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Risk Model for Prostate Cancer 
Using Environmental and Genetic 
Factors in the Spanish Multi-Case-
Control (MCC) Study
Inés Gómez-Acebo   1,2, Trinidad Dierssen-Sotos1,2, Pablo Fernandez-Navarro1,3, Camilo 
Palazuelos2, Víctor Moreno1,4, Nuria Aragonés1,3,5, Gemma Castaño-Vinyals1,6,7,8, Jose J. 
Jiménez-Monleón1,9, Jose Luis Ruiz-Cerdá10, Beatriz Pérez-Gómez   1,3,5, José Manuel Ruiz-
Dominguez11, Jessica Alonso Molero2, Marina Pollán1,3, Manolis Kogevinas1,6,7,8 & Javier 
Llorca1,2

Prostate cancer (PCa) is the second most common cancer among men worldwide. Its etiology remains 
largely unknown compared to other common cancers. We have developed a risk stratification model 
combining environmental factors with family history and genetic susceptibility. 818 PCa cases and 
1,006 healthy controls were compared. Subjects were interviewed on major lifestyle factors and family 
history. Fifty-six PCa susceptibility SNPs were genotyped. Risk models based on logistic regression 
were developed to combine environmental factors, family history and a genetic risk score. In the 
whole model, compared with subjects with low risk (reference category, decile 1), those carrying 
an intermediate risk (decile 5) had a 265% increase in PCa risk (OR = 3.65, 95% CI 2.26 to 5.91). The 
genetic risk score had an area under the ROC curve (AUROC) of 0.66 (95% CI 0.63 to 0.68). When adding 
the environmental score and family history to the genetic risk score, the AUROC increased by 0.05, 
reaching 0.71 (95% CI 0.69 to 0.74). Genetic susceptibility has a stronger risk value of the prediction that 
modifiable risk factors. While the added value of each SNP is small, the combination of 56 SNPs adds to 
the predictive ability of the risk model.

Prostate cancer (PCa) is, after lung cancer, the second most common cancer among men worldwide. The inci-
dence of prostate cancer is increasing in all countries, especially in western countries1, on the one hand, due to the 
population aging and increased exposure to environmental risk factors, and secondly, due to the generalization 
of screening and improved diagnostic techniques. This, together with decreasing mortality from the disease, has 
contributed to the increase in prevalence. In Spain in 2015, 27,853 new cases and 5,481 deaths are estimated1.

Despite its considerable impact, the etiology of prostate cancer remains largely unknown compared to other 
common cancers. The only well-established risk factors for PCa are advanced age, family history, and ethnicity2–6. 
Other factors such as diet (a high-calorie or high-fat diet, and high level of cholesterol, high consumption of meat 
products, fruits, fish, milk, dairy foods, dietary calcium and dietary vitamin D, and spirits), high BMI, weight, 
waist circumference, physical inactivity and inflammation have been proposed as risk factors for PCa7–13, but 
their role in prostate cancer etiology remains unclear.
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Hereditary component accounts for up to 42% of the PCa risk, including individual and combined effects 
of rare highly penetrant genes, common weak penetrant genes, and genes that act in concert with others14–16. 
In fact, it has been shown that PCa is the neoplasia with a higher hereditary component15. However, to identify 
genetic variants associated with the disease is not being an easy task. To establish which genetic factors play a role 
in the development and progression of prostate cancer could help to determine who is at greatest risk, leading 
to early detection and/or developing new therapeutic treatments. Studies of genome-wide association (GWAS) 
are being designed with increasing statistical power in order to identify genetic variants associated with complex 
human diseases17. GWAS through massive genotyping case-control comparison have allowed for the discovery 
of dozens of SNPs associated with diseases other than genetic etiologies. Since 2006 more than 76 SNPs related 
with PCa risk have been cataloged, explaining 30% of the heritability of PCa18. Each separate allele confers a small 
individual risk (odds ratios [OR] between 1.06 to 1.79 per allele)18–20. The detection of these risk alleles in an indi-
vidual, together with the value of prostate specific antigen (PSA), family history and environmental factors, could 
increase the specificity and sensitivity of PCa diagnostic tests. In this study, we have developed a risk stratification 
model that combines environmental factors with family history and genetic susceptibility. We evaluated the rela-
tive contribution of these factors and the utility of the model for risk stratification and public health intervention.

Methods
Study design and population.  The Multi Case-Control (MCC-Spain) study is a population based 
case-control study of common tumors in Spain and has been described elsewhere21. It has been carried out in 23 
hospitals and primary care centers in 12 Spanish provinces. The recruitment includes incident cases of colorectal, 
breast, stomach and prostate cancer or chronic lymphocytic leukemia diagnosed between September 1st, 2008 
and December 31st, 2013. All cases were incident and pathology-confirmed, aged between 20 and 85 years old 
and resident within the influence area of the hospital at least 6 months prior to recruitment.

In this paper, 818 cases of prostate cancer (ICD-10: C61, D07.5) and 1,006 frequency-matched controls with 
genotype data were considered. Controls were men whit no prior history of prostate cancer living in the same 
catchment area as cases; they were randomly selected from the rosters of General Practitioners at the Primary 
Health Centers. Controls were frequency-matched to cases by 5-year age groups and study area. Among these 
cases and controls, there were only two Arabic individuals (one case and one control); the rest of the participants 
were White/Caucasian. Response rates varied between centers and were on average 74% among cases (range 
47–94%) and 54% (range 30–94%) among controls with valid telephone numbers in the PHC rosters.

All procedures performed in studies involving human participants were in accordance with the ethical stand-
ards of the institutional and/or national research committee, and with the 1964 Helsinki Declaration and its 
later amendments or comparable ethical standards. The protocol of MCC-Spain was approved by each of the 
ethics committees of the participating institutions. The specific study reported here was approved by the Ethical 
Committee of Clinical Research of Asturias, Barcelona, Cantabria, Girona, Gipuzkoa, Huelva, León, Madrid, 
Navarra and Valencia). Informed consent was obtained from all individual participants included in the study.

Data collection.  Participants were interviewed face-to-face by trained interviewers who used a comprehen-
sive epidemiological questionnaire that assessed socio-demographic information, personal and family history of 
cancer, anthropometric data, smoking habits and physical activity habits, water consumption, reproductive and 
medical history and medication/drug use. Diet was assessed with the use of a validated semi-quantitative Spanish 
Food Frequency questionnaire (FFQ), which was modified to include regional products22. The FFQ included 140 
food items, and assessed usual dietary intake for the previous year. Blood samples were obtained following the 
study protocol.

Participant’s weight was self-reported, as estimated one year before diagnosis for cases and for controls. Their 
body mass index (BMI) was calculated from self-reported weight and height noted the year prior to the diagnosis 
of cases and one year before to the interview for controls. Similar estimates provided total energy consumption. 
Physical activity was recorded for all jobs and also recreational physical exercise.

Modifiable and non modifiable risk factor score.  Only variables previously reported with PCa have 
been considered for the development of risk models23. The variables considered were: family history of PCa (none 
versus first or second or third-degree); cigarette smoking, grouped into non-smokers and smokers (including 
former and current); average alcohol consumption between 30 to 40 years old (in standard units of alcohol, 
SUA) and spirits categorized in tertiles. To ensure that the exposures were prior to the effect, it was decided to 
collect alcohol consumption in the past (30–40 year-old). It appears that some prostate cancers can pass through 
a latency period of up to 15 to 20 years, during which the disease is histologically present but has not yet come 
to attention. However, we do believe that trying to record dietary in the same way would be strongly biased as it 
is not expected participants could complete a diet questionnaire after such a long period. Alcohol consumption 
during the previous year has been collected and the results are very similar to those of the past. BMI (calculated 
with the weight reported one year prior to the interview for controls and one year prior to the diagnosis for 
cases). It was categorized according to The World Health Organization criteria: underweight, normal weight and 
overweight (<30 kg/m2) versus obese (≥30 kg/m2); weight and waist circumference were categorized in tertiles. 
Average physical exercise, measured from self-reported leisure-time activity performed in the past 10 years was 
used to estimate the Metabolic Equivalent of Task (MET) per hour per week, calculated using the Ainsworth’s 
compendium of physical activities24, and categorized according to the WHO’s classification in light/moderate/vig-
orous (using thresholds: 3 and 6 METs)25. Red meat consumption, that included meat from mammals (cattle, ox, 
veal, beef, pork, etc.), from game (duck, pheasant, etc.), offal (liver, brains, etc.), cured meat (ham, bacon, etc.) and 
processed meat (hot dogs, sausages, meat balls, etc.). High intake of red meat was considered eating ≥65 g/day 
(it is average meat consumption among controls); vegetables and fruit separately, classified as low or high intake 
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using 200 g/day as cut-off, following the strategy to reduce the prevalence of noncommunicable diseases launched 
by WHO in 2004, which includes five or more servings of fruit and/or vegetables per day (≥400 g/day)26. Fish, 
milk, dairy foods (including milk, yogurt and cheese), dietary calcium and vitamin D were categorized in tert too. 
We have introduced categorization into tertile in order to avoid making specific assumptions about the shape of 
their relationship with the outcome and minimize the influence of outliers.

Genotyping and SNP selection for the genetic risk scores.  The genotyping was performed using the 
Infinium Human Exome BeadChip (Illumina, San Diego, USA) that includes >200 000 coding markers plus 5000 
additional custom SNPs selected from previous GWAS studies or in genes of interest.

Genomebrowser27 was used to identify those genetic variants associated with PCa through genome-wide 
association studies (GWAS) in which the “reported trait” was prostate cancer with a p-value threshold of 5 · 10−8, 
apparent in the population with European ancestry population (initial or replication sample). For this analysis, 
we could include 62 of these PCa susceptibility variants: 51 were included in our genotyping array, and another 
11 variants, not included in our Exome BeadChip, were also estimated through a “proxy”, considered as such a 
SNP genotyped in our array that was in linkage disequilibrium (LD) (r2 > 0.8) with them according with 1000 
Genomes data. For proxy search, we used “SNP Annotation and Proxy Search” (SNAP)28, 29 with the following 
inputs: “1000 Genomes Pilot 1” as SNP data set, CEU population as “panel” chosen, 0.8 as “r2 threshold”, and a 
distance of 500 kilobases between the query SNP and the proxy SNP. In each case, we selected the proxy SNP with 
the highest r2 that was genotyped in our array.

Finally, six of the 62 SNPs had to be eliminated because they were in linkage disequilibrium with other 
snps (r2 > 0.8). In this way, we finally included 56 SNPs in the analysis. No SNP was discarded according to 
Hardy-Weinberg equilibrium (HWE) as no SNP showed statistical significance (p < 10−4) in the HWE test. The 
complete list of SNPs is detailed in Supplementary Table 1.

Statistical analysis.  Multivariate logistic regression models were used to build risk models. All models were 
adjusted to a propensity score30 to avoid bias related to differences in case and control selection frequencies. The 
propensity score model was constructed as the individual prediction (in logit scale) of a logistic regression in 
which case/control status was modeled with age, level of education, recruiting center, and the first 3 principal 
components of genetic ancestry obtained from GWAS genotyping data. The propensity score was added as a 
continuous variable to adjust the risk models.

An environmental risk score (ERS) was built and included all covariates with a p value ≤ 0.20 and that can be 
modified (diabetes, weigh, BMI, alcohol and red meat). This score was built by logistic regression, by adding the 
estimated beta coefficients of the above indicated risk factors. The results are presented as odds ratios (OR) with 
95% confidence intervals (CI) by deciles of the ERS. All p-values given are two tails. Family history of PCa was not 
considered in this environmental score since it is not modifiable, and its effect was assessed as a separate factor.

To assess genetic susceptibility, an additive genetic risk score was elaborated. Each SNP was coded as 0, 1 or 2 
copies of the sample risk allele, defined as the allele with highest PCa risk, except for the SNP rs5945572 in chro-
mosome X that was coded 0 or 1.

We elaborated a genetic risk score (GRS) by adding the beta coefficients obtained in the logistic regression 
analysis. We avoided using published weights, which could be overestimated.

Results are reported as odds ratios (OR) with 95% confidence intervals (CI) by decile of the GRS. All reported 
p-values are two-tailed.

The predictive accuracy of models was assessed with the area under the ROC curve (AUROC), adjusted for 
the propensity score. Weights were proportional to the number of cases in each decile. A 95% CI was calculated 
for the AUROC using bootstrapping techniques for internal validation, using 1000 replications. The bootstrap 
principle is to sample the empirical distribution from which the data originated (i.e. sampling with replacement 
of observed data)31. The performance estimate were corrected by optimism32.

For analyzing whether a score adds or not to the predictive ability of another score, we estimated the net 
reclassification improvement (NRI), the integrated discrimination improvement (IMI) and the improvement in 
the AUROC. The goal for a score is to classify prostate cancer cases and controls adequately; when two scores -say 
ERS and GRS- are compared, GRS would classify some cases better than ERS and some others worse; likewise, 
GRS would classify some controls better and some others worse. NRI33 is the net sum of classifying cases and 
controls better using GRS rather than ERS:

It is noteworthy that NRI can only be applied when both scores are nested one in each other, as it is the case 
between ERS and GRS, because the risk of prostate cancer is the sum of genetic and environmental risk factors. In 
this article, we use the continuous version of NRI34.

While NRI measures the improvement in classification, IMI estimates the improvement in predicted proba-
bility. A better score is expected to predict higher probabilities in cases and lower probabilities in controls than a 
worse score. Therefore, IMI is defined as33:

To estimate the potential public health impact of the environmental and genetic risk scores, we applied the 
estimated relative risks (ORs) to average population PCa incidence estimations published by The International 
Agency for Research on Cancer (IARC). Data was extracted from GLOBOCAN 2012: estimated cancer incidence, 
mortality and prevalence worldwide in 201235. Average age specific incidence rates for the Spanish population 
were projected according to combinations of environmental and genetic risk scores to define risk strata. For these 
estimates, the published rates were multiplied by the ORs estimated from out risk models. We used the average 
number of risk factors and risk alleles in the population as reference category for these calculations.

Statistical analysis was carried out using the package Stata 14/SE (StataCorp, College Station, Tx, US).
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Results
Population description and modifiable risk factor score.  A description of the 818 cases and 1006 
controls included in this study is provided in Table 1. Variables have been coded with the lower PCa risk cat-
egory as reference to simplify comparisons of effect and elaboration of risk scores. Family history of prostate 
cancer is a well-known risk factor for prostate cancer. In our study, having a family member with this tumor 
multiplied the risk of prostate cancer by 3.29 (OR = 3.29, 95% CI = 2.44 to 4.43). Among the modifiable factors, 
Diabetes behaved as a protective factor against prostate cancer in those who were either untreated (OR = 0.41, 
95% CI = 0.22 to 0.77), or in those whose treatment was with oral antidiabetic agents (OR = 0.69, 95% CI = 0.52 
to 0.92). While consumption of alcohol in the third tertile and high consumption of red meat behaved as a risk 
factor for PCa (OR = 1.29, 95% CI = 1.01 to 1.65 and OR = 1.35, 95% CI = 1.10 to 1.65 respectively). Regarding 
the aggressiveness of the tumor, only 14% of the prostate cancers studied were high risk (Gleason score ≥8), com-
pared to 45% that were low grade (Gleason ≤6).

Table 2 shows the multivariate risk factors associated with PCa. Family history of PCa was strongly associated 
to PCa (adjusted OR 3.32, 95% CI 2.34 to 4.71). Regarding environmental risk factors, consumption of red meat 
higher than 65 grams a day (adjusted OR 1.28, 95% CI 1.02 to 1.61) and the second tertile of alcohol (adjusted 
OR 1.46, 95% CI 1.10 to 1.93) contributed to PCa risk, while diabetes contributed to reduce the risk of PCa 
(OR = 0.58, 95% CI 0.43 to 0.79).The environmental score, calculated by adding the estimated beta coefficients of 
the risk factors listed above, also reached statistical significance (OR = 2.47; 95% CI 1.62 to 3.76). Supplementary 
Figure 1 shows the distribution of the environmental score for cases and controls, and the estimated risk of PCa 
according to the deciles of the estimated beta coefficients of the risk factors.

Genetic risk score.  Out of 56 GWAS SNPs analyzed, only 26 were statistically associated with PCa in 
our data. There were eight (rs2660753, rs7629490, rs9364554, rs7758229, rs6465657, rs4242382, rs4430796, 
rs17632542) for which the association is significant only for the heterozygous genotype. (Supplementary Figure 1 
and 2). The less frequent allele was protective in 9 SNPs, and increased the risk in the remaining 9 SNPs. The 
genetic risk score (GRS) built by adding the estimated beta coefficients had an average of 7.5 in cases and 6.9 in 
controls (Fig. 1); the GRS was significantly associated with PCa, with an average per unit OR of 2.05 (95% CI 1.79 
to 2.36).

As shown in Fig. 1, the increase in risk per GRS decile was almost linear, indicating the independent additive 
contribution of each beta coefficients to the genetic risk score. Compared to subjects scoring 4.5–6.00 (reference 
category, decile 1), those scoring 6.95–7.19 (decile 5) had a 265% increase in PCa risk (OR = 3.65, 95% CI 2.26 to 
5.91), while PCa risk in subjects with scoring 8.32–10.30 (decile 10) was 7 times higher than that of the reference 
category (OR = 7.70, 95% CI 4.72 to 12.58). The GRS was independent of modifiable environmental variables 
and no significant interactions were observed between the genetic risk score and age or any of the environmental 
variables included in the multivariate model. The Supplementary Figure 1 shows the same figure but for the envi-
ronmental score. Compared with decile 1 (reference), statistical significance was only reached from the decile 7 
on, although with less magnitude than in the genetic risk score.

Estimating the potential public health impact of a risk model to stratify screening or modify 
risk factors in the average Spanish risk population.  Figure 2 shows the contribution to PCa risk pre-
diction that was estimated for modifiable environmental risk factors, family history and the genetic risk score. 
The individual (blue line) and cumulative (red line) represent the contribution of each environmental factor to 
the risk. The cumulative contribution of the five environmental factors resulted in an area under the roc curve 
(AUROC) of 0.57 (95% CI 0.54 to 0.60). Family history increased the AUROC to 0.62 (95% CI 0.59 to 0.64). The 
genetic risk score, on its own, had an AUROC of 0.66 (95% CI 0.63 to 0.68). When adding family history to the 
GRS model, the AUROC increased to 0.68 (95% CI 0.66 to 0.70); if the environmental score was also added, the 
AUROC reached 0.71 (95% CI 0.68 to 0.74).

The heterogeneity of prostate cancer plays an important and particular role with respect to the association 
with many of the environmental risk factors, although, when considering the heterogeneity of prostate cancers, 
we observed that the AUC was very similar in all strata observed. In Supplementary Table 3, we compared the 
AUC according to the age, the aggressiveness of the tumor (measured with the Gleason score) and the stage at 
diagnosis and we observed that, in general, the AUC was very similar in all the strata with respect to the global 
model, since the maximum observed change was in the 3rd decimal. The genetic score added the most to the 
predictive ability, reaching an AUROC of 0.75 in people under 65 years old (95% CI 0.71 to 0.79).

Improvement in risk prediction by adding more scores on GRS components was measured with three indi-
cators: net reclassification index (NRI), integrated improvement of discrimination (IDI) and improvement in 
AUROC, the results of which are shown in Table 3. Adding ERS to GRS improved patient classification by 14% 
(NRI = 0.142) with marginal improvements in IDI and AUROC. The difference in the odds of having prostate 
cancer between cases and controls almost did not improve anything (IDI = 0.009). However, the addition of GRS 
to ERS scored 43% in NRI (NRI = 0.428) and the difference in odds of prostate cancer between cases and controls 
improved by 5% (IDI = 0.054).

A simple calculation of the relative risk could be done through the following risk score (RS) equation: 
RS = 2.47(ERS-0.94) * 3.32FH * 2.05(GRS-6.98). This is how Fig. 3 was constructed: An individual with the average expo-
sure in the population (i.e.: with no family history (FH = 0), 0.94 points in the environmental score and 6.98 
points in the genetic score) would have the average population risk (RS = 1). When applied to a specific subject, 
this equation gives his relative risk with respect to the average population; for instance, a subject with 1 points in 
the environmental score, family history and 7 points in the genetic score would have a RS of 3.5 times the average 
risk. These relative risk estimates can be applied to specific incidence rates for a population to derive the absolute 
risk estimates. For example, Spanish cancer incidence data was used to estimate the proportion of the population 
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Characteristic

Control Case Crude 
OR 95% CIn % n %

Age

  <65 years 410 40.76 342 41.81 1.00

  ≥65 years 596 59.24 476 58.19 0.95 0.79–1.15

Family History of PCa

  No 930 92.72 649 79.73 1.00

  Yes 73 7.28 165 20.27 3.29 2.44–4.43

Diabetes

  No 783 77.99 688 84.42 1.00

  Yes, without pharmacological treatment 37 3.69 14 1.72 0.41 0.22–0.77

  Yes, with oral antidiabetic treatment 143 14.24 86 10.55 0.69 0.52–0.92

  Yes, treated with insulin 25 2.49 12 1.47 0.58 0.29–1.18

  Yes, both treatments (oral + insulin) 16 1.59 15 1.84 1.02 0.50–2.08

Hypertension

  No 498 49.65 448 54.97 1.00

  Yes, without pharmacological treatment 38 3.79 27 3.31 0.79 0.47–1.32

  Yes, with pharmacological treatment 467 46.56 340 41.72 0.80 0.66–0.96

Smoking

  Non-smoker 275 27.34 240 29.34 1.00

  Former/Current smoker 731 72.66 578 70.66 0.91 0.74–1.13

Alcohol

  Tertile 1 310 35.71 217 30.52 1.00

  Tertile 2 274 31.57 253 35.58 1.29 1.01–1.65

  Tertile 3 284 32.72 241 33.90 1.17 0.91–1.50

Spirits (g/d)

  Tertile 1 534 59.87 449 61.42 1.00

  Tertile 2 175 19.62 120 16.42 0.82 0.63–1.07

  Tertile 3 183 20.52 162 22.16 1.01 0.79–1.30

Body Mass Index one year before

  Normal (18.5 to 24.9 kg/m2) 240 23.86 210 25.67 1.00

  Overweight (25.0–29.9 kg/m2), 528 52.49 424 51.83 0.90 0.72–1.13

  Obese (≥30 kg/m2) 235 23.36 182 22.25 0.83 0.63–1.09

Weight

  Tertile 1 332 33.33 283 34.72 1.00

  Tertile 2 332 33.33 291 35.71 0.99 0.79–1.24

  Tertile 3 332 33.33 241 29.57 0.85 0.67–1.07

Waist circumference

  Tertile 1 362 36.49 277 37.48 1.00

  Tertile 2 322 32.46 247 33.42 1.00 0.79–1.26

  Tertile 3 308 31.05 215 29.09 0.91 0.71–1.15

Physical Activity in Leisure Time

  Moderate/vigorous (≥6 METs) 611 60.74 519 63.45 1.00

  Light (<3 METs) 395 39.26 299 36.55 0.90 0.74–1.10

Vegetables

  >200 g/day 257 29.61 226 31.79 1.00

  ≤200 g/day 611 70.39 485 68.21 0.91 0.73–1.13

Fruits

  >200 g/day 611 70.39 519 73.00 1.00

  ≤200 g/day 257 29.61 192 27.00 0.84 0.67–1.05

Fish

  Tertile 3 290 32.51 251 34.34 1.00

  Tertile 2 296 33.18 242 33.11 0.95 0.75–1.21

  Tertile 1 306 34.30 238 32.56 0.90 0.71–1.15

Red Meat

  ≤65 g/day 440 50.69 309 43.46 1.00

  >65 g/day 428 49.31 402 56.54 1.35 1.10–1.65

Milk

Continued



www.nature.com/scientificreports/

6SCIENtIFIC REPortS | 7: 8994  | DOI:10.1038/s41598-017-09386-9

that might be included within a high-risk category sufficient to merit more intensive PCa screening and/or life-
style intervention.

Figure 3 displays how age-specific incidence curves are shifted according to the risk score. It can be observed 
that, between 50 and 70 years of age, incidence grows exponentially when considering RS > 1. On the other hand, 
with RS < 1 incidence also grow, but in a smoother fashion. For instance, a hypothetical individual with an RS of 
3 reaches the highest incidence level of the average population (RS = 1) between 55 and 64 years old, instead of 
between 70 and 74, as the latter does (10–20 years earlier, approximately).

Discussion
We have evaluated the potential usefulness of a model for predicting risk of PCa, which combines modifiable risk 
factors (lifestyle) with family history of PCa and genetic risk score based on the susceptibility of 56 SNPs. We have 
observed that genetic susceptibility has a stronger predictive value than modifiable risk factors. While the added 
value of each SNP is small, the combination of 56 SNPs adds to the predictive ability of the risk model.

Although the identified SNPs have small effects (PCa risk only increases by 10% per allele overall), their 
addition seriously improves the prediction model. Thus, our analysis has shown that the genetic risk score has a 
much stronger predictive capacity than the score of environmental score (AUROC for the genetic score: 0.66 vs. 
AUROC from the environmental score: 0.57). This is consistent with the literature as the PCa hereditary com-
ponent accounts for up to 42% of the risk15, 16, being the cancer with higher hereditary burden15. Moreover, twin 
studies have demonstrated 50% higher risk in monozygotic than dizygotic twins, which means that inherited 
factors are responsible for familial aggregation of PCa, well above that of environmental factors15. The inclusion of 
additional genetic variants of the established regions of susceptibility to prostate cancer improves the prediction 
of the disease. Our model improves the predictive accuracy reported by Agalliu using a genetic score for PCa with 
31 SNPs36. However, Szulkin et al., using a polygenic risk score with 65 established susceptibility variants obtained 

Adjusted ORa CI 95%

Genetic Risk Score GRS (per unit) 2.05 1.79–2.36

Family History of PCa 3.32 2.34–4.71

Environmental risk score

Diabetes yes 0.58 0.43–0.79

Weight
Tertile 2 (74–83 Kg) 0.94 0.69–1.23

Tertile 3 (84–135 Kg) 0.70 0.48–1.03

BMI
Overweight (25.0 to 29.9 kg/m2) 1.03 0.74–1.42

Obese (≥30 kg/m2) 1.26 0.80–1.99

Alcohol
Tertile 2 (7.73–20.77 g/d) 1.46 1.10–1.93

Tertile 3 (≥20.8 g/d) 1.19 0.90–1.57

Red meat >65 g/day 1.28 1.02–1.61

ERS (per unit) 2.47 1.62–3.76

Table 2.  Multivariate-adjusted risk factors associated with PCa. GRS: genetic risk score; ERS: environmental 
risk score; BMI: body mass index. aAll variables are adjusted by propensity score and all the variables shown in 
the table. Associations with P < 0.05 are shown in bold.

Characteristic

Control Case Crude 
OR 95% CIn % n %

  Tertile 1 336 37.67 281 38.44 1.00

  Tertile 2 249 27.91 219 29.96 1.08 0.85–1.38

  Tertile 3 307 34.42 231 31.60 0.97 0.77–1.23

Dairy foods*
  Tertile 1 293 32.85 248 33.93 1.00

  Tertile 2 302 33.86 241 32.97 0.96 0.75–1.22

  Tertile 3 297 33.30 242 33.11 1.04 0.81–1.32

Dietary calcium (mg/d)

  Tertile 1 293 32.85 248 33.93 1.00

  Tertile 2 304 34.08 237 32.42 0.94 0.74–1.20

  Tertile 3 295 33.07 246 33.65 1.04 0.81–1.32

Dietary vitamin D

  Tertile 1 293 32.85 248 33.93 1.00

  Tertile 2 295 33.07 246 33.65 0.99 0.78–1.26

  Tertile 3 304 34.08 237 32.42 0.96 0.73–1.18

Table 1.  Characteristics of the MCC-Spain study participants. *Dairy foods include milk, yogurt and cheese. 
Associations with P < 0.05 are shown in bold.



www.nature.com/scientificreports/

7SCIENtIFIC REPortS | 7: 8994  | DOI:10.1038/s41598-017-09386-9

a tenth more than we are reporting, AUROC = 0.67; moreover, when adding 68 new variants, Szultkin et al.’s 
genetic score only improved its performance until AUROC = 0.6837, which suggests that genetic scores elaborated 
by adding the main effects of a number of SNPs would be close to saturation. As the estimated inheritance for 
PCa is not fully explained with these scores, further research on gene-gene and gene-environment interactions is 
required, which could require original designs or huge amounts of data.

A possible application of our genetic score is its potential ability to classify people according to their genetic 
risk, which would be useful in developing risk-specific strategies for PCa screening. Although using prostate 
specific antigen (PSA) for PCa screening had been endorsed by several organizations38–40, the current USPSTF 
recommendation is against it41. The lack of well-established environmental risk factors makes it impossible to 
individualize recommendations for PSA screening according to individual risk. However, as genotyping tech-
niques are getting cheaper, a genetic score could help in stratifying people according to their PCa genetic risk, 
making screening individualization doable.

On the other hand, our study confirms that family history of prostate cancer is the most important risk factor 
for PCa. Our relative risk estimate (OR = 3.32) is consistent with the relative risks among 2 and 4, which have 
been reported in other studies, including multiple reviews and meta-analyses42, 43.

Finally, we were not able to replicate the risk associated with low consumption of vegetables, fruits or fish, high 
alcohol consumption or spirits, milk, dairy foods, dietary calcium or vitamin D, smoking, obesity and lack of physical 

Figure 1.  Distribution of prostate cancer cases and controls, and odds ratios for each decile of the genetic risk 
score. The left axis scale indicates the OR for prostate cancer according to deciles of points in the genetic score. 
The decile 1 (4.5–6.0 points) has been selected as reference category (OR = 1). The right axis scale indicates the 
proportion of cases and controls shown in bars for each decile. Parentheses include the points in the score.

Figure 2.  Individual and cumulative contribution of each factor to prostate cancer predictive accuracy. The 
area under the ROC curve (AUROC), as indicator of predictive accuracy for each variable in the risk model is 
shown. The left discontinuous (blue) line indicates the individual contribution of each variable, and the right 
continuous (red) line indicates the cumulative contribution, bottom to top. Environmental variables are sorted 
by increasing AUROC.
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activity in leisure time. Only high intake of red meat was associated as an independent risk predictor of prostate 
cancer. On average, high consumption of red meat increases the risk of PCa by 31%. Similar results have been pub-
lished relating the high consumption of meat and meat products with PCa risk9, 44, 45. Also, an alcohol consumption, 
between 8 and 21 grams day (second tertile) increased the risk of prostate cancer by 39%. Inconsistent results have 
been found on the relationship between alcohol consumption and prostate cancer. In a recent meta-analysis by Zhao 
J. et al.46 a significant dose-response relationship between the level of alcohol consumption and the risk of prostate 
cancer from low volume consumption (>1.3, <24 g per day) is shown for the first time. This is in line with our 
results. However, diabetes was associated with an independent protective predictor of prostate cancer (OR = 0.58, 
95% CI 0.43 to 0.79). In our study, diabetes was associated with lower PCa risk only in those people who either did 
not take any treatment or had oral antidiabetic treatment. Diabetics treated with insulin did not reach statistical sig-
nificance. Type 2 diabetes mellitus (T2DM) has consistently been associated with decreased risk of prostate cancer47. 
It was suggested that the decrease in risk is related to the use of anti‐diabetic drugs48. The most commonly prescribed 
anti‐diabetic drugs, the metformin has been recently investigated with inconsistent results; some studies have found 
a decreased risk of prostate cancer among metformin users49, 50, while others have found no association51, 52.

This study has some limitations. Firstly, our model on environmental factors has been developed in a ret-
rospective case-control study, and was based on self-reported data. Therefore, measurement error and recall 
bias may have led to an underestimation of its predictive accuracy. Secondly, some differences in characteristics 
among cases and controls (namely, age, socio-economic level, BMI) suggest a possible selection bias, which could 
have been introduced via differential sample fraction. In order to reduce it, we adjusted all our analyses for a 
propensity score including those differential variables. Thirdly, as the cases were matched by age with controls, 
age cannot be included in the risk model, which could be desirable in a model like this. Finally, our study requires 
validation, as we developed our scores in a case-control study, without testing them in an independent sample.

In conclusion, we have evaluated the accuracy of a PCa predictive model that could be useful to stratify the 
population into risk categories and detection of PCa. In our model, genetic factors contribute more to PCa risk 
than modifiable risk factors, although further studies are needed to determine the generalizability, usefulness, and 
cost-effectiveness of the implementation of a genetic score as a pre-screening test for PCa. However, it should be 
noted that the cost of genotyping is decreasing, their determination has to be done only once in a life, and the data is 
likely to be useful for predicting the risk of different diseases not just cancer. Moreover, awareness of personal risk of 
PCa could trigger healthy changes in lifestyle of people at higher risk and therefore reduce the incidence of this tumor.

Bootstrap results

Base score AUC (CI 95%)* bias
Improvement in 
AUROC p value**

Net Reclassification 
Improvement

Integrated 
Discrimination 
Improvement

GRS 0.630 (0.599–0.656) 0.0001

GRS + ERS 0.645(0.618–0.676) −0.0002 0.018 0.003 0.142 0.009

ERS 0.545 (0.513–574) 0.0010

ERS + GRS 0.644 (0.616–0.667) 0.0008 0.09 <0.001 0.428 0.054

Table 3.  Improvement in risk prediction when adding more component scores. *AUC estimates bias-
corrected confidence interval 95%. **p value for the improvement in AUROC. GRS: Genetic Risk Score. ERS: 
Environmental Risk Score.

Figure 3.  Estimation of prostate cancer incidence in Spain by age (years) and risk score. Color lines indicate 
age-specific incidence rates of prostate cancer per 100 000 individuals in Spain according to risk score (RS), for 
a selection of values. The incidence curve for the average individual corresponds to RS = 1. The risk score can 
be calculated as RS = 2.47(ERS-0.94) * 3.32FH * 2.05(GRS-6.98), where ERS is the points in the environmental score 
(average 0.94 in the population), FH is the presence of family history of prostate cancer (0 = no, 1 = yes) and 
GRS is the points in the genetic score (average 6.98 in the population).
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