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ABSTRACT
Transfer cell (TCs) develop unique wall ingrowth networks which amplify plasma membrane surface area
and thus maximize nutrient transporter density at key anatomic sites for nutrient exchange within plants
and their external environment. These sites fall into 4 main groups corresponding to 4 categories of trans-
membrane flux: absorption/secretion of solutes from or to the external environment, and absorption/
secretion of solutes from or to internal, extra-cytoplasmic compartments. Research on TC biology over
recent decades has demonstrated correlations between wall ingrowth deposition in TCs and enhanced
transport capacity in many major agricultural species such as pea, fava bean, cotton and maize.
Consequently, there is general consensus that the existence of wall ingrowth morphology implies an
augmentation in membrane transport capacity. However, this may not be entirely applicable for phloem
parenchyma (PP) TCs in Arabidopsis. Our recent survey of PP TC abundance and distribution in
Arabidopsis veins indicated that PP TC development reflects heteroblastic status. A consequence of this
observation is the suggestion that PP TCs, or at least wall ingrowth deposition in these cells, potentially act
as a physical barrier to defend access of invading pathogens to sugar-rich sieve elements rather than
solely in facilitating the export of photoassimilate from collection phloem in leaves.
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A map of heteroblastic variation in PP TCs along the shoot
axis of Arabidopsis

PP TCs in Arabidopsis, similar to TCs in many other
instances, are embedded deep within vascular bundles of
leaves and leaf-like organs, and hence have mostly been
studied by electron microscopy. To enable a rapid means to
assess PP TC abundance, we used a modified pseudo-Schiff-
propidium iodide (mPS-PI) staining procedure in combina-
tion with confocal microscopy to visualize wall ingrowth
deposition in these TCs.1 The robustness of this imaging
enabled establishment of a simple scoring system for PP TC
development, as defined by wall ingrowth deposition,1

which in turn enabled us to map the distribution of PP
TCs along the Arabidopsis shoot axis (Fig. 1A). This analy-
sis revealed the novel linkage of PP TC development and
heteroblasty, or vegetative phase change (VPC) (Fig. 1).2

This linkage is illustrated by the observation that the extent
of wall ingrowth deposition varies substantially across the
developmental transition of juvenile to adult leaves; namely
juvenile leaves have abundant PP TCs with extremely well-
developed wall ingrowth deposition, whereas PP TCs in
adult leaves are much less abundant and show less-devel-
oped wall ingrowths (Fig. 1A, C, D and E).2 Additionally,
we also surveyed the distribution of PP TCs in the embry-
onic phase (cotyledons) and the reproductive phase (cauline

leaves) of shoot development (Fig. 1A, B, F and G).1 Inter-
estingly, PP TC development in cotyledons resembled that
in juvenile leaves 1 and 2 (Fig. 1B and C), consistent with
these first 2 leaves sharing some common traits with cotyle-
dons, partly because they are initiated in the embryo after
initiation of cotyledons and the SAM,3 and hence are distin-
guished from other juvenile leaves and hence classified as
the early juvenile phase.4 Cauline leaves are formed during
reproductive growth of shoots and have several heteroblastic
traits akin to that in adult leaves, such as abundant tri-
chomes on both abaxial and adaxial surfaces and having
elongated leaf blade and complex venation networks,5-7 and
particularly, having less developed PP TCs with a basipetal
gradient of wall ingrowth deposition (Fig. 1D - G).2 Collec-
tively, this map represents a nearly complete picture of PP
TC distribution at the whole plant level.

Wall ingrowth deposition in PP TCs is under control of the
miR156/SPL regulatory module

Heteroblasty is believed to arise from several overlapping pro-
cesses,8-10 which can be “ontogenetical aging,”11 “physiologic
aging,”11-13 “seasonal heteroblasty,”14-16 or “morphological
plasticity.”12,17-19 Ontogenetical aging, also known as “shoot
maturation” or “phase change,”13,20 is under genetic control,
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with the main player being the microRNA miR156 and its tar-
get SQUAMOSA PROMOTER BINDING PROTEIN LIKE
(SPL) transcription factor genes, resulting in heteroblastic traits
changing in regular, predictable and species-specific pat-
terns.10,21 Therefore, to determine whether observed hetero-
blastic features of PP TC development as described above are
genetically regulated by the same mechanism controlling shoot
maturation or merely reflect physiologic status of shoots, we
used the miR156/SPL module as a molecular marker.2 A multi-
faceted approach involving confocal imaging, leaf-removal
experiments and analysis of various mutants/transgenic lines in
combination with real-time quantitative RT-PCR demonstrated
that PP TC development is a component of the phase change
program and regulated by miR156 and its SPL target genes.2

The abundance of miR156, miR172, SPL3, SPL9, SPL10 and
SPL15 all correlated either positively or negatively with that of
wall ingrowth deposition in PP TCs across shoot maturation
from juvenile, transition and adult leaves, and across

maturation of individual juvenile and adult leaves. In all cases,
levels of miR156 accumulation showed a positive correlation
with the extent of wall ingrowth deposition, whereas levels of
SPL9, SPL10, SPL15, and to a lesser extent SPL3 and miR172,
negatively correlated with wall ingrowth abundance. Addition-
ally, altering the onset and/or progression of VPC by either
prolonged leaf ablation, growth of plants under short days, or
genetic manipulation of components of the miR156/SPL mod-
ule, resulted in corresponding changes in levels of wall
ingrowth deposition. In particular, over-accumulation of
miR156 caused an increase in PP TC development, whereas
reducing its accumulation or activity led to reduced wall
ingrowth abundance.2 The spl9–4/spl15–1 double mutant
showed increased levels of wall ingrowth abundance compared
with Col-0, and plants carrying miR156-resistant forms of
SPLs, including rSPL3, rSPL9, rSPL10 and SPL15–1D lines,
showed that wall ingrowth deposition was decreased in SPL9-
but not SPL3-group genes, collectively indicating that SPL9-

Figure 1. Distribution of PP TCs along a mature Arabidopsis shoot axis. (A) Map of PP TC class based on wall ingrowth abundance in minor veins of cotyledones and
leaves. The position of each colored dot represents a survey point in the organ where abundance of wall ingrowths in vein PP TCs was imaged and classified as either class
I through to class V. Cotyledons (cot) have class V PP TCs with massive deposition of wall ingrowths; juvenile leaves have class IV or V PP TCs. Adult leaves are character-
ized by much less developed PP TCs, with an basipetal gradient seen as class III or IV PP TCs at the apical region of the leaf and and class I or II at the base of the leaf. The
abundance and distribution of PP TCs in cauline leaves (cau) are similar to that in adult leaves, namely a gradient of PP TCs ranging from class III or IV at the tip to class I
or II at the base of the leaf (see also Nguyen and McCurdy, 2015). See Nguyen et al. (2017) for the description of each class of PP TCs. The Arabidopsis shoot diagram was
taken from the website http://www.bign2n.ugent.be. (B- G) Confocal imaging of wall ingrowth deposition (arrowheads) in PP TCs (asterisks) in mature organs of cotyle-
don (B), juvenile leaf 1 (C), adult leaf 10 (D and E), and cauline leaf (F and G). D and F are from minor veins located at the tip of the leaf; E and G are from minor veins
located at the base of the leaf. Scale bar D 10 mm.
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group genes may function as negative regulators of wall
ingrowth deposition in PP TCs.2 These findings represent a sig-
nificant step toward a better understanding of the genetic path-
ways required for constructing wall ingrowths in PP TCs.

Five decades ago, a taxonomic and morphological survey of
TCs in leaf minor veins of nearly one thousand Angiosperm
species revealed that more than 40 percent of all eudicot genera
possess this specialized cell type (either companion cell (CC)
TCs, PP TCs, or both) in collection phloem.22 Since then many
other surveys of the occurrence of phloem TCs have been con-
ducted in relation to structure and function of leaf minor veins
and phloem loading,23-26 lending strong support to the observa-
tion that TCs are ubiquitous in the plant kingdom.27,28 How-
ever, to the best of our knowledge, this is the first study
reporting the distribution of phloem TCs in leaf veins in the
whole individual shoot, and also the first study linking TC
development to a developmental phenomenon, namely hetero-
blasty. Given that many species that possess phloem TCs in leaf
minor veins also display heteroblastic growth, such as Pisum
sativum, Senecio vulgaris, Medicago sativa, Vicia faba and Plan-
tago lagopus, it will be of interest to investigate whether the
development of TCs in these species also reflects heteroblasty,
and the developmental context of this observation. Addition-
ally, the miR156/SPL module has been shown to be a common
regulatory mechanism of heteroblasty or VPC in many species
including both eudicots and monocots,21,29 thus it is reasonable
to anticipate that if TCs in leaf minor veins of a certain species
exhibit heteroblastic development, then wall ingrowth deposi-
tion in that species would be regulated by miR156-targeted
SPLs.

A role for PP TCs in pathogen defense?

As discussed in Nguyen et al.,2 the observation that PP TC
development in mature adult leaves is dramatically reduced
compared with that in mature juvenile leaves seems to con-
tradict a role for wall ingrowths in facilitating photoassimi-
late transport across the plasma membrane in these cells.
Indeed, previous studies comparing morphology and
response to jasmonic acid treatment between CC TCs in
pea and PP TCs in Arabidopsis, suggested that wall

ingrowths in CC TCs have a primary role in enhancing
phloem loading, whereas PP TC wall ingrowths may act as
a physical barrier to defense against pathogen attack.30,31

Additionally, PP cells are often the primary cells of phloem
subject to invasion by pathogenic viruses and fungi such as
Citrus tristeza virus in Citrus sinensis and C. aurantifolia,32

Phomopsis helianthi in Helianthus annuus (L.),33 and
Tobamovirus and Potyvirus in Phaseolus vulgaris and P.
sativum.34 The number of species forming PP TCs only in
collection phloem is unusually low compared with the pro-
portion having CC TCs alone, or both types of phloem
TCs.22 P. lagopus22 and Arabidopsis35 are the only 2 species
in which PP TCs are well documented, and interestingly,
both display a rosette growth habit (Fig. 2). Examining PP
TCs in leaves of P. lagopus to identify whether early
emerged leaves also have massive levels of wall ingrowth
deposition as seen in juvenile leaves of Arabidopsis repre-
sents a fascinating approach to test for a defense role, given
that these leaves in both species are in close contact with
soil and hence their phloem are potentially prone to soil-
borne pathogens.
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