.7 (33).
Subjects were considered healthy if they
had no reported diagnosis of COPD.
Smoking history was also collected and
current smokers were not excluded.

Subjects were excluded if they
presented with a history of injury or disease
that affected their mobility or any other
process limiting their ability to walk. In
addition, subjects were excluded if they
presented with any comorbidity that may
affect the musculoskeletal, neurological,

pulmonary, or cardiovascular systems and
their ability to walk. These included but
were not limited to joint abnormalities,
joint replacements, acute/chronic lower
back pain, multiple sclerosis, Parkinson’s
disease, peripheral arterial disease, and
stroke. Patients with COPD were excluded
if they required supplemental oxygen
or if they had been hospitalized or had
experienced an acute exacerbation within
the past 3 months. All subjects were
screened in person by a nurse practitioner
to ensure that they met the inclusion
criteria. The institutional review boards
at both institutions approved the study,
and all subjects provided written
informed consent.

Walk Observation Protocol
In the biomechanics laboratory, subjects
changed into a form-fitting suit
(i.e., wrestling singlet). Retroreflective
markers were placed on the following
anatomical locations bilaterally: lateral
and medial metatarsophalangeal joint, base
of the second toe, calcaneus, heel, lateral
and medial malleoli, midshank, tibial
tuberosity, lateral and medial knee joint
center, top of thigh, midthigh, greater
trochanter, anterior and posterior superior
iliac spine, and sacrum (34) (Figure 1).

Subjects were then asked to walk on
a treadmill at their self-selected pace. A
self-selected pace was defined for the
subjects as a comfortable walking speed,
a pace at which they would walk from
their vehicle to the building. Once subjects’
comfortable walking speed was chosen,
they were allowed to rest for a minimum
of 2 minutes. They returned to the treadmill
to complete 3.5 minutes of walking on
the treadmill at their self-selected pace.
Three-dimensional marker positions from
the last 3 minutes of walking were recorded
(60 Hz; Motion Analysis Corp., Santa Rosa,
CA) (Figure 1).

The walking trials were repeated at
two additional speeds: 620% of subjects’
self-selected pace. The order of the last two
speeds was randomized for all subjects.
After each walking trial, each subject was
asked to provide a rating of perceived
exertion based on a 6- to 20-point Borg
scale (35). Between trials, subjects rested for
a minimum of 2 minutes or as long as
needed until they felt rested to prevent
fatigue.

Healthy control subjects were matched
one to one for speed with the patients with
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COPD because speed can influence gait
variability. In total, 20 patients with COPD
and 20 healthy control subjects were used
in the data analysis (Table 1). Unfiltered
three-dimensional marker data were used
to calculate three spatiotemporal time series
for each subject and each of the three
speeds using custom MATLAB software
programs (MathWorks, Inc., Natick, MA).

Gait Analysis
Step length was calculated as the
anteroposterior distance from the heel strike

of the right foot to the heel strike of the
left foot and vice versa. Step time was
calculated by determining the frame number
at heel strike of the right foot to the frame
number of the left foot heel strike. The
total number of frames between the two
events was then multiplied by the inverse
of the sampling frequency (1/60) to acquire
step time (1/60 represents the inverse of
the sampling frequency which was 60 Hz).
This was repeated for each right and left
step. Step width was calculated as the
mediolateral distance from the heel strike of

the right foot to the heel strike of the left foot
and the same for continuing contralateral
and ipsilateral steps. This included
extremely narrow steps, leading to some
step widths being expressed as a negative
number.

Generated time series for step length,
step time, and step width included
consecutive right and left steps from the
entire 3-minute walking trial. All the time
series were then cut to 250 steps. This is
based upon the slowest-walking subject
with the least number of steps. Only three trials
did not meet this requirement, and all were for
patients with COPD at the 220% walking
speed; these trials contained 238, 236, and 206
steps and were therefore not included in the
sample entropy (SampEn) calculation. The
following dependent variables were calculated
for each time series: mean, SD, coefficient of
variation, and SampEn.

SampEn provides a measure of the
regularity within the time series bymeasuring
the loss of information from point to
point and has previously been described
in detail (36). A perfectly repeatable time
series would elicit a SampEn value of
approximately 0, and a completely random
time series would elicit a SampEn value
extending toward infinity. After examining
the relative consistency of the group
averages for several combinations of
parameters for the present study (36), r
was chosen as 0.253 SD of the time series,
and m was chosen as 2.

Time series were plotted and visually
inspected for spikes or outliers greater
than 3 SD. None were found. Mean, SD,
coefficient of variation, and SampEn
from the step length, step time, and step
width time series for both the healthy
control subjects and patients with COPD
were calculated (see online supplement).
Normality was examined for each
dependent variable.

A linear mixed model was used to
assess differences in mean length, time,
and width between groups (patients with
COPD vs. control subjects) and over the three
speed conditions (220%, self-selected, and
120%). This modeling approach allowed us
to determine differences within and between
groups while accounting for correlation due
to repeated measurements and adjusting for
potentially confounding variables.

Generalized linear mixed models
were used for variables that did not meet
the normality assumption. All interactions
between speed and group were also

A B C

Figure 1. (A) Thirty-three markers are placed on the subject for calculation of joint centers during
walking. (B) During the walking trials, the medial metatarsophalangeal joint, medial malleolus, and
medial knee markers are removed, leaving 30 retroreflective markers used during walking trials. (C )
Infrared cameras are placed throughout the laboratory. Calibrated cameras triangulate the position of
each marker based on the reflection of infrared light back to the camera lens off the retroreflective
marker. The positions of markers are used to calculate step time, length, and width.

Table 1. Demographics of subjects used for analysis

Control (n = 20) COPD (n = 20) P Value

Male sex, n 9 16
Age, yr 62.5 (8.2) 63.6 (9.7) 0.69
Height, m 1.68 (0.10) 1.76 (0.11) 0.03*
Weight, kg 74.7 (15.5) 94.0 (32.7) 0.02*
Self-selected gait speed, m/s 0.95 (0.22) 0.80 (0.27) 0.06
Rate of perceived exertion 220% pace 7.6 (1.8) 10.1 (2.2) ,0.001*
Rate of perceived exertion self-selected
pace

9.2 (1.8) 10 (2.7) 0.32

Rate of perceived exertion 120% pace 10.7 (1.8) 11.7 (2.9) 0.25
FEV1/FVC 0.79 (0.06) 0.52 (0.12) ,0.001*
FEV1, % predicted 100.3 (16.2) 54.3 (19.2) ,0.001*
Smoking history 2 ex-smokers 7 ex-smokers

11 nonsmokers 9 current smokers
6 not reported 3 nonsmokers

1 not reported

Definition of abbreviation: COPD = chronic obstructive pulmonary disease.
Data are presented as mean (SD) or raw numbers.
*Significant (P, 0.05) difference between groups.
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investigated. Adjustments for multiple
comparisons were made using the
simulation technique. Mean differences
(MDs) between groups or speeds and 95%
confidence intervals (CIs) were calculated.
All statistics were performed using SAS
software (SAS Institute, Inc., Cary, NC). The
significance level was set at P, 0.05.

Results

Group Comparisons
Patients with COPD demonstrated
increased mean differences (MD, 20.082;
95% CI, 20.153 to 0.012) and SDs (MD,
20.30; 95% CI, 20.559 to 0.035) of step
time across all speed conditions; that is,
they walked slower and with a greater range
of speeds than the control subjects (P = 0.02
and P = 0.03, respectively) (Figure 2). In
addition, patients with COPD demonstrated
increased mean step width with increasing
speed, whereas the healthy control
subjects decreased mean step width as
speed increased (P = 0.04) (Figure 3).

Furthermore, patients with COPD
demonstrated decreased a SD of step width
across all speed conditions (MD, 0.004; 95%
CI, 0.001–0.007; P = 0.007). Thus, patients
with COPD use a wider step width that
does not decrease with increase in speed,
as does the gait of the control subjects.

Speed Comparisons
Mean step length increased with increased
speed, whereas step time decreased with
increased speed (P, 0.0001) for both
groups. SD and coefficient of variation of
step length and step time decreased as
speed increased for both groups (P, 0.001)
(Figures 2 and 4). In addition, step time
SampEn decreased as speed increased for
both groups (P, 0.001) (Figure 2).

Discussion

The present study demonstrates that
patients with COPD have an increasedmean
step time with increased variability (i.e., SD)
across all speeds as compared with

control subjects. No differences in regularity
of gait patterns were found between groups.
Also, in keeping with our hypothesis that
if patients with COPD had less flexible
and less adaptable movement patterns, this
would be more apparent at walking speeds
that differed from self-selected speeds
(e.g., too slow or too fast). In this context,
patients with COPD demonstrated a
narrower step width that increased as speed
increased, whereas the healthy control
subjects had a wider step width that
decreased as speed increased. Furthermore,
the narrow step width exhibited in
patients with COPD was in the context
of reduced step width variability because
the SD was decreased across all speeds.
Alterations in gait variability have been
associated with increased fall risk in the
general population (18–21, 24). The
increased step time variability and decreased
step width variability demonstrated by
patients with COPD in the present study
may provide a mechanism that could
account for at least part of the increased
fall risk in this population.
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Figure 2. The (A) mean, (B) SD, (C ) coefficient of variation, and (D) sample entropy of step time. Patients with chronic obstructive pulmonary disease
(COPD) had a greater mean and SD of step time as speed increased. *Significant (P, 0.05) difference between groups across all speeds. Dotted
horizontal lines indicate significant (P, 0.05) differences in speed conditions across both groups.

ORIGINAL RESEARCH

Yentes, Rennard, Schmid, et al.: Step Time and Width Variability Altered in COPD 861



A greater mean and SD of step time
has been associated with multiple falls over
a 12-month prospective study in older
individuals (24). However, conflicting
results have also been published in which
no association has been found between step
time variability and fall history in older
individuals (19). Our present findings
demonstrate that patients with COPD walk
with an increased step time and intrasubject
variability in step timing across all speeds
compared with control subjects. Moreover,
patients with COPD have an increased
risk of falls compared with healthy control
subjects (13–17). The degree to which
increased step time variability may account
for previous falls, future falls, or fear of
falling in patients with COPD has not
been investigated.

Step time variability is also associated
with other individual characteristics beyond
fall history. Women have a stronger
association between age and step time
variability when gait speed is not controlled,
especially as age increases (37). Stride

(i.e., two steps) time variability is increased
in older adults who are frail (38) or
cognitively impaired (39). Further, it is
associated with central nervous system
impairments (40) and subclinical brain
vascular abnormalities (41). Thus, future
investigations should explore the
association between increased step time
variability and falls in patients with COPD
while controlling for frailty and cognition.

Just as step time variability has been
associated with fall history, step width
variability has been associated with fall
history and fear of falling (18, 19, 21).
Patients with COPD walked with a
narrower step width that increased with
increasing speed, whereas the healthy
control subjects walked with a wider step
width that decreased as speed increased.
Further, patients with COPD demonstrated
less variability in step width, expressed as
decreased SD, than control subjects at all
three speed conditions.

A reduced variability and a narrower
step width lead to a walking pattern that has

a smaller base of body support and greater
likelihood to result in a crossover gait. A
decrease in the SD of step width may
indicate the inability to compensate for
instability, thus predisposing an individual
to a fall (18, 42). Both increases and
decreases in step width variability are
associated with fall history in older
adults (19, 21).

The present findings are not consistent
with our previous report that patients with
COPD walk with a wider step width than
their age-matched control subjects (12).
This is likely due to the calculation of step
width. In our previous study, step width
was calculated as the absolute distance
between right and left heel position and did
not consider any step widths so narrow as
to cause a negative step width (12). The
present study included steps in which the
step width was negative. In one control
subject, negative step widths ranged from
2 to 12% over the three trials, whereas
negative step widths in the patient with
COPD ranged from 11 to 34%. The average
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Figure 3. The (A) mean, (B) SD, (C ) coefficient of variation, and (D) sample entropy of step width. Mean step width was narrower for patients with chronic
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negative step widths were 20.0087 mm
for the patient with COPD and 20.007 mm
for the control subject. An additional five
subjects experienced one to two negative
step widths during the trials.

Modulating step width during walking
is considerably different from modulating
step time or step length. Step width occurs in
the mediolateral (frontal) plane of motion.
Mediolateral movements while walking
have been suggested to require increased
cognitive regulation of movement to adjust
for balance disturbances in that plane of
motion, thus leading to altered variability in
this direction of movement (43, 44). This
could imply that patients with COPD
may have a deficit in controlling the
mediolateral direction. Range and root mean
square of displacement of the center of
mass while standing in patients with COPD
is increased in the mediolateral direction
as compared with age-matched control
subjects (13). When sensory systems were
challenged (e.g., eyes closed, standing on
a foam pad or narrow base), patients with
COPD continued to demonstrate greater

displacement of the center of mass in
the mediolateral direction (13). Furthermore,
mediolateral trunk acceleration while
walking in patients with COPD
demonstrated a greater variability
between strides (8). On the basis of
evidence of increased falls and fall risk in
patients with COPD (13–15, 45–47),
patients with COPD could require
additional cognitive resources for
mediolateral control.

Future investigations should be focused
on step width and step time variability in
patients with COPD and their potential
association with fall risk. Further,
pulmonary rehabilitation programs focused
on restoration of functional limitations
should consider the implementation of
exercises targeted at mediolateral control
and/or balance recovery strategies.
Although implementation of balance
training into pulmonary rehabilitation has
been shown to be feasible and effective
(48, 49), home exercise protocols designed
to progress balance-challenging activities
may improve the scores on these clinical

assessments of balance in patients with
COPD as well (50).

As stated earlier, gait variability is
defined as the natural stride-to-stride
fluctuations present during walking, but it
can be measured several ways. To draw
comprehensive conclusions regarding the
variability of movement, one must examine
both the amount and the structure of the
variability. In the present study, the amount
of variation (SD and coefficient of variation)
was sensitive to changes between groups and
speeds, whereas structure of variation
(SampEn) was not sensitive to differences
between groups. Spatiotemporal variability
measures have strong to moderate
construct, predictive, convergent, and
predictive validity of falling, whereas most
nonlinear measures do not (51). Future
work could also include the variability of
kinematics of gait in patients with COPD. It
is possible that the amount of variability of
joint angles is altered in patients with
COPD as compared with healthy control
subjects. This has been found in older
adults as compared with young adults (52).
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Kinematics may represent a more global
parameter of gait rather than the general
spatiotemporal gait parameters in the
present study.

Limitations
This study has limitations. The first
limitation is the limited and potentially
heterogeneous sample of patients with
COPD recruited to participate in this study
(53, 54). The present study included a
sample size of 40 (20 per group). Because
biomechanical motion capture is accurate
to within 0.5 mm, biomechanical studies
typically use smaller sample sizes (55).
Recently, several potential phenotypes
(subsets) of COPD have been identified,
including a clinical phenotype (age, sex,
smoking history), physiological (rapid
decline in FEV1), radiographic or
imaging (structural abnormalities),
acute exacerbation of COPD, systemic
inflammation, and the presence of
comorbidities (cardiovascular disease,
metabolic syndrome, osteoporosis, diabetes,
depression) (53, 54). Although all patients
were screened by a nurse practitioner
before inclusion in the study, it is possible
that not all comorbidities were included in
our exclusion criteria. Moreover, it may be
that each phenotype presents with a
different gait pattern and that the sample

size of the present study did not allow for
this analysis.

Second, owing to the pathophysiology
of the disease, patients with COPD are
limited in the length of time for which they
can walk on the treadmill. This limits the
data length that can be acquired during
a trial. Entropy data measures respond
differently with longer length of datasets
(56). To abate this limitation, SampEn
was used because this is robust against
different data lengths and tends to respond
better to short data lengths (36).

Third, the speed perturbations of
620% of the subjects’ self-selected walking
speed may not have been challenging
enough. Based on the reported rating of
perceived exertion, the fastest speed was
not nearly close to the subjects’ maximal
walking speed. Patients with COPD
reported an average of 11.7 on the Borg
scale, whereas the healthy control subjects
reported 10.7, not significantly different.
A rating of 11 is considered “fairly light,”
and 13 is categorized as “somewhat hard.”
Ratings closer to 16 would suggest working
in a range closer to maximal level. Fourth, it
is possible that several of the patients with
COPD presented with muscle weakness
that was not measured. Lower-extremity
muscle weakness can alter gait
biomechanics as well as gait variability (57).

Last, there are physiological and
biomechanical differences between
overground and treadmill walking (58–67).
The treadmill could be considered a
constraint because it limits fluctuations
in walking that are normally present in
overground walking. Other measures
have shown conflicting results regarding
the difference in variability between
treadmill and overground walking (68–71).
Therefore, it is possible that the variability
of the gait data is affected by the use of
the treadmill.

Conclusions
Patients with COPD demonstrated
altered gait variability. Patients with COPD
walk with increased duration between
steps, and this timing is more variable
than it is in control subjects. Patients with
COPD also walk with a decreased step
width in which the variability of the step
widths from step to step is decreased as
compared with control subjects. These
differences were manifest at all gait speeds
tested. This provides a mechanism that
could account for at least part of the
increased fall risk present in patients with
COPD. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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