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Estimating the human mutation rate from
autozygous segments reveals population
differences in human mutational processes
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John Wright4, Richard C. Trembath5, Eamonn R. Maher6,7, David A. van Heel 8, Adam Auton9,

Matthew E. Hurles1, Chris Tyler-Smith1 & Richard Durbin 1

Heterozygous mutations within homozygous sequences descended from a recent common

ancestor offer a way to ascertain de novo mutations across multiple generations.

Using exome sequences from 3222 British-Pakistani individuals with high parental related-

ness, we estimate a mutation rate of 1.45± 0.05 × 10−8 per base pair per generation in

autosomal coding sequence, with a corresponding non-crossover gene conversion rate of

8.75± 0.05 × 10−6 per base pair per generation. This is at the lower end of exome mutation

rates previously estimated in parent–offspring trios, suggesting that post-zygotic mutations

contribute little to the human germ-line mutation rate. We find frequent recurrence

of mutations at polymorphic CpG sites, and an increase in C to T mutations in a 5ʹ CCG 3ʹ to

5ʹ CTG 3ʹ context in the Pakistani population compared to Europeans, suggesting that

mutational processes have evolved rapidly between human populations.

DOI: 10.1038/s41467-017-00323-y OPEN

1Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK. 2 Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK.
3 Department of Human Genetics and Department of Bioinformatics and Computational Biology, Genentech Inc., South San Francisco, CA 94080, USA.
4 Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford BD9 6RJ, UK. 5 Division of Genetics and Molecular
Medicine, Faculty of Life Sciences and Medicine, King’s College, London SE1 1UL, UK. 6 Department of Medical Genetics, University of Cambridge, Cambridge
CB2 0QQ, UK. 7 Cambridge NIHR Biomedical Research Centre, Cambridge CB2 0QQ, UK. 8 Blizard Institute, Barts and The London School of Medicine and
Dentistry, Queen Mary University of London, London E1 2AT, UK. 9Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
Vagheesh M. Narasimhan and Raheleh Rahbari contributed equally to this work. Correspondence and requests for materials should be addressed to
V.M.N. (email: vagheesh@mail.harvard.edu) or to R.D. (email: rd@sanger.ac.uk)

NATURE COMMUNICATIONS |8:  303 |DOI: 10.1038/s41467-017-00323-y |www.nature.com/naturecommunications 1

http://orcid.org/0000-0001-8651-8844
http://orcid.org/0000-0001-8651-8844
http://orcid.org/0000-0001-8651-8844
http://orcid.org/0000-0001-8651-8844
http://orcid.org/0000-0001-8651-8844
http://orcid.org/0000-0002-1839-7785
http://orcid.org/0000-0002-1839-7785
http://orcid.org/0000-0002-1839-7785
http://orcid.org/0000-0002-1839-7785
http://orcid.org/0000-0002-1839-7785
http://orcid.org/0000-0002-0026-9216
http://orcid.org/0000-0002-0026-9216
http://orcid.org/0000-0002-0026-9216
http://orcid.org/0000-0002-0026-9216
http://orcid.org/0000-0002-0026-9216
http://orcid.org/0000-0002-0637-2265
http://orcid.org/0000-0002-0637-2265
http://orcid.org/0000-0002-0637-2265
http://orcid.org/0000-0002-0637-2265
http://orcid.org/0000-0002-0637-2265
http://orcid.org/0000-0002-9130-1006
http://orcid.org/0000-0002-9130-1006
http://orcid.org/0000-0002-9130-1006
http://orcid.org/0000-0002-9130-1006
http://orcid.org/0000-0002-9130-1006
mailto:vagheesh@mail.harvard.edu
mailto:rd@sanger.ac.uk
www.nature.com/naturecommunications
www.nature.com/naturecommunications


In recent years, several approaches have been taken to
estimating the human mutation rate, yielding results that
differ substantially. These approaches can be grouped into

three main categories: direct observation of mutations in present
day parent–offspring comparisons (the direct rate), calibrating
genetic divergence against fossil evidence for a past separation
time (the phylogenetic rate)1, or, more recently, population-
genetic approaches that effectively estimate the ratio of the
mutation rate to the recombination rate2, 3. For a genome-wide
average mutation rate, the direct approaches have consistently
estimated a rate of 1–1.25 × 10−8 per base pair (bp) per genera-
tion, significantly lower than phylogenetic estimates, which sug-
gest around ~ 2 × 10−8 per bp per generation1 or estimates from
population-genetic methods which suggest 1.6–1.7 × 10−8 per bp
per generation. Measurements of the mutation rate in coding
sequence, obtained via the direct method applied to exome
sequences of trios, are widely scattered but typically higher than
the genome-wide rate at around 1.25–2.1 × 10−8 per bp per
generation4; the increase over genome-wide rates is usually
attributed to differences in base composition giving higher
frequencies of CpG dinucleotides, which are more mutable.

Many explanations have been suggested for why these
estimates differ from each other4, 5. Possible shortcomings
include: (a) small sample sizes, both in terms of the number of
individuals the estimate is obtained from as well as the number of
true de novo mutations (DNMs) detected; (b) inaccurate
characterization of the false negative (FN) or false positive (FP)
rates, perhaps because of comparisons of sequencing data with
different properties from different individuals; (c) consideration
only of mutations occurring in a single generation, leading to
incomplete ascertainment of post-zygotic mutations in parents or
offspring6; (d) incomplete allowance for the correlation with
paternal age; (e) the inclusion of diseased individuals who might
have a higher rate of DNMs; or (f) failure to account for gene
conversion events.

To address these shortcomings, and to obtain an estimate
which, like population-genetic approaches, averages over multiple
generations and many mutational events, we adopted an
approach based on observing heterozygous genotypes within
sequence intervals inherited identical-by-descent (IBD) from a
recent common ancestor (autozygous segments). Here we use
exome sequences from healthy individuals with closely related

parents, typically with ~ 5% of their genome autozygous in long
(>10Mb) segments. Heterozygote sites within autozygous
segments can arise from DNMs in the generations since the
common ancestor, or from gene conversions in the same period
that led to the transfer of existing variants into one or the other
IBD lineage, or from sequencing errors. We estimate the
contribution of all three of these sources. Essentially the same
approach was used previously on a small scale in a study of five
individuals from the Hutterite cohort, and gave a genome-wide
mutation rate estimate of 1.1 × 10−8 per bp per generation7.
The Palamara et al.3 population-genetic method takes a similar
approach, but makes a statistical estimate of the number
of generations back to the most recent common ancestor in
haplotype matches across individuals. In this study, we also
compare our multi-generational estimate from autozygous
segments with other previous estimates to understand the
contribution of post-zygotic mutations to the overall human
mutation rate. Additionally, as our estimate is one of the few data
sets of DNMs obtained in a non-European population we
examine differences in context-specific mutational spectra
between human populations.

Results
Data set of 3222 exomes of high parental relatedness. We
analyzed exome sequences obtained from DNA from whole
blood and sequenced to mean depth 27× from 3222 individuals
of British Pakistani ethnicity8. The mean maternal and paternal
age of the sampled individuals was 27.6 and 30.3 years respec-
tively, a little below UK averages of 29 and 32 years respectively.
These individuals are from communities with frequent first,
second, and third cousin marriages, in a clan or “Biraderi”
structure9. This level of relatedness allows us to examine DNMs
accumulated across 6–10 meioses (Fig. 1). We restricted our
analysis to autosomal single-nucleotide substitutions with the
same genotype call from both samtools10 and Genome Analysis
Toolkit (GATK)11 when calling across all samples.

Estimating the mutation rate from autozygous segments. To
calculate the mutation rate, we first obtained L, the total length
of the genome in which we counted heterozygous mutations.
Previous work on this data set8 showed that the locations of
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regions correcting for sequencing
errors, gene conversions and false
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Fig. 1 Study design: strategy to estimate the mutation rate. Bottom left: regions of the genome in an individual with first cousin parents are autozygous due
to being inherited by two routes from a common founding chromosome. The X marks represent a DNM transmitted along the pedigree to the sequenced
individual. Top: most sites in autozygous regions are homozygous, except for recent mutations, gene conversions and sequencing errors. Bottom right: the
estimate μ̂ depends on three factors: N, L and M, as described in the text
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autozygous segments across individuals are randomly distributed
with a mean of 210 individuals autozygous at each site. To enrich
for segments that truly result from IBD we only consider
segments that are at least 10Mb long, as these arise in fewer
than 8% of chromosome pairs that are separated by more than
10 meioses (Supplementary Fig. 1). To avoid calling mutations in
segments adjacent to an autozygous stretch with a higher time to
most recent common ancestor, we ignored the last 2 Mb at each
end of the segment, having shown that truncating by more than
this did not affect our estimate (Supplementary Fig. 2). We then
took the intersection of the final set of autozygous core segments
with the Illumina V5 exome bait regions and the 1000 Genomes
Project accessibility mask12 to yield a total evaluated length of
9.46 × 109 bp of DNA within the protein-coding regions of the
genome.

Next, we estimated N, the number of heterozygous genotype
calls within the autozygous sections, accounting for the FP and
FN rates of the sequencing data. To estimate the FN rate, we
simulated mutations by selecting a set of 10,000 random sites and
switching the base in reads mapping there to an alternate base
with probability 0.5. Then we remapped the modified reads, and
measured the fraction of such simulated mutations that we could
recall using our standard calling pipeline. To estimate the FP rate,
we resequenced 176 individuals from whole blood taken at least
9 months apart using the same library preparation, sequencing
protocol, and calling pipeline. We then modeled the replication
rate of heterozygous mutations found in one sample and its
duplicate, using a probabilistic framework that jointly accounts
for both the FP and FN rates, as well as the allele frequency
information of the site (Methods). For singletons (mutations
seen just once in our samples) these approaches yielded a set of
N0= 1152 heterozygous mutations with a FN rate of 17% and
a FP rate of 1%. For mutations seen at allele frequencies above
10% (644 or more copies in 3222 samples) the estimated FN rate
is lower, at 7.9%, since we used a multi-sample variant calling
method (Methods, Supplementary Table 3).

Then, we determined M, the number of meioses leading to the
most recent common ancestor, for each autozygous segment. We
did this per individual, based on the autozygous segment length
distribution in that individual. We used a supervised learning

approach that assigns the observed segment length distribution
to an expected number of separating meioses, based on
simulating recombinations in pedigrees with different degrees
of relationship, according to the fine-scale recombination map.
This yielded a weighted mean number of meioses across our
entire data set of 6.63 (Methods). The inferred number of meioses
per individual was in good agreement with the degree of
relatedness from self-stated records for the approximately one
third of our samples where this information was available
(Supplementary Table 1).

MAF-threshold regression to obtain the gene conversion rate.
Finally, we obtained mutation rate estimates in two different
ways. First, we used the count of singleton heterozygotes N0

to obtain the value 1.51 × 10−8± 0.05 per bp per generation
(=N0/LM). Then we calculated a second value that was corrected
for gene conversion by examining segregating variation in
our data set. Here, we adopted an approach called minor allele
frequency (MAF)-threshold regression3, wherein we start from
counts of Nf, the number of candidate heterozygous mutations in
our truncated autozygous regions that have MAF less than f in the
whole cohort. For f> 0, Nf will include alleles introduced by
gene conversion, which occur at a rate proportional to the allele
frequency. Therefore, we can use linear regression to obtain
both the gene conversion rate (as the slope) and the mutation rate
(as the intercept with the f= 0 axis). This approach yielded
a single-nucleotide mutation rate of 1.41± 0.04 × 10−8 per bp per
generation and a non-crossover gene conversion rate of
8.75± 0.05 × 10−6 per bp per generation (Fig. 2). This gene
conversion rate estimate is a little higher than the previously
reported rate of 6 × 10−6per bp per generation, which was
obtained for whole genomes using phased trio data13. Our higher
estimate for exome data may reflect higher recombination rates in
coding sequence.

Post-zygotic contribution to the human mutation rate. The
discrepancy between our two estimates for the mutation rate
(1.51 and 1.41 × 10−8 per bp per generation) is not statistically
significant, but it is possible that our singleton estimate may be
biased slightly upwards by including some gene conversions from
rare alleles, whereas the regression estimate may be biased slightly
downwards by removing some recurrent mutations. Thus we
suggest a rounded summary estimate of 1.45 × 10−8 per bp per
generation. Overall, our estimates lie at the lower end of the
published range for mutation rates in exome sequence, and below
recent population-genetic estimates for the whole genome. More
specifically, they are ∼10% lower than the mean of the exome
rates tabulated in Segurel et al.4, with current generation mean
paternal age also around 10% lower than that for the same set of
studies. A concern for previous direct estimates based on a single
generation is that post-zygotic mutations prior to separation of
the germ line that lead to mosaicism could cause undercounting.
However, our method covers the whole germ line life cycle in
most of the generations, strongly mitigating such an effect if it
exists. The fact that our estimates are not greater than previous
exome estimates from trio studies, suggests that the contribution
of post-zygotic mosaic-inducing mutations to the germ-line
mutation rate is marginal6, 14, in contrast with evidence from
mouse15 and cattle16 that show that the earliest embryonic
cell divisions account for ~ 25 and ~ 30% respectively of all
mutations, although we acknowledge that this conclusion would
be weakened if the unrecorded paternal age in previous genera-
tions for our cohort was considerably lower than that in the
current generation.
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Fig. 2 MAF-threshold regression to simultaneously obtain mutation rate
and gene conversion rate. The mutation rate, is calculated by obtaining
values of Nf at different thresholds of minor allele frequency. The intercept
on the y axis of the regression provides an estimate of the mutation rate
that is corrected for gene conversion and the slope is used to calculate the
estimate of the gene conversion rate
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Recurrence of a significant fraction of DNMs. Comparing our
DNMs to segregating variation seen in over 60,000 individuals
from the Exome Aggregation Consortium (ExAC)17, we found
evidence for large-scale recurrence. Overall, 357 of 1152 (30.9%)
of all our singleton DNMs were seen in ExAC, with a large
proportion of these at CpG sites, the most mutable dinucleotide
sites in the genome, for which ExAC is close to saturated18

(Fig. 3a).

Population differences in context specific mutation spectra.
Our ascertainment of DNMs is amongst the first in
non-Europeans. Previous results that examined mutations private
to each population from Phase 1 of the 1000 Genomes Project
(1000GP) showed elevated rates of mutation in the tri-nucleotide
context 5′ TCC 3′→ 5′ TTC 3′ in Europeans and to a lesser
extent compared to Africans and to a lesser extent also in South
Asians19–21. We therefore examined whether we could detect
differences in mutational spectra between DNMs of South
Asian and European ancestry (Supplementary Table 5). Here we
compared the mutational spectra observed in our data set with

those from a meta-analysis of 6902 DNMs from whole-genome
sequencing data of pedigrees of European ancestry6. After
normalizing for the difference in sequence context between
the datatypes, we found a difference in the proportion of a
5′ CCG 3′→ 5′CTG 3′ mutational signature that was nominally
significant in our South Asian ancestry study compared to those
from the European studies (ratio 1.35, p= 0.0044) (Fig. 3b). This
replicated in a comparison of 850 genome-wide DNMs from a
set of 15 trios from the Punjabi in Lahore, Pakistan (PJL)
population from the 1000GP to the meta-analysis DNMs (ratio
1.42, p= 0.019). Both sets of Pakistani-ancestry DNMs were
similarly significant when compared to a different control set of
variants private to Europeans in the 1000 Genomes Project data
(Fig. 3b), with a combined p-value for independent comparisons
of 7.3 × 10−5, which is experiment-wide significant across the 96
triplet mutation contexts.

As a second line of validation, we compared mutations private
to the PJL population from the 1000 Genomes Project with the set
of variants private to Europeans, which was again significant with
p-value of 5.4 × 10−37 (Fig. 3b). No other context showed such a
consistent difference in effect or an experiment-wide significant
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combined p-value, nor were there any experiment-wide
significant differences for control comparisons using a set of
747 DNMs from the Scottish Family Health Study (SFHS)6

(Supplementary Fig. 3). Also, comparisons with East Asian 1000
Genomes Project (ASNpriv) populations indicate that this
difference is a relative increase specific to the PJL population,
rather than a decrease specific to Europeans (Fig. 3c). We note
that the signal from the comparison of private PJL to private EUR
variants is present in all trinucleotide XpCpG contexts, and
so would be consistent with a difference in the ratio of CpG to
non-CpG mutation rates, perhaps due to changes in life history22.
However, this is not the pattern that we see from the DNMs,
where the consistent significant difference is restricted to the
CCG context (GCG is also nominally significant in the
autozygosity but not the PJL trio data, and ACG and TCG in
neither).

Discussion
We are not able to distinguish between possible biological causes
for these differences, which might include environmental, life
history or genetic factors such as population differences
in methylation patterns or mismatch repair, or indeed any
combination of these. However, we note that the fact that we see
an effect in DNMs that contributes towards differences in
population private mutations, which would be typically
thousands of years old in the populations of 100 individuals used
for this analysis, suggests that at least some factor or factors
contributing to the Pakistani-specific mutation spectrum are
ongoing in the UK Pakistani-ancestry community. The discovery
of a second human sequence context with apparent differential
mutation rates between continental populations supports and
extends the observations by Harris19 that mutational processes in
at least some human populations have changed in the last 50,000
years, and is the first such effect to be seen in DNMs.

Methods
Cohort selection and variant calling. We analyzed exome sequence data from a
recent study of 3222 individuals of British Pakistani origin from Birmingham and
Bradford. Full details of the sampling, sequencing and variant calling are available
from the paper describing the data set8, but we provide a brief overview here. These
individuals were participants in either the UK Asian Diabetics Study28 or the Born
in Bradford study23. Ethical approvals were granted by the Bradford Research
Ethics Committee; the Birmingham East, North and Solihull Research Ethics
Committee; and the South Birmingham Research Ethics Committee and all indi-
viduals gave their consent to participate in the respective study. Individuals with
severe long-term disease as reflected by their electronic health records and pre-
scription rates were excluded. Exomes were sequenced in 75 bp paired end reads on
the Illumina HiSeq platform from DNA from whole blood. Because that study was
focused on identifying homozygous rare variants, the sequencing was at lower
average coverage than standard for exome sequencing, with a mean coverage of
27× (per-individual and per-site coverage histograms are given in Supplementary
Fig. 4). In addition, 176 samples with biological replicates collected at least
9 months apart were resequenced for quality control purposes using the same
protocols.

Variant calling was performed by taking the intersection of two variant call-sets,
one with GATK HaplotypeCaller11 and one with samtools/bcftools10. Calling was
restricted to the Agilent V5 exome bait regions + /− a 100 bp window on either
end. The concordance between the two call-sets for SNPs was 95%. Discordant
genotypes were set to missing and variant sites with > 1% missing genotypes were
excluded. These calls were then run through a GATK VQSR training scheme at
99% True Positive Rate threshold using a set of single nucleuotide polymorphisms
(SNPs) from the phase 3 release of the 1000 Genomes Project cohort.

Paternal age effect on mutation rate. There is a known strong paternal age effect
on mutation rate18. Our approach averages over several generations, and we were
not able to obtain parental ages all the way back to the shared ancestor or the ratio
of transmissions through the maternal and paternal germ lines. We obtained the
average parental age at birth in this population by analyzing age information
collected from the sampled individuals while they were admitted at a maternity
ward during pregnancy. The mean maternal age in the present generation from this
cohort was 27.6 years and the mean paternal age was 30.3, which are slightly lower
than the average parental age in the UK overall, with mean paternal age of 32, and

maternal age of 29. Notably, our mean parental and maternal age estimates were
within the range of the first direct estimate of the long-term generational interval
estimated to be between 26 and 30 years29. Recent estimates of the mutation rate in
coding sequence have been summarized in a recent review on the mutation rate4.
The paternal age of our data set is at the lower end of those for exome studies, as is
our corresponding overall mutation rate estimate (∼10% lower than the mean in
each case, though within the previous distribution).

Estimating the FP and FN rate. To obtain estimates of our FP sequencing error
rate, we used 176 pairs of known duplicate samples that were sequenced and called
with the same procedure and protocols and examined the dependence of the
probability of replication of heterozygous calls P het in dup 2 het in dup 1; α; β; fjð Þ
on the FP rate α, the FN rate, β and the allele frequency of the variant, f.

The replication rate, of seeing a heterozygote in duplicate 2, given that it is seen
in duplicate 1, is given by equation 1 in Supplementary Note 1.

By the law of total probability, we can write this by conditioning on various
scenarios of error and real genotypes (Supplementary Note 1, equation 2).

We then observed the replication rate empirically for each allele frequency
from 0 to 1 in linear intervals of 0.01 to obtain an overconstrained system of
100 non-linear equations in α and β. To get an estimate averaged across all allele
frequencies, we obtained solutions subject to the constraint that 0 < α, β < 1 and
implemented this using the BBsolve package in R. Using this approach, we
estimated a value for α, 1%; and β, 9%.

In addition, we used an approach of introducing new artificial sequence
variation on reads to obtain an independent estimate of the FN rate in our data. To
do this, we picked 10,000 sites at random for which the reference allele was well
defined (not reference N), and which were inside both the Illumina V5 exome baits
and the 1000 Genomes Project callability mask, ensuring that selected sites were at
least 100 bp away from each other (slightly longer than our read length). Then at
each of these positions we decided on an alternate base to be synthetically
introduced with 2/3 being transitions and 1/3 being transversions. Then, using a
Bernoulli process (p= 0.5) for each read covering that site we switched the base of
the selected position to the predetermined alternate base. The qualities, read
lengths and insert sizes of these reads were maintained. We next removed the
changed reads from the BAM and remapped them to the genome using the same
command of BWA used to map the original data. We then proceeded to call
variants at the given sites using the same calling procedure used to call the original
data set (see above). Our estimate of FN rate is simply the number of introduced
mutations that we failed recall using the above process.

As we performed joint calling across all 3222 exomes, variants seen in a single
individual (i.e., singletons) were less likely to be called in comparison to shared
variants with higher allele frequency. To adjust for this effect, we carried out the
procedure of synthetically generating reads in multiple samples at various allele
frequencies. In this setting, the FN rate was investigated in two ways. First, we
calculated a rate for which we were unable to call the synthetically generated
variable site in any sample. Second, we calculated a rate for which we were unable
to call genotypes on an additional sample, given that the site was already known to
be polymorphic. We report each of these categories of FN rates, along with their
allele frequency (Supplementary Table 3). We find that there are significant
differences in the FN rate between singleton mutations and those at higher allele
frequencies. However, we find that there is little difference in our ability to call
SNPs at frequencies above 10%, and use an average value of 7.9% FN rate for such
frequencies.

The length of evaluated genome in autozygous sections. Using allele frequency
information obtained from all 3222 individuals and the fine-scaled recombination
map, we used BCFtools RoH30 to obtain autozygous tract lengths as first reported
in ref. 8. These segments were found to be randomly distributed across the genome
with any site autozygous in an average of 210 individuals.

To allow us to reliably infer the number of meioses giving rise to tract lengths,
we chose to restrict ourselves to analyzing regions that could only arise from a very
small number of recent generations, up to and including those from third cousins.
To examine this, we used the R-package IBDsim24 (see section on the predicted
number of meioses from observed autozygous tract lengths) to simulate IBD
sections in individuals separated by varying numbers of meioses. We then observed
the longest autozygous block in each pedigree simulated 10,000 times, and found
that fewer than 8% of pedigrees that are separated by more than 10 meioses have
their longest autozygous segments longer than 10Mb (Supplementary Fig. 1).

We then examined two further sources of bias that might affect the
determination of the autozygous stretches. First, we might be overcalling regions
because our Hidden Markov Model might be making an error by terminating a
certain length after the end of a real stretch. This could introduce false
heterozygous mutations and increase the estimated mutation rate. Secondly,
segments that are IBD but separated by a larger number of meioses might lie
directly adjacent to a long segment. These are more likely to have a higher number
of heterozygous mutations per unit length, as mutations would have accumulated
over more generations. To reduce the impact of both scenarios, we used an
approach of truncating our regions by varying distances from each end and
recalculating the mutation rate using only heterozygotes within the truncated
sections. When we do this, there is no discernable change to the mutation rate
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estimate beyond a truncation of 2Mb (Supplementary Fig. 2). To ensure that the
positions within these regions were themselves callable, we further restricted our
evaluation to those that intersected the 1000 Genomes Callability mask, obtained
from ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/release/2010_03/pilot1/
supporting/README_callability_masks. This resulted in a total length of callable
genome of 9.46 × 109 bp of DNA.

Predicting the number of meioses from autozygous tracts. We infer the
number of meioses separating the two chromosome pairs of the sequenced
individual from the distribution of autozygous segment lengths. Chromosomes in
the offspring of first cousins are separated by six meioses, and second cousins by
eight meioses and so on. We began by simulating individuals who descend from
pedigrees with varying parental relatedness from first cousin up to and including
fourth cousin relationships. We simulated these recombinations in pedigrees using
the R-package IBDsim25, which uses the sex-specific fine-scale recombination
maps, with random sex assignment through the pedigree. For each degree of
parental relatedness, we simulated 10,000 pedigrees to obtain an empirical
distribution of segment lengths and restricted our analysis to segments that are at
least 10 Mb long. From these segment lengths obtained for each pedigree, we
calculated three summary statistics that we used for inference: the length of the
longest segment obtained, the average length of the segments and the total number
of segments seen. Using these three features from the simulated data, we trained a
supervised classification scheme to infer the number of separating meioses from a
given segment length distribution. This was implemented using the supclust
package in R that performs neighborhood component analysis for cluster
assignment. As a validation of this approach, we compared our inferred parental
relationships with those from self-stated relatedness and we report the most
likely assignment for each individual along with information, if available, about
their known self-stated relationship (Supplementary Table 1). As a second line of
evidence, we obtained information on the segment length distribution obtained
from well-characterized pedigrees where kinship was studied genetically from
consanguineous families involved in rare disease studies26. In this evaluation, our
approach inferred the pedigree relationships almost perfectly (Supplementary
Table 2). Using the probabilistic assignment from our machine learning model of
the number of meioses separating the chromosomes in individuals from our
data set, and weighting this by the length of the genome that is autozygous in
a particular individual, we calculated a weighted mean number of separating
meioses across all the individuals of 6.63, i.e., between first and second cousin
parental relatedness.

Estimating the gene conversion rate. Non-crossover gene conversion events
require a copy of the alternate allele to be present on the chromosome from which
the variant is copied, so can be modeled as occurring at a rate proportional to the
allele frequency of the variant in the population. To obtain an estimate of the gene
conversion rate, we utilized an approach known as maf-threshold regression3.
To do this we computed the mutation rate using a range of maximum allele
frequency thresholds, and performed a linear regression of the resulting mutation
rate on the allele frequency threshold. The intercept of this regression on the y-axis
(allele frequency 0) provides an estimate of the mutation rate that is corrected for
gene conversion, while the slope corresponds to the gene conversion rate. We
computed this regression line for allele frequencies between 10 and 50%. To obtain
the mutation rate in this allele frequency range, we used the average FN rate
across these frequencies of 7.9%, as obtained above. We also need to consider
the population heterozygosity which determines the chance that a particular
variant is present on a chromosome. The population heterozygosity in this data set
is 9.56 × 10−4 which is in line with other exome estimates from the 1000 Genomes
Project. We computed standard errors for both the intercept and the slope by using
a bootstrap procedure that we implemented using the boot package in R.

Partitioning of DNMs into mutational spectra. We subclassified the six
distinguishable point mutations and their reverse complements (C:G→ T:A,
T:A→ C:G, C:G→A:T, C:G→G:C, T:A→A:T and T:A→G:T) by calculating the
relative frequency of mutations at the 96 triplets defined by the mutated base and
its flanking base on either side27. For each of the trinucleotide classes, we compared
the mutational signatures across sets of DNMs using a 2 × 2 table and tested
whether the proportion of mutations of one class is significantly different in one
population versus another. To be as conservative as possible, we used Yates con-
tinuity correction and corrected for multiple hypothesis due to the 96 tests we
perform for each signature using the Bonferroni method. We show in Supple-
mentary Table 4 the 2 × 2 table for one comparison of the 5ʹ CCG 3ʹ→ 5ʹ CTG 3ʹ
class of mutation that is discussed in the main text, and data for the counts for the
samples published in this study are available in Supplementary Data 1 and the
significance of the tests in Supplementary Fig. 3.

Comparison of DNMs in the 1000 Genomes Project samples. We defined
derived SNPs that were private to each continent in the same manner as Harris
2015. For the African continent, however, we chose to differ slightly from the
definitions used to define the 1000 Genomes Project phase 3 AFR category. We
excluded populations from the Americas, which are known to have recent

admixture from both Africa and Europe, and so dropped ASW (African Americans
from the Southwest US) and ACB (African Caribbeans from Barbados) from our
African category. Therefore, we consider SNPs private to Africa if they are variable
in at least one of the populations LWK (Luhya from Kenya), YRI (Yoruba from
Nigeria), ESN (Esan from Nigeria), GWD (Gambian from western divisions of
Gambia) and MSL (Mende in Sierra Leone) and are not variable in the South
Asian, European and East Asian categories, as defined by the 1000 Genomes
Project. Then we obtained SNPs that were private to each continental group
with allele frequency at least two, to avoid any increased noise in singletons
(as Harris 2015), and examined differences in their trinucleotide contexts as
above for our set of DNMs.

1000 genomes PJL trio DNMs discovery and validation. Blood-derived DNA
samples of 15 Punjabi trios from the Punjabi in Lahore, Pakistan (PJL) population
of the 1000 Genomes Project were whole-genome sequenced by Complete Geno-
mics (CG)31, resulting in 12,496 candidate DNMs per trio on average. In our initial
filtering, we removed calls seen in any other individual, or in the CG founder, and
sites that were polymorphic in the 1000 Genome Project Phase 1. This resulted in
3609 candidate DNMs per trio. There were two criteria by which a putative DNMs
were selected for validation: either they were genotyped as a de novo call using
Samtools, or the de novo call had a quality score> 50 (i.e., ALT_EAF, as defined by
CG). This resulted in 759 candidate DNMs per trio for validation. Candidate sites
were validated by designing Agilent SureSelect probes for the candidate sites, fol-
lowed by enrichment and sequencing on Illumina Hi-Seq. Overall, 850 sites were
validated as DNMs (56.6 per trio on average).

Because of this ascertainment strategy, the validated trio de novos are suitable
for assessing relative rates between different contexts, but not for measurement of
absolute mutation rate. Notwithstanding this, the numbers that were validated
within exome regions are consistent with the rates reported here, although the
standard deviations of the estimates are large because the numbers are small. Of the
850 whole genome PJL trio DNMs, only 17 were in the accessibility-masked exome
target region of ~ 45Mb, and 32 were in the accessibility-masked call region with
100 bp extensions of ~ 82Mb. Ignoring corrections for ascertainment, these would
both give rate estimates of ∼1.3 with standard deviation around 0.3 or 0.23
respectively, which is within two standard deviations of any of the current
estimates.

Data availability. Data reported in the paper are available under a Data Access
Agreement at the European Genotype-phenome Archive (www.ebi.ac.uk/ega)
under accession numbers EGAS00001000462, EGAS00001000511,
EGAS00001000567, EGAS00001000717 and EGAS0000100130128–31.
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