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Generalized image deconvolution 
by exploiting the transmission 
matrix of an optical imaging system
SangYun Lee1,2, KyeoReh Lee1,2, Seungwoo Shin1,2 & YongKeun Park1,2,3

Intact optical information of an object delivered through an imaging system is deteriorated by 
imperfect optical elements and unwanted defects. Image deconvolution has been widely exploited 
as a recovery technique due to its practical feasibility, and operates by assuming linear shift-invariant 
property of the imaging system. However, shift invariance does not rigorously hold in all imaging 
situations and is not a necessary condition for solving an inverse problem of light propagation. Several 
improved deconvolution techniques exploiting spatially variant point spread functions have been 
proposed in previous studies. However, the full characterization of an optical imaging system for 
compensating aberrations has not been considered. Here, we present a generalized method to solve the 
linear inverse problem of coherent light propagations without any regularization method or constraint 
on shift invariance by fully measuring the transmission matrix of the imaging system. Our results 
show that severe aberrations produced by a tilted lens or an inserted disordered layer can be corrected 
properly only by the proposed generalized image deconvolution. This work generalizes the theory of 
image deconvolution, and enables distortion-free imaging under general imaging condition.

An optical imaging system delivers information about an object by collecting scattered light from the object and 
projecting it onto an imaging plane. In theory, the light scattered from each point is treated as a new point source, 
and forms a one-to-one correspondence with other points on the imaging plane. Ideally, the matrix of connected 
in-and-output spatial frequency components of an ideal imaging system can be represented as an identity matrix 
(Fig. 1a). In a practical imaging system, however, the image of a point object never forms a point image. This is 
because of the limited spatial bandwidth of the optical imaging system, which is determined by a finite numerical 
aperture (NA) and aberrations.

To compensate for aberrations, deconvolution (or inverse filtering), which has remarkable practical feasi-
bility, has been widely used1–3. Deconvolution is based on two assumptions: the linearity and the shift invariant 
properties. Linearity in imaging implies that if the output responses to the input point sources are known, then 
the object image will be expressed as a linear combination of the output responses corresponding to the linear 
constituents of the input information. Shift invariance means that the translational shifts of a source in the object 
plane do not change the profile of the output response (Fig. 1b). For coherent and incoherent imaging systems, 
the linearity and shift invariant properties are applied to complex optical fields, and to light intensity profiles, 
respectively. When those assumptions hold, the output distribution of the complex amplitude (or intensity) at 
the imaging plane can be expressed as the input complex amplitude (or intensity) convolved with a unique point 
spread function (PSF) of the imaging system. In other words, it is assumed that one PSF works over the entire field 
of view. In the Fourier domain of a coherent imaging system, under this assumption, the optical spectrum of the 
complex amplitude distribution at the imaging plane is simply a multiplication of the object optical spectrum and 
the Fourier transform of the PSF, or a coherent transfer function (CTF).

Accordingly, the spatial frequency of an object is transferred to the imaging plane independently of other 
spatial frequencies, and the matrix in Fig. 1b connecting the input and output frequency components of the lin-
ear shift-invariant imaging system becomes a diagonal matrix. Deconvolution theory has been applied to a wide 
range of optical imaging systems, from telescope imaging4, positron-emission tomography5 to deconvolution 
microscopy6, confocal microscopy7, 8, and digital holography9, 10.
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Although deconvolution has been used as a standard method for correcting aberrations, the shift invariance 
is approximately valid only when moderate aberrations exist. For instance, misalignment in an optical imaging 
system or contamination by dust can cause the PSF (or CTF) of an imaging system to be different at each position 
of the FOV, because the separated point sources in the object plane have spatially distinct optic paths. In adaptive 
optics11–14, one of the main issues for deep tissue imaging is to properly correct for spatially varying aberra-
tions imposed by complex tissue structures. Recently, a wavefront shaping technique by utilizing multi-conjugate 
planes15, 16 or turbid layer conjugation17 has been proposed, but is practically limited to fully account the mixing 
of light spatial modes in an imaging plane due to a finite size of both a pixel and a total area of current spatial light 
modulators (SLMs). Previously, improved deconvolution techniques have been proposed in the fields of astron-
omy18–20 and tomography21–25, in order to correct spatially varying blurs. However, these techniques are only 
applicable to intensity imaging and focus primarily on finding an optimized solution of the spatially variant PSFs 
using the regularization method like Lucy-Richardson algorithm based on sparsely measured data, rather than 
restoring distortion-free images by solving the linear inverse problem solely based on fully measured spatially 
variant optical responses of the imaging system. The inverse problem for reversing optical aberrations has not yet 
been exactly solved, because this problem was found to be extremely sensitive to system noise levels26 and there 
have been technical limitations in accurately recording the optical responses of the system to a set of enormously 
many impulse signals capable of generating object space.

Even in an aligned imaging system, which maintains a high degree of shift invariance by keeping the FOV 
much smaller than the size of the optical elements, it is inevitable that the matrix in Fig. 1c characterizing the 
image delivery capability in the frequency domain has some non-diagonal components. These non-diagonal com-
ponents can be an important issue, especially when a high level of aberration correction is required. Therefore, 
in order to completely compensate for aberrations imposed by imperfections in the imaging system, the PSF of 
a system which varies depending on the position of the object in the FOV, need to be systematically considered.

Here, we generalize the concept of image deconvolution by fully taking into account the varying nature of 
PSFs across the imaging FOV. By measuring all the responses of an imaging system to the translational shift of 
an input point source over the entire FOV with the help of wavefront shaping techniques27–32, the image forming 
capability of the imaging system is fully characterized. Inspired by recent advances in techniques33–40 for charac-
terizing light propagations in scattering media, our approach measures the transmission matrix (TM) of a coher-
ent imaging system in Fourier domain. In other words, we convert an ill-posed image deconvolution problem41 
to a well-posed linear inverse problem of light propagations by obtaining sufficiently many independent linear 
equations from the measured TM of the imaging system and thus do not require any constraint on the sample 
and imaging system.

Figure 1.  A schematic of the image forming capability of (a) ideal, (b) linear shift invariant, and (c) linear shift-
variant imaging systems.
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To investigate the formation of optical imaging – one of the fundamental principles in photonics - we revisit 
the inverse problem of light propagation through a coherent imaging system42. From the measured TM, we con-
stitute a well-posed linear inverse problem and solve it without any regularization method or constraint on shift 
invariance. We employed an interferometric microscope equipped with a digital micro-mirror device (DMD), 
which enables the full-field measurements of an optical field, with the capability of controlling the wavefront of an 
incident beam onto a sample43 (see Methods). Using this system, the propagation of light or the TM information 
of the used imaging system was fully characterized by successively recording the transmitted light fields for var-
ious illumination angles of an incident beam that was controlled by a DMD. Then, to demonstrate the principle 
of the generalized image deconvolution, optical fields with both distorted amplitude and phase objects under 
various aberrations were corrected, using two approaches, the conventional and the generalized image deconvo-
lutions, respectively. We demonstrate that the present approach effectively corrects system aberrations in nearly 
all imaging situations, whereas the conventional deconvolution only works when the linear shift invariance of an 
imaging system holds.

Principles
The full characterization of an imaging system was achieved by measuring the TM of the system. The optical 
responses of the imaging system were successively recorded to a set of impulses spanning the frequency space. 
Here, we displayed a set of input binary patterns generated by the Lee hologram method43, 44 as impulses on a 
DMD, and recorded the holograms of the transmitted beam with a Mach-Zehnder interferometric microscope 
(see Methods and Materials). However, it should be noted that the formulas that follow are applicable to any type 
of SLMs, including a liquid crystal on silicon and a galvanometer mirror, and any input basis that is capable of 
generating object space.

Suppose a total number of N input fields, spanning the spatial frequency space, are generated within a chosen 
NA. Let it be called a scan NA. Then, an input frequency spectrum of the ith binary image yi can be expressed as 
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= d i Ny k , 1i j ji j

in
1 , where α= …k{ }j
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In Fig. 2b, the square matrix parts of the C and D matrices are represented. The calculated TM is physically the 
same as having the information about all the CTFs (or PSFs) at each point of the FOV. Thus, the CTF at each point 
in the FOV of an imaging system can be retrieved from the measured TM. We retrieved the representative CTF of 
the imaging system by propagating a point image source at the center of the FOV, which corresponds to the scan 
NA, through the TM (Fig. 2c). If we expand the CTF, O, using the k{ }j

out  basis as = ∑β
= oO kj j j
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1 , the coefficient 

oj can be mathematically written as,
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Unless otherwise stated in this paper, the representative CTF refers to the CTF that the imaging system has at the 
center of the FOV.

By fully characterizing an imaging system by measuring the TM, any distortion in the imaging can be cor-
rected by using a back propagation of the complex optical fields. From the measured hologram of a sample, the 
complex optical fields can be retrieved using the proper field retrieval algorithms45 (Fig. 3a). Let the optical spec-
trum of the sample image S be expressed as = ∑β

= sS kj j j
out

1 . Then, in the conventional deconvolution approach, 
the distortion-free optical spectrum of the sample S′ can be obtained by dividing S by O from Eq. (2) as,
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In contrast, in the proposed approach, the generally deconvolved optical spectrum of the sample S″ can be 
retrieved from S by applying the inverse of TM, T−1, from Eq. (1) as,

″ = = .− −S T S D C S (4)1 1

The remaining practical task for retrieving S″ is to obtain an inverse of C. This can be numerically achieved 
when C decomposes into UΣV† via the single value decomposition, where U and V are complex unitary 
matrices and Σ is a diagonal matrix. Accordingly, C−1 can be directly obtained by calculating V(1/Σ) U†. 
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Figure 2.  Full characterization of imaging capability of the optics system. (a) Generated binary input 
DMD patterns and the recorded output interferograms after passing through the imaging system. (b) The 
characterization process of the TM. (c) The retrieval procedure for a CTF.

Figure 3.  Correction method for existing aberrations in the imaging system. (a) Retrieved 2-D complex 
optical fields of a raw hologram. (b) The conventional image deconvolution process. (c) The generalized image 
deconvolution process. For simplicity, only the optical spectrum within the scan NA is displayed.
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Taking the inverse Fourier transform of S′ and S″ then finally gives the conventionally and generally decon-
volved sample images, respectively (Fig. 3b,c).

Results and Discussion
Violations in linear shift invariance of an imaging system.  In order to demonstrate how imposed 
aberrations on the imaging system deteriorate the condition of shift invariance, two simulated point sources, 
whose optical spectrums are uniform up to NA of 0.6 (Fig. 4a), were propagated through the measured TMs 
under various optically misaligned conditions. If the imaging system has the linear shift invariant property, then 
the PSF and the CTF will not be changed by laterally translating an input point source. Therefore, the degree of 
shift invariance of the imaging system can be mapped over the entire FOV by calculating the correlations with the 
CTF or the profile of the PSF corresponding to the center of the FOV.

As an example, the CTFs of the lens-tilted imaging system at three different positions (α, β, and O in Fig. 4a) 
are shown in Fig. 4b. The two-dimensional (2-D) correlation map of the PSFs over the entire FOV of the 
lens-tilted system, representing the degree of shift invariance of the system, is presented in Fig. 4c. Following 
the same procedure, the 2-D PSF correlation maps of the aligned, optically defocused, lens tilted, and scattered 
systems are given in Fig. 4d–g, respectively. The output complex optical fields of the two point sources (α and 
β in Fig. 4a) through the measured TMs, were also presented right to the correlation map of the corresponding 
imaging system.

Figure 4.  The degree of shift invariant property of the imaging systems with imposed aberrations. (a) The 
input complex optical field of two simulated point sources. (b) The CTFs of the lens-tilted imaging system at the 
centre of the FOV, and at the positions of the two point sources. (c) The 2-D correlation map of the PSF profiles 
over the entire FOV of the lens-tilted imaging system, indicating the degree of shift invariance of the system. 
2-D PSF correlation maps and the output complex optical fields of the two point sources of the (d) aligned, (e) 
defocused, (f) lens tilted, and (g) scattered imaging systems.
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The correlation map of the aligned optics setup (Fig. 4d) shows a high degree of the shift invariant property. 
The output amplitude and phase profiles of the propagated two point sources are also similar to those of the input 
light field (Fig. 4a), except for minor distortions originating from unintentional misalignments and defects in the 
optical elements.

In the case of the optically defocused system (Fig. 4e), the imaging system still exhibits a high degree of shift 
invariance. This can be explained by the nature of light propagation. Optical defocus, or light propagation in 
general, only creates phase shifts on the Fourier optical spectra, so the generation of new spatial wave vectors 
from other spatial frequencies does not occur. Accordingly, in principle, short translations of a lens along the 
optic axis do not impose violations of shift invariance of the imaging system. In the propagated output field, two 
point foci no longer exist due to the dissatisfaction of the imaging condition; only weak interference patterns can 
be observed (Fig. 4e). In the phase map, however, two developed concentric phase rings are observed and this is 
consistent with the theory of light propagations.

In the case of tilting the tube lens (Fig. 4f), however, it severely violates the shift invariance of the imaging 
system. This is because optical responses upon translational shifts of an input source in the object plane are not 
isotropic in the imaging plane anymore. Instead, the shift invariant property of the system is only preserved along 
the particular direction which corresponds to the axis of the lens rotation. It is also observed that the output com-
plex optical fields of the two point sources are squeezed along the corresponding direction.

When a disordered layer is inserted in the optic axis, which diffuses an incident plane wave into multispectral 
random waves, it effectively abolishes the shift invariant property of the aligned imaging system (Fig. 4g). As a 
result, the 2-D PSF correlation map of the scattered imaging system has a remarkably narrow range in which the 
shift invariance is preserved, and this narrow region at the FOV center is where the widely-known optical mem-
ory effect46–49 comes in. Also, when the point light sources are propagated through the measured TM, the output 
complex field is diffused out around the original point locations.

Restoration of aberration-free complex optical field images.  In order to demonstrate the capability 
of distortion-free imaging using the generalized image deconvolution techniques, we corrected the optical field 
images of objects measured under optically aligned and misaligned conditions. A 1951 USAF target and a poly-
styrene bead with a diameter of 10 μm were used as an amplitude object and a phase object, respectively. A set of 
binary patterns was generated using the DMD to achieve both the maximum spatial frequency and the FOV up 
to 0.92 μm−1 and 20 × 20 μm2, respectively (see Methods and Materials).

The retrieved complex optical fields of the samples under various imaging conditions are presented in Fig. 5. 
The measured representative CTFs of the aligned (Fig. 5a), optically defocused (Fig. 5b), lens tilted (Fig. 5c), and 
scattered (Fig. 5d) imaging systems are given. Restored images obtained with both the conventional deconvolu-
tion and the proposed generalized deconvolution are presented. To quantitatively analyze the quality of the image 
reconstruction, the correlation value of each sample field with the generally deconvolved field in the aligned 
imaging system is indicated.

The quality of image reconstruction using the present generalized deconvolution method is significantly 
enhanced in comparison to the conventional devolution method. The conventionally deconvolved optical images 
exhibit the correct profile of the object only when the imaging system is aligned (Fig. 5a) or optically defocused 
(Fig. 5b). In contrast, the restored optical fields obtained with the generalized deconvolution give the correct 
shapes of the object even in the lens-tilted (Fig. 5c) and scattered (Fig. 5d) systems, notwithstanding some speckle 
noises. In the optically aligned imaging system (Fig. 5a), the profiles of both conventionally and generally decon-
volved complex optical fields are similar to those of the original holograms, as expected. While conventional 
deconvolution preserves the non-uniform background phases of the original hologram, the generalized decon-
volution further corrects the background phase profile so that it is uniform. This aspect can also be found in the 
optically defocused and lens-tilted imaging systems. Consequently, the restored complex optical fields based on 
the generalized image deconvolution exhibit a flat background phase, even in the scattered imaging system.

Next, in the optically defocused system (Fig. 5b), the corrected profiles of the samples again validate both the 
conventional and generalized image deconvolution approaches for correcting aberrations. The concentric phase 
rings of the CTFs clearly show the well-known phase profile of a spherical wavefront kernel.

In the tube-lens-tilted imaging system (Fig. 5c), however, we can see that only the generalized deconvolu-
tion properly restored the fine shapes of the number six and the spherical bead from the distorted optical fields. 
Despite some de-blurring effects, conventional deconvolution could not reshape the distorted images of either 
the USAF target or the polystyrene bead, because a tilted lens in the imaging system violates the shift invariance 
of the imaging system.

Imperfections in the distortion correcting capability of the conventional deconvolution seem more apparent 
when it comes to the scattered imaging system, which mimics an extreme situation that occurs with many micro-
scopic scatters in the optic beam path (Fig. 5d). In this case, the application of conventional deconvolution to 
the raw holograms even strengthens the image distortions. The corresponding CTF of the scattered system also 
exhibits speckle-like inhomogeneous amplitude and phase profiles. The generalized image deconvolution, how-
ever, still restores the shape of both the amplitude and phase objects with moderate spatial noises.

Conclusions
In this paper, we introduced a generalized image deconvolution concept which does not require any assumption 
related to a spatially invariant system, and experimentally demonstrated its image reconstruction performance. 
To achieve this goal, the light propagating behaviors of the imaging system were fully characterized by succes-
sively measuring the optical responses of the system to a set of illumination beams. Our results show that the 
assumption of spatial invariance is satisfied only for some ideal cases. The present method correctly restored the 
complex amplitude images of both amplitude and the phase objects despite various types of aberrations, including 
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a tilted lens and the insertion of a scattering layer. In contrast, the conventional deconvolution method could only 
correct image distortions when the distortions did not violate the shift invariance, as in the case of optical defocus.

The present work demonstrates the proof-of-principle of the suggested idea for a coherent imaging system. 
However, the present approach is general and also readily applicable to any imaging configuration including inco-
herent, x-ray, terahertz, and infrared imaging systems. For an incoherent system such as fluorescence microscopy, 
the intensity measurements of the points sources at various locations within the FOV can be used.

Although the present work is focused on the generalized image deconvolution, the approach presented in this 
work is sufficiently broad and general, and it will directly offers novel approaches for various applications where 
a TM of an optical system is measured. For example, the present method can be combined with various quantita-
tive phase imaging techniques50, 51 including ptychography52, digital holographic microscopy53, 2-D quantitative 
phase imaging54, 55, and 3-D holotomography approaches56–58, and enhance the imaging quality significantly.

The 2-D PSF correlation maps in Fig. 4 representing the degree of shift invariance of the imaging system pro-
vide a neat compromise between the conventional and generalized image deconvolutions. The main advantage 
of conventional image deconvolution is that image restoration is simple and fast based on the invariant CTF (or 
OTF) of the imaging system. Meanwhile, generalized image deconvolution can compensate any complex aberra-
tions by eliminating the assumption of shift invariance in the imaging system, but complicated calculations are 
inevitable since all changes in the CTF based on the positions within the FOV must be considered. From a prac-
tical point of view, if the FOV of an imaging system can be divided into small sections where the shift invariance 

Figure 5.  Reconstruction of distortion-free optical fields of an amplitude and a phase target. Retrieved optical 
field of a USAF target and 10-μm-diameter polystyrene bead from the raw holograms, the restored optical fields 
of the targets using both conventional and generalized deconvolutions, and the CTF of the optical configuration 
in (a) aligned, (b) defocused, (c) lens tilted, and (d) scattered imaging conditions. For each complex optical field 
image, the value of the field-field correlation with the optically aligned condition is also presented.
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holds locally, even complicated aberrations which violate the global shift invariance of the system can also be 
effectively corrected, by assigning the proper CTFs to the corresponding subsections. The most efficient way to 
compensate for aberrations would be to minimize the number of small sections that maintain the shift invariance 
locally and constitute the entire FOV of the imaging system.

In sum, considering that the shift invariance is always deteriorated to some extent, even in optically aligned 
systems, we expect that this generalized imaging deconvolution method can be effectively exploited, particularly 
in industrial fields and biomedical applications which require a high level of aberration corrections for the pur-
pose of inspecting optical elements and high-performance telescopes, and calibrating microscopes.

Methods and Materials
Experimental optics setup.  To demonstrate the aberration correcting capability of the generalized image 
deconvolution, we employed Mach-Zehnder interferometry (Fig. 6a). A diode-pumped solid-state laser with a 
single longitudinal mode (λ = 532 nm, 50 mW, Cobolt Co., Solna, Sweden) served as the light source. A 2 × 2 
fiber optic coupler (λ = 532 ± 15 nm, 90:10 split, Thorlabs, USA) connected to a fiber collimator (f = 4.34 mm, 
NA = 0.57, Thorlabs, USA) divides the incident laser beam into a sample and a reference arm. The illumination 
angles of the laser beams impinging onto the sample are systematically controlled by using a DMD (V-9501, Texas 
Instruments Inc., USA), which is located in the conjugate plane of the sample. When the Lee hologram, corre-
sponding to the normal illumination, is loaded onto the DMD, the 1st order diffraction beam was chosen to serve 
as an optic beam path in the imaging system. Two objective lenses (UPlanSApo, 60×, water immersion, NA = 1.2, 
infinity corrected, Olympus Inc., USA) were used as a condenser and an objective lens, respectively. However, 
when imaging a thick object, an objective lens with a long working distance (LUCPlanFL N, 60×, WD = 1.7 mm, 
NA = 0.7, Olympus Inc., USA) was used as a condenser lens. Total magnification of the optical system is 100×, 
contributed by a telescopic 4-f system which consists of a 60× objective lens and an aspheric lens with a focal 
length of 300 mm. The sample and the reference arm were then recombined by a 50:50 beam splitter in front of 
the high-speed sCMOS camera (528 × 512 pixels with a pixel size of 6.5 μm, Neo sCMOS, ANDOR Inc., Northern 
Ireland, U.K.), and two polarizers were used to adjust the intensities of the sample and the reference beam inten-
sities to maximize the fringe visibility.

Various aberrations imposed on the optical imaging system.  To impose various aberrations on 
the Mach-Zehnder setup, the optical components were intentionally misaligned via image defocus, lens tilt, and 
insertion of weakly scattering media in the optic axis, as shown in Fig. 6b. Defocus was achieved by slightly mov-
ing the objective lens from a focused position. To apply more severe aberrations, the aspheric tube lens of the 4-f 
imaging system in front of the beam splitter was tilted by 10 degrees. To generate an extreme situation, we inserted 
two pieces of lens papers between the imaging and pupil planes.

Transmission matrix recording.  To record responses of the optical imaging system for various light illu-
mination angles, i.e., measuring the TM, we constructed a signal triggering circuit which connects both the DMD 
and the sCMOS camera. The DMD controls the angle of light illumination and then a trigger signal is sent to the 
camera, so that the corresponding interferogram is captured before the next DMD pattern is projected.

The control of illumination angles was achieved by projecting Lee holograms onto the DMD44. A ideal DMD 
pattern generating a plane wave with spatial frequencies of kx and ky, f (x, y), can be written as,

π
= + − + +f x y x y p

M
k x k y( , ) 1

2
[1 cos {

2
( ) ( )}], (5)x y

where x and y are radial coordinates of the DMD, p is the DMD pixel size, and M denotes a magnification of 
the imaging system. The binary hologram pattern to be uploaded on the DMD, h (x, y), is then determined as  
h (x, y) = 1, where f (x, y) > 0.5 and h (x, y) = 0, otherwise. Detailed information can be found elsewhere43. To 
measure the TM, the angular frequency space of the imaging system was sequentially scanned. The total number 

Figure 6.  The experimental optics setup. (a) An inverted microscope based on Mach-Zehnder interferometry. 
A sample is loaded between the condenser and imaging objective lenses. L: lens; M: mirror; OL: objective lens; 
BS: beam splitter; P: polarizer (b) Imposition of various aberration conditions on the imaging system, including 
optical defocus and lens tilt, and insertion of weakly scattering media in the optic axis.
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of DMD patterns is determined by both the scan NA and the step size in angular frequency space. Because inverse 
filtering is a band-limited technique, the scan NA is fundamentally limited by the value of min (NAc, NAi), where 
NAc and NAi denote the NAs of the condenser and imaging objective lenses, respectively. Meanwhile, the step size 
determines the maximum FOV of objective images to be corrected without aliasing artifact. The speed of the TM 
recording process is determined by the frame rate of the camera.

In the experiments with a 10-μm-diameter polystyrene bead (72986, Sigma-Aldrich Co., USA) and a 
2″ × 2″ positive 1951 USAF target (#57-896, Edmund Optics Inc., USA), we chose the scan NA = 0.6 and 
FOV = 20 × 20 μm2. Accordingly, the scanning step size was set to be 1/20 μm−1 and the total step numbers were 
then 1,517. The frame rate of the camera was 67 Hz. The entire TM measurement takes less than 30 sec.

During the TM measurement, there could exist globally varying phase noises in the measured optical fields, 
which mainly attribute to air fluctuation and mechanical vibration affecting interferometry. To correct the glob-
ally varing phase noises, an additional invariant reference pattern with the area of 0.54 × 0.54 mm2 was simul-
taneously displayed on the corner of the DMD. Since the global phase varitations of this reference pattern were 
experimentally measured and these varitations are independent to Lee hologram patterns, the effects of globally 
varing phase noises can be cancled out without loss of generality.
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