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In recent decades, the phenotype of an organism (i.e. its traits and behav-

iour) has been studied as the outcome of a developmental ‘programme’

coded in its genotype. This deterministic view is implicit in the Modern

Synthesis approach to adaptive evolution as a sorting process among genetic

variants. Studies of developmental pathways have revealed that genotypes

are in fact differently expressed depending on environmental conditions.

Accordingly, the genotype can be understood as a repertoire of potential

developmental outcomes or norm of reaction. Reconceiving the genotype as

an environmental response repertoire rather than a fixed developmental

programme leads to three critical evolutionary insights. First, plastic responses

to specific conditions often comprise functionally appropriate trait adjust-

ments, resulting in an individual-level, developmental mode of adaptive

variation. Second, because genotypes are differently expressed depending

on the environment, the genetic diversity available to natural selection is

itself environmentally contingent. Finally, environmental influences on devel-

opment can extend across multiple generations via cytoplasmic and epigenetic

factors transmitted to progeny individuals, altering their responses to their

own, immediate environmental conditions and, in some cases, leading to

inherited but non-genetic adaptations. Together, these insights suggest a

more nuanced understanding of the genotype and its evolutionary role, as

well as a shift in research focus to investigating the complex developmental

interactions among genotypes, environments and previous environments.
1. Introduction
The concept of genotype is central to both biological and human sciences.

New findings at the molecular level have established that it is gene expression

as regulated by environmental and cellular factors, rather than DNA sequences

per se, that shapes phenotypic variation. This recognition has led to a focus on

individual developmental plasticity, a general property of organisms that was

known but deemed marginal by mid-twentieth century evolutionists. This

essay examines how insights to plasticity destabilize the concept of genotype

on which the Modern Synthesis model of evolution was founded, and indicate

ways to renew this central concept.
1.1. The genotype as a developmental programme
For the past half-century, biology has been dominated by a gene-based approach

in which an organism’s DNA sequence is understood to comprise the instructions

for that organism’s development [1–3]. According to this view, an individual

organism’s set of genes (its genotype) determines that individual’s physical traits

and behaviours (its phenotype), so it is possible to know what the organism’s fea-

tures will be just by knowing its DNA sequence. Because gene expression itself is

assumed to be under genetic control, the genotype is seen as a self-contained

internal developmental ‘programme’ that specifies a single, determinate pheno-

typic outcome [4]. The interpretive metaphor of the ‘genetic programme’

has become a deeply embedded construct for framing both developmental and

evolutionary phenomena [2,5,6].
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Figure 1. Alternative views of the genotype. Inherent to the Modern Syn-
thesis is a deterministic model of phenotypic expression (above) in which
the genotype is seen as a self-contained, internal developmental programme.
By contrast, a model that recognizes developmental plasticity (below) views
the genotype as a developmental repertoire of varying, environmentally
context-dependent outcomes. (Modified from [19].) (Online version in colour.)
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This view of the genotype has led to three key evolutionary

corollaries. First, if genes determine specific traits such as size,

structure and behaviour, the organism’s adaptation to its environ-
ment is set by its genotype. Second, if traits of individuals depend

on their genes, then the functional and fitness differences

between individuals that cause natural selection are also

specified by their genotypes—in other words, fitness differences
originate in genetic differences. Third, the DNA sequence inscribed
within the nucleus of each cell comprises the developmental
information that is passed from one generation to the next. Because

this genetically encoded information is impervious to

the environment as well as resistant to error, it is faithfully

transmitted across a continuous evolutionary trajectory.

Together, these three points form the foundation of the

elegantly simple and coherent Modern Synthesis model of

adaptation as population-level change over time in the relative

frequencies of alternative genetic alleles. It is a commitment to

this causal model that lies at the heart of contemporary

debate about whether this conceptual framework for

adaptive evolution—and thus for contemporary research

programmes—remains generally sound [7] or requires revision

[8]. This tension reflects the fact that a no longer tenable genetic

programme view of phenotypic and hence fitness variation is

implicit in the Modern Synthesis approach [5,6,9].
2. Conceptual models and empirical approaches
The idea of the genotype as a set of self-contained developmen-

tal specifications was given mechanistic solidity following

the work of Watson and Crick in revealing the biochemical

‘code’ of nucleotides in the DNA molecule [1]. Following

from this foundational idea, and in marked contrast to the

environmentally contextualized view of development that

had characterized earlier work [10], the goal of developmental

studies has been to reveal this ‘sequestered’ internal infor-

mation [11]. Similarly, mainstream evolutionary biologists

have sought to identify the genetic basis of adaptive variation

as if the process of development ‘did not exist’ ([2, p. 18]; see

[12]). This is done experimentally by raising genetically differ-

ent individuals in a single, uniform ‘control’ or ‘common

garden’ environment that is meant to be developmentally neu-

tral, in the sense of permitting expression of the phenotype

undistorted by environmental effects ([13] and references

therein). Since the developmental environment is held constant

in these studies, any trait differences among individuals are

understood to result from differences in their genotypes.1 As

a result, a single-environment experimental design and a

determinate view of gene-based variation serve to reinforce

each other [14].

Despite the ubiquity of this experimental approach, biol-

ogists are well aware that organisms develop not in ‘neutral’

environment-less conditions, but rather in particular environ-

ments—whether in nature or in the laboratory—that are

characterized by specific physical factors, chemical compo-

sitions, resource levels and the presence or absence of biotic

interactors. They are equally aware that the exact states of

such environmental factors influence the developmental pro-

cess, and consequently the organism’s functional and fitness

traits. Indeed, it is precisely because of this influence that

researchers employ the ‘control environment’ approach: they

do so in order to exclude variability in environmental factors

that would otherwise affect phenotypes. By rationalizing this
approach, the idea of an internally contained developmental

programme led to a neglect of environmental context in studies

of gene expression [3].

Unexpectedly, it is the intense focus of contemporary biol-

ogists on molecular, presumably internal pathways of

developmental regulation that has newly underscored the

environment’s critical role by providing a mechanistic basis

for it. Thanks to a flood of recent observations, it is now clear

that genes are differently expressed depending on environ-

mental context, leading to tremendous regulatory diversity

and complexity ([15–17] and references therein). In the light

of these findings, genes can more accurately be viewed as

‘potential resources’ for developmental pathways [4] than

as fixed pieces of information. Even biologists who seek to

preserve the Modern Synthesis conceptual framework

acknowledge that ‘technological advances in the past decade

have revealed an incredible degree of plasticity in gene

expression in response to diverse environmental conditions’

[7]. These molecular data make clear that phenotypes are not

scripted in advance from the nucleus, but instead emerge

from regulatory interactions in which environmental factors

participate in specific ways. The organism’s environment as

well as its genotype provides the kind of precise developmen-

tal information that guides the cellular and nuclear processes

that shape phenotypes, including dynamic traits such as

physiology and behaviour [11,18].

This powerful insight requires that biologists replace the

‘genetic programme’ model of internal developmental control

with one in which each genotype may express different phe-

notypes depending on its environment—in other words, with

a focus on developmental plasticity as expressed in response

to specific conditions (figure 1). More broadly, the general

term ecological development or eco-devo [20,21] situates the

normal developmental process in its environmental context

by emphasizing how regulatory pathways integrate environ-

mental signals at the cellular and molecular levels ([17,22–25]

and references therein). Under this unified concept, plasticity
describes those cases in which outcomes differ appreciably

among environments, as distinct from environmentally

insensitive or canalized trait expression patterns.

An ‘eco-devo’ approach can be implemented by means of a

key experimental change: by inverting the design so as to bring

in rather than exclude environmental variation. To do this, a

researcher generates replicate individuals of each experimental
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Figure 2. Developmental plasticity for the proportion of total biomass allocated
to leaf tissue by Polygonum persicaria plants in response to contrasting light
levels. Each line represents the reaction norm of a single plant genotype,
based on the mean of six clonal replicates in each of three greenhouse light
treatments (low (8%), moderate (37%) and high (100%) levels of incident mid-
summer sun). Across genotypes, trait change due to plasticity (the effect of light
environment) is highly significant ( p , 0.001). Genotypes differ in their
specific patterns of plastic response, resulting in changes in among-genotype
variance and rank order from one environment to another (genotype �
environment interaction effect; p , 0.001). Because their norms of reaction
cross, there is no consistent effect of genotype on phenotype (the main
effect of genotype is non-significant; p . 0.05). (Figure reprinted from [49].)
(Online version in colour.)
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genotype (via cloning or inbreeding) and grows these genetic

replicates in each of several distinct environments. The result-

ing phenotypes can be plotted to visually characterize each

genotype’s range of environment-specific developmental out-

comes, known as its norm of reaction [26–29]. The norm of

reaction for any trait in an organism reflects both the particular

genotype and the precise set of environmental states in which

it is measured.

Note that the idea of characterizing a genotype by its

pattern of environmental responses (rather than by the trait

it expresses in a single ‘control’ environment) predates the

Modern Synthesis, with its emphasis on inborn, genetic

determination of phenotypes [30]. Instead, the norm of reac-

tion makes explicit the environmental context-dependency of

the phenotypes that a given genotype produces. Once this

context-dependency is recognized, the researcher’s choice of

environmental conditions becomes critically important [31].

Indeed, subtle differences among laboratories in animal

handling and rearing techniques may be one reason why

bioemedical researchers have often been unable to replicate

one another’s results, leading to a ‘reproducibility crisis’

that is mistakenly attributed to sloppiness or chance [32].

To the extent that experimental environments reflect natu-

rally occurring conditions, norm of reaction studies can

provide information about trait expression in real popu-

lations. As discussed below, empirically determined norms

of reaction illuminate two key evolutionary issues: adaptation

and genetic variation.
3. Developmental plasticity as adaptive variation
Based on knowledge of a species’ ecology, it is possible to evalu-

ate whether the phenotypes expressed by a given genotype are

functionally adaptive to the alternative environments in which

they occur (e.g. [33–36]). The norm of reaction for any develop-

mental, physiological or behavioural trait of interest may be

relatively constant across environments or change from one

environment to another. Such changes may constitute adaptive

adjustments (as indicated by positive ecophysiological or fit-

ness effects in the inducing environment), or may simply

reflect inevitable environmental effects on development such

as reduced growth in resource-poor conditions. In the many

plants, fungi, lichens, invertebrates, amphibians, reptiles, fish,

mammals and birds in which norms of reaction have been

found to comprise adaptive responses to specific conditions,

plasticity provides for an individual, developmental mode of

adaptation ([17,24,25,28,37–46] and references therein).

For example, individual plants of the widespread coloniz-

ing species Polygonum persicaria grown at reduced light

produce far greater photosynthetic leaf surface area relative

to their mass than do cloned plants of the same genotypes

grown in full sun [44,47,48]. This increase in the plant’s ability

to catch scarce photons (and hence maintain growth and repro-

duction) results from two developmental changes expressed in

moderate and low light compared with full sun: increased rela-

tive allocation of plant tissue to leaves (figure 2), and broader,

thinner leaf size and structure (figure 3). Similarly, Polygonum
plants raised in dry or nutrient-poor soil invest a higher pro-

portion of their body mass into root tissues, and make the

roots themselves longer and thinner, compared with geneti-

cally identical individuals grown in moist or rich soil. These

plastic responses result in much more extensive root systems
that can more effectively collect soil resources that are present

in low concentrations [50–53].

These findings from cloned Polygonum plants grown in con-

trasting light and soil conditions exemplify three key points

that characterize developmental plasticity across biological

systems. First, these plastic responses are not trivial tweaks to

a pre-determined developmental programme, but substantial

changes in the expression of functionally important traits.

Second, the very different phenotypes produced by Polygonum
genotypes in different conditions constitute environment-

specific adjustments, in this case ones that enhance function

by increasing the availability of the most limited resource.

Viewed in another way, such functionally adaptive develop-

mental adjustments improve the environment that the plant

experiences: plants in low light that increase their surface

area experience an environment in which more photons are

available, and plants with very high root surface area for

water uptake have greater access to moisture. Third, whether

adaptive or inevitable, phenotypic changes due to develop-

mental plasticity alter external conditions for that individual

as well as for co-occurring plants, animals and microbes in its

habitat. For instance, plants in darker microsites produce

larger leaves that cast more shade, reducing temperature,

light quantity and red:far red spectral quality at the soil surface;

these thinner leaves also decompose more rapidly, which

increases mineral cycling rates in the soil. Because the particular

phenotypes that organisms express will differently influence

their experienced and external environments, plastic develop-

mental responses partially shape the selective pressures under

which they evolve ([17]; see also [54]), an evolutionary feedback

termed niche construction [55–57].

Norm of reaction (eco-devo) studies thus reveal the geno-

type as a repertoire of possible developmental responses

expressed by the organism in specific conditions, rather than

as a self-contained set of fixed developmental instructions
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Figure 3. Developmental plasticity expressed by genotypes of the common annual plant Polygonum persicaria. Significantly broader and structurally thinner leaves
are produced by replicate plants of the same Polygonum genotype when grown in moderate shade (a) compared with full summer sun (b). (Photo courtesy of Dan
B. Sloan and S. E. Sultan.)
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with a single outcome. As in the case of Polygonum plants, these

environmental responses often comprise an immediate, devel-

opmental mode of adaptation to contrasting conditions. This

mode of adaptation takes place at the level of the individual

organism, as distinct from adaptive phenotypes produced by

natural selection via population-level allele frequency change.

An important evolutionary consequence is that, unlike the

random and rare occurrence of favourable new genetic variants,

plasticity can provide adaptive variation when it is needed

(i.e. in response to a particular environmental challenge or

change) and in numerous individuals in a population at once.

As noted by Sewall Wright [58], this may buffer selective

change by allowing existing genotypes to maintain fitness in

altered or diverse conditions (recent models demonstrating

this effect include [59–61]).
4. A norm of reaction view of genetic diversity
When genotypes are viewed as determinative, self-contained

developmental programmes, they are assumed to be consist-

ently associated with particular outcomes. Accordingly, in

this model the functional and fitness trait differences that fuel

natural selection directly reflect the genotypic diversity that is

present. Just as conceptualizing the genotype as a repertoire

of environmentally contingent outcomes reveals new sources

of adaptive variation, this conceptual step also leads to a

more nuanced view of the genetic diversity necessary for

selective evolution.

Owing to sequence differences along pathways of

environmental perception and phenotypic response, distinct

genotypes exposed to the same range of conditions will

express different norms of reaction, for various traits [29,62].

In a classic paper on ‘nature and nurture’, J.B.S. Haldane [63]

observed that, in naturally evolved systems, these differing
norms of reaction are very rarely parallel. Instead, as numerous

quantitative-genetic studies have since confirmed, genotypes

are generally characterized by plastic adjustments that differ

in magnitude and/or direction in response to a given set of

environments ([64–66]; genotype by environment interaction,

the statistical term for such non-parallel response patterns,

results in 874 000 publication hits on Google Scholar). As a

result of non-parallel norms of reaction, the trait differences

among a given group of genotypes will depend not only on

those genotypes but also on the environments they encounter.

Two evolutionary points follow from this insight, as illus-

trated by Polygonum norms of reaction for leaf allocational

plasticity (figure 2). First, the size of trait differences among

genotypes varies from one environment to another: the

same set of genotypes may produce phenotypes that are

similar or identical in some conditions but quite different in

others. For example, the 10 Polygonum genotypes shown

(which were originally drawn from a natural population)

invested similarly in leaf tissue when they were grown at

high and moderate light, but differed considerably at low

light, because some genotypes increased leaf allocation

more sharply in this more extreme environment than did

others. In general, existing genetic variation may be exposed

to natural selection only in certain conditions, and hidden

from selection or ‘cryptic’ in environments where genotypic

norms converge ([67,68]; evolutionary consequences dis-

cussed by [69–71]; and references therein). Consequently, a

population’s potential for selective evolution depends jointly

on its genotypic diversity and on the environment(s) that

occur (additional references in [17]).

Second, the rank order of phenotypes produced by a

given set of genotypes can vary from one environment to

another, if non-parallel norms of reaction happen to cross.

In the Polygonum data, for example, the genotype with the

highest leaf allocation at high light has the second lowest
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allocation at low light, the two highest-allocation genotypes

in low light are the two lowest in both moderate and high

light, and the lowest-allocating genotype at low light is the

highest at moderate light (figure 2). If environments vary,

such ‘crossing over’ of reaction norms can prevent consistent

selective change (in this case, for example, selection for geno-

types that allocate more to leaf tissue) and instead maintain

multiple genotypes in a population [72,73]. Norm of reaction

data thus reveal that both the amount and the particular pat-

terns of genetic diversity are environmentally contingent and

not intrinsic properties of a population’s genotypes. In other

words, the surprising answer to two basic questions regarding

the potential selective evolution of a functional or fitness trait—

how much genetic variation for the trait is present, and which

genotype produces the highest trait value—must both be

answered, ‘it depends on the environment(s)’. One practical

consequence is that evolutionary studies require precise infor-

mation about environmental as well as genetic variation

within natural or experimental populations.
5. Transgenerational plasticity: developmental
effects of previous environments

A fully contextualized picture of the genotype includes the rec-

ognition that an organism’s development may be influenced by

its parents’ conditions as well as by its own immediate environ-

ment (e.g. [74]; see [75] and references therein for examples

across 32 biological orders, from Archaea to Mammalia). Effects

of parental environment on progeny development are generally

considered as a transgenerational form of developmental plas-

ticity, mediated by several distinct and often interacting

mechanisms of inheritance (reviewed by [76,77]).

In both animals and plants, maternal individuals can

directly transmit environmental influences on progeny devel-

opment (for instance, due to resource stress or predation) to

eggs or seeds, via changes in the amount and composition

of cytoplasmic factors including nutrient reserves, hormones,

defensive chemicals and small RNAs [78,79]. Molecular

epigenetic effects such as DNA methylation and histone

modifications can be transmitted to progeny by either paternal

or maternal individuals [80,81]. These inherited epigenetic

‘marks’ alter gene expression via effects on DNA transcrip-

tional activity and hence modify developmental outcomes

([82–84] and references therein). Although few data are avail-

able as yet, epigenetic variants may comprise a substantial

portion of heritable fitness-related differences among individ-

uals in natural populations (e.g. [85]). Once induced—often

by specific environmental stresses—epigenetic modifications

in plants and animals may be stably transmitted across several

or many generations (e.g. [86,87]; additional references in

[17,80,88,89]).

Like immediate plastic responses, transgenerational

environmental effects on development may comprise either

inevitable limits (such as reduced offspring mass due to

maternal nutrient stress) or specifically adaptive adjustments

[90]. Studies in diverse systems have shown that adaptive trans-

generational plasticity may be surprisingly common, and may

contribute substantially to individual fitness [75,77,91]. For

instance, when Polygonum plants suffered drought stress, their

offspring developed more extensive root systems and conse-

quently survived better in dry soil, compared with progeny of

isogenic parents that had instead been given ample moisture
[92]. In anemonefish (Amphiprion melanopus), juveniles raised

in water with a high concentration of carbon dioxide did not

exhibit the predicted decrease in growth and survival if their

parents had been exposed to the same elevated carbon dioxide

conditions [93]. This developmental resilience was evidently

mediated by parentally transmitted carbon dioxide-induced

epigenetic changes to enzymes that affect acid–base metab-

olism [93]. Epigenetic mechanisms also mediate adaptive

parent–environment effects in Mimulus (monkeyflower)

plants: when parent individuals experienced simulated insect

attack, their progeny produced leaves with altered gene

expression patterns that resulted in an increased density of

defensive hairs [94,95]. Interestingly, both maternal and

paternal Mimulus plants evidently contribute to this progeny

response, via distinct epigenetic mechanisms [96].
6. The multi-generational norm of reaction
Together, cytoplasmic and epigenetic factors provide for a non--

genetic source of heritable phenotypic variation that may

originate in parental, grandparental or possibly more remote

generations [97,98]. These inborn environmental effects show

clearly that distinguishing internal from external developmen-

tal information is deeply problematic [17,99]. They also add a

further layer of complexity to the relationship between an

organism’s genotype and its realized functional and fitness

traits. A given genotype will be to some extent differently

expressed in alternative environments, resulting in a specific

norm of reaction. Yet this response pattern itself will be

influenced by previous conditions due to environmentally

induced, inherited regulatory elements.

An example from a transgenerational plasticity experiment

in Polygonum serves to illustrate this point (for an animal

example, see [100]). Each of the three panels in figure 4 presents

the norm of reaction for a single genotype, showing the differ-

ent sizes of leaves produced by replicate seedlings of that

genotype grown in shade versus full sun. However, not one

but two norms are shown for each genotype: for seedlings of

a given genotype, their plastic response to alternative light con-

ditions was very different depending on whether their parent

plant had grown in sun or in shade (figure 4; compare

orange and green lines in each panel). Also note that the

effect of parental shade on progeny responses was not consist-

ent across the three genotypes (compare the difference between

orange and green lines across panels). Rather, the transgenera-

tional effect of shade versus sun was genotype-specific,

presumably due to DNA sequence effects on the induction

and transmission to offspring of particular cytoplasmic and/

or epigenetic factors.

These data make clear that the norm of reaction is not a

determinate property of the genotype, but is itself con-

ditioned by inherited environmental information. Just as a

genotype does not specify a single, determinate phenotype,

neither does it give rise to one determinate plasticity pattern

in response to a given environmental range. Moreover, just as

genotypes differ in patterns of immediate environmental

response, they also differ in transgenerational environmental

effects on development [101,102], because DNA sequence

influences the production of heritable regulatory molecules

and the dynamics of epigenetic mechanisms (e.g. via differ-

ences in potential methylation sites [84,103]). Consequently,

an organism’s realized phenotype represents not only an
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Figure 4. The effect of parental environment on progeny norms of reaction.
Data plots show the size of individual leaves that were produced by seedlings
growing in either full sun or simulated shade, for three Polyonum persicaria
genotypes. Green ¼ norm of reaction showing seedling developmental
responses to the two environments when their parent plant had been
grown in shade; orange ¼ norm of reaction showing developmental
responses of seedlings of the same genotype when their parent plant had
been grown in full sun. Norms of reaction are based on mean leaf size
for 10 replicate seedlings of each genotype and parental environment in
each progeny growth treatment (B.H. Baker, L. Berg and S. E. Sultan
2015, unpublished data).
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active interaction between its evolved genotype and

its environment, but a higher-order interaction between

genotype, environment and a sequence of previous environ-

ments whose developmental effects may themselves

interact—an ‘immensely complex web of interactions’ or

‘entanglement’ between genotype and environment over

several generations [104, p. 7].

As a result of this complexity, developmental plasticity

cannot simply be accommodated into a deterministic model

of adaptive evolution as a genotype’s ‘extended pheno-

type’—that is, as a unique, genotype-specified response

norm. Note that theoretical models that use this simplification

have provided valuable insights regarding the environmental

heterogeneity, accurate cues and other conditions expected to

favour the evolution of plastic versus fixed reaction norms
(e.g. [41,72,105–110]). The effects of inherited non-genetic fac-

tors on selective dynamics have also been investigated in a

number of sophisticated models (e.g. [79,111–115]; reviewed

in [116]). A further modelling challenge will be to fully inte-

grate multi-generational influences on adaptive variation and

selection. For example, a simulation model by Leimar &

McNamara [117] showed that developmental systems can

evolve so as to adaptively use genetic, environmental and

prior-environmental developmental information. Models that

address this complexity may help to frame key questions

about the potential impact on selective trajectories of these

variably persistent modes of developmental information.

Resolving these questions will ultimately depend on empirical

studies to illuminate the causal ‘entanglement’ that shapes

adaptive variation.

7. Implications for research
The developmental programme view of the genotype has

dictated an exclusive focus on heritable genetic information

as the basis of phenotypes and hence of selective evolution.

As a result of this simplified causal framework, evolutionary

biologists have aimed to isolate the genetic component of

phenotypic variation in order to track the genetic basis of adap-

tation, completing an internally sequestered causal circle. Even

studies of plasticity and epigenetics have been circumscribed

by this view: epigenetic changes are considered to be evolutio-

narily relevant only if they persist stably across hundreds of

generations as ‘epimutations’ [85,118], while a predominant

evolutionary question regarding plastically expressed pheno-

types is whether they can become constitutive (genetically
assimilated sensu [2,119]).

Reconceiving the genotype in the light of developmental

plasticity calls for a shift in focus and in research approaches.

An essential first step is to recognize the evolutionary relevance

of short-term environmental and epigenetic factors. As a result

of immediate and inherited effects on gene expression, these

transient influences substantially shape the phenotypic vari-

ation expressed in each generation, and consequently selective

trajectories [17,28,44,64,120–124]. Because genotypes respond

differently to these influences, developmental response systems

are themselves subject to selection, but as ‘entangled’ evolution-

ary entities; the impact of selection on genotypes is attenuated

by highly complex environmental interactions.

To understand the causes and consequences of natural

selection requires focusing directly on this mechanistic and

evolutionary complexity. The empirical study of interacting

influences on phenotypes (for instance, interactions between

sequence variation and epigenetic dynamics) is just beginning

[84]. As West-Eberhard has noted, ascribing phenotypic and

fitness determination to the genotype has ‘deflected’ attention

from the central biological question of how ‘condition-sensitive

regulation is organized and evolves’ [2, p. 17]; the time has

come to take on this compelling question.

First, evolutionary biologists must devote serious attention

to the environments of organisms, not only in terms of putative

selective pressures, but with respect to both cues and direct

influences on development. This requires identifying such fac-

tors and characterizing their patterns of spatial and temporal

variation, including environmental auto-correlation across

generations. Such studies are particularly demanding because

developmental cues and influences may involve multiple,

covarying aspects of natural environments [31,125].
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A related point pertains to empirical research more broadly.

Because environmental state affects the expression of

phenotypes and of genetic diversity, experimental decisions

regarding growth conditions can matter enormously to the

results and to their utility for understanding natural systems.

Ideally, the design of uniform growth environments, as well

as the choice of alternative environmental states in norm of

reaction experiments, should reflect conditions that are rel-

evant to the organism in real populations; to the extent that

this is not feasible, interpretation of experimental findings

should include this point of reference.

Incorporating epigenetics into evolutionary biology will

require intensive research activity to illuminate several key

issues, including (i) epigenetic effects on functional and fitness

variation in natural systems; (ii) induction and persistence

dynamics in response to specific environmental cues or stres-

ses; and (iii) genetic variation for induced epigenetic changes

and their transmission. Data on these questions will inform

experimental and theoretical investigations into the possible

role of epigenetic systems as a distinct mode of adaptive vari-

ation, longer-term than immediate plasticity yet more labile

than selective change ([6,83,126]; e.g. [127]). For technical

reasons, initial work has focused on methylation, but it is

equally important to investigate the various other epigenetic

regulatory mechanisms that have recently come to light.

A developmental plasticity viewpoint can also inform

approaches to studying human evolution. Just as genotype

and environment cannot meaningfully be isolated from

each other as causes of adaptive evolution, nature and culture

can be seen as ‘entangled’ causes in the evolution of key

human traits: like ecologically meaningful features of other

organisms, the traits that characterize human beings take

shape only in cultural, i.e. environmental, context [128].

Beyond a more inclusive framework for understanding

adaptive evolution, a focus on developmental plasticity may

offer new insights to related research areas. One pressing

issue is biodiversity conservation. Human activities are

increasingly altering natural habitats, from the spread of

agrochemicals and other contaminants to the terrestrial and

aquatic effects of global change. The near- and long-term pro-

spects of organisms to adaptively withstand these changes will

depend critically on existing developmental response norms,

because novel conditions will affect the expression of func-

tional phenotypes and of the genetic potential for further

selective evolution [22,129–132]. To date, some of this infor-

mation has proved encouraging. In studies with fish, for

instance, parental exposure to both higher water temperatures

and elevated carbon dioxide levels caused offspring to express

phenotypes that were adaptive to these novel stresses. In these

cases, transgenerational plasticity provided for a rapid and

substantial increase in offspring tolerance to predicted future

conditions [93,133].

In medicine, a shift is partly underway from seeking

genetic determinants of disease as such to a less simplistic

focus on the role of genetic factors in modulating the effects

of physical, nutritional and social environments [134]. For

instance, researchers studying the impact of a particular

genetic variant on the incidence of depression explicitly

described this as differential genetic modulation of stressful life

experiences—that is, as an interaction between an individual’s

environment and his or her genotype [135]. This framework

has shaped a productive and important programme of

research, leading to the recent identification of epigenetic
mechanisms that mediate this interaction [136]. Several of the

most prevalent human diseases in modern societies are cur-

rently being investigated using a plasticity (i.e. genotype �
environment interaction) framework in place of a simple

‘gene for’ hypothesis; these include several cancers (reviewed

in [137]), diabetes and cardiovascular disease (reviewed by

[138]) and Parkinson’s disease (e.g. [139]). Such studies may

lead to new therapeutic approaches focused on changing

environmental factors to improve health outcomes for

individuals or communities [140,141].
8. Conclusion: the evolving genotype
The phenotype emerges from multi-generation interactions

between genotype and environment. This complicated picture

is concordant with an explosion of recent discoveries regarding

extra-genetic inherited factors that transmit environmental

information across generations and the regulatory flexibility

of gene expression, in general. These data make clear the

need to replace a twentieth century understanding of the

genotype as a self-contained, deterministic developmental

‘programme’ with a contemporary model that reflects the

environmental context-dependency of phenotypic outcomes.

Along with a changed view of the genotype itself, the evol-

utionary corollaries of the developmental programme model

must be revised. To begin with, the notion that an individual’s

genotype dictates its adaptedness to its environment must be

amended. Phenotypes are produced actively through the pro-

cess of individual development, as shaped by the genotype’s

interactions with regulatory information that is conditioned

by past and present environments. Depending on the organism

and trait in question, the environments encountered, and

the particular genotype, the plasticity inherent in the develop-

mental process may provide for considerable adaptive

adjustment, or alternatively it may lead to inevitable fitness

limits; both adaptive and inevitable aspects of plasticity

shape phenotypic outcomes at the individual level [44]. As a

result, genotypes do not specify trait or fitness differences

among individuals. Rather, the differences that fuel natural

selection reflect not genotypic diversity alone, but interacting

developmental factors including the immediate environment

and inherited cytoplasmic and epigenetic elements. Impor-

tantly, the developmental impact of these extra-genetic

factors, as well as their precise patterns of perception, trans-

duction and transmission, are genotype-specific rather than

entirely independent of DNA sequence.

In view of these complex regulatory interactions, an organ-

ism’s DNA cannot be considered to contain its developmental

norm of reaction, much less the complete instructions to specify

a particular phenotype. What, then, is the status of

the genotype as an evolutionary unit? One way to approach

this question is to distinguish between genetic information as

evolutionary record and as evolutionary cause [17]. Unques-

tionably, genotypes evolve: they contain the biochemical

material that resulted from a history of transmission and

mutation over time, as conditioned by phylogenetic context,

selection, random drift and gene flow. The genotype can thus

be seen as the product of evolution, as it comprises a uniquely

stable repository of these historical events across time. Yet the

genotypes in a population do not in themselves determine

the adaptive diversity that shapes selective change, because

they contain only partial developmental information, and
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hence only partial information regarding fitness variation. The

causes of adaptive evolution include the genotype-specific

dynamics of immediate and transgenerational developmen-

tal response in the context of environmental distributions.

Studying these causes requires changing experimental design

and approach so as to directly interrogate these complex

interacting sources of variation. This research programme

offers a revised and renewed understanding of the genotype

that will allow development to be fully integrated into the

evolutionary process.
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