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Crop productivity needs to substantially increase to meet global food and feed

demand for a rapidly growing world population. Agricultural technology

developers are pursuing a variety of approaches based on both traditional

technologies such as genetic improvement, pest control and mechanization

as well as new technologies such as genomics, gene manipulation and environ-

mental modelling to develop crops that are capable of meeting growing

demand. Photosynthesis is a key biochemical process that, many suggest, is

not yet optimized for industrial agriculture or the modern global environment.

We are interested in identifying control points in maize photoassimilation that

are amenable to gene manipulation to improve overall productivity. Our

approach encompasses: developing and using novel gene discovery tech-

niques, translating our discoveries into traits and evaluating each trait in a

stepwise manner that reflects a modern production environment. Our aim is

to provide step change advancement in overall crop productivity and deliver

this new technology into the hands of growers.

This article is part of the themed issue ‘Enhancing photosynthesis in crop

plants: targets for improvement’.
1. Background
To meet projected demand for food, fibre and energy, crop productivity needs

to continue on an upward trajectory. The world population is expected to reach

9 billion by 2050 which will require food production to nearly double to main-

tain today’s standards. Current trends suggest that productivity improvements

for the world’s four major crops will fall well short of this goal [1]. Agricultural

producers draw on a multitude of technologies to ensure efficient, sustainable,

stable and high-quality crop production. Genetics has been the foundation of

crop improvement since the dawn of agriculture. New genome technologies

have transformed genetics into an information-rich (driven) discipline.

Photosynthesis is a viable plant productivity improvement target [2–5]. Since

its discovery [6], C4 photosynthesis has become widely recognized as an effective

photosynthetic mechanism for hot, dry climates, increasing both nitrogen and

water use efficiency [7]. The desire to transfer the C mechanism to less efficient

C3 crops such as rice [8,9] brought new attention and funding to C4 research.

This has produced new tools to support C4 photosynthesis research including

development of model species to investigate genetics [10], and tools to support

genome-wide analysis of the underlying biology [11]. Several comparative

studies are underway to determine requirements to introduce C4 metabolism

into C3 crops [12,13].

This renewed interest in C4 metabolism has led to advances in genomics

[14–17] and metabolomics [18] that have expanded the C4 network. For example,

it is now understood that crops such as maize belong to an NADP–malic enzyme

(NADP-ME) type, with two CO2 pumps to facilitate CO2 concentration around

Rubisco in different environments [19,20]. The properties of enzymes involved

in C4 metabolism are being characterized in detail [21–24]. Investigators are
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also examining the role of transport processes between the

mesophyll and bundle sheath [25], regulation of C4 metabolism

[18] and photoprotection [26,27]. Computer modelling is also

advancing knowledge of C4 metabolism [28,29]. At the turn

of the millennium, there was sufficient knowledge to construct

a fairly accurate mathematical model of the NADP-ME C4 pro-

cess [30]. This model was recently updated [17]. All this activity

has greatly improved the understanding of C4 metabolism.

Genetic engineering (GM) technology proved transforma-

tive, becoming the most rapidly adopted crop improvement

technology in history [31]. Its principal applications are in

insect and weed control. Goals that target intrinsic biological

processes have been less accessible to manipulation by GM

technology. However, some promising advancements have

emerged [32–34]. GM technology is most effective when

metabolic control points [35] are targeted. These are enzymes

or regulatory factors that significantly influence the biological

process of interest. They are notoriously difficult to identify

[36]. The agricultural biotechnology discovery process aims

to efficiently and effectively identify candidate genes, or

leads, that fit this definition. Tools developed for this include

a variety of genetic approaches such as TILLING, transposon

tagging and forward or reverse gene tagging [37,38]. Each

has proved effective in a number of plant species but can

be expensive, and perhaps intractable, when targeting a com-

plex metabolic process like C4 photosynthesis, because there

are few robust methods to measure photosynthetic traits.

Now many organizations are turning to computational

tools as entry points for lead discovery [39,40].

Genomics makes it possible to execute information-driven

lead discovery strategies [41]. Not all crops are accessible to

this approach, because the ideal starting point is a high-quality

genome sequence. A genome sequence enables layers of gen-

etic information, such as gene annotation, RNA transcripts,

protein-coding sequence, metabolites, genetic markers and

chromatin data, to then be applied across the genome. Several

genome-wide analytical tools have been developed to interro-

gate these data including genome-wide association analysis,

gene regulatory networks and mathematical modelling of

metabolic pathways. These tools make it possible to identify

genes that are less accessible to genetic screens [42,43]. For

example, a genetic lesion may not express at the physiological

level but might be easily detected at the gene level. These tools

have also been applied to metabolic processes [44].

This work aims to identify genes predicted to improve C4

photosynthesis using GM technology, and which represent

leads for trait development. It began with a mathematical

model of the NADP-ME-type C4 biochemical network [30]

that could be interrogated for enzymes predicted to exert sig-

nificant control over photoassimilation. To expand this effort,

a maize gene regulatory network was constructed to identify

genes predicted to regulate C4 metabolism. More recently,

genome-wide association tools became available as the pri-

mary and secondary lead sources. As computational tools are

at least one step removed from direct plant observation, data

quality and accuracy need to be assessed using independent

evidence. The objective is to compare the weight of evidence

for each lead identified by a computational process. This prior-

itizes leads for GM trait development, and can also form the

basis for breeding or genome-editing strategies. We focused

on maize applications and developed strategies to identify

leads that might be amenable to GM manipulation. While

each area defined a focal point, none were pursued in isolation.
High-quality leads were defined as those with support

from multiple types of evidence. Information-driven lead

identification for the purpose of directly enhancing crop per-

formance mechanisms is a relatively new and unproven

approach. The purpose of this report is to illustrate the appli-

cation of modern computational tools such as genome-wide

association studies (GWAS), gene regulatory network analysis

and mathematical modelling to prioritize candidate leads

for manipulation through genetic modification. A priori-

tized set of leads can then be evaluated in an industrial trait

development pipeline for increased field performance.
2. Genome-wide association analysis
As a first step to identify leads of importance to photosynthet-

ic improvement, we took advantage of a dataset generated

previously that evaluated a range of maize germplasms for

dry grind ethanol production. Several traits described in elec-

tronic supplementary material, table S1 are key attributes for

maize starch as an ethanol substrate that overlap with plant

yield characteristics and have potential as a proxy for pro-

ductivity or yield. Starch represents approximately 70% of

grain weight, and as such is considered a yield characteristic

for both ethanol production and overall plant performance.

More importantly, it was an excellent dataset for genome-

wide association analysis, because there was high replication

and large variation in the recorded traits. These characteristics

often increase the power of association mapping to detect geno-

mic regions linked to trait variation. Furthermore, the recorded

phenotypes exhibited a normal distribution, which satisfies a

critical assumption of association mapping, and some pheno-

types correlated with each other. Quality phenotypic data

were collected across 493 maize inbred lines for per cent ash

(ASH_P), kernel density (DEN_N), dry grind ethanol pro-

duced after 24, 48 and 72 h fermentation (i.e. DG24P), grain

moisture, percentages of oil, protein, starch and crude fibre.

High-throughput sequence analysis of the transcriptome

(mRNA-Seq) for approximately 380 of these lines was used

for single nucleotide polymorphism (SNP) discovery. SNP tag-

ging analysis was performed to create a set of non-redundant

SNPs for downstream genetic diversity and association

analysis. Often, nearby SNPs are inherited together leading

to high correlations of alleles among nearby SNPs, so one

SNP was selected to represent a group of SNPs in high linkage

disequilibrium, at a correlation R2 threshold of 80%. A minor

allele frequency (MAF) filter at 0.01 was also performed, to

avoid misleading results due to small sample sizes resulting

from rare alleles. The 0.01 threshold was chosen to select

SNPs whose rare allele occurred in at least four lines in the

panel. After these filters, approximately 140 000 SNPs were

retained. The tagged SNP dataset was then used to create a

pairwise kinship matrix using a simple proportion of identical

homozygous genotypes. This matrix quantifies the degree of

relationship of the panel lines in a pairwise manner and was

used to control for population structure in association

mapping.

Associations between SNPs and phenotypes were detected

using Tassel 4.0 [45]. The best linear unbiased predictor (BLUP)

values for the 10 traits, the kinship matrix based on the tagged

SNP dataset and the tagged SNP genotype dataset were used

as input files for the association mapping using the Mixed

Linear Models approach implemented in Tassel 4.0 [45].
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Figure 1. Manhattan plot of dry grind ethanol traits in a proprietary inbred maize population. The significance of associations is expressed as the negative base 10 log of
the p-value, on the Y-axis. The positions of associations within each of the 10 chromosomes are indicated by the X-axis. Each point in the plot represents results of
association between one polymorphism and one trait. Traits are indicated by different shapes and symbols as shown on the upper right of the plot diagram.
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The Manhattan plot in figure 1 shows the results across the

10 chromosomes of maize. Although a negative log P

(NegLogP) . 3 is significant, a more stringent threshold was

set at NegLogP . 6 to identify 22 genes of interest (table 1)

that qualify as leads for further analysis.
3. Gene regulatory network analysis
Gene regulatory network analysis seeks to identify relation-

ships between components of complex datasets. In this case,

mRNA profiling data were used to find key regulators of C4

metabolism. Network inference algorithms were used to gen-

erate C4 photosynthesis leads based on hypotheses in the

form element X regulates element Y under W conditions.

A number of gene regulatory relationships were established

using gene expression data. The algorithms came from the dia-

logue for reverse engineering assessments and methods

(DREAM) challenge. This systems biology approach has been

used to identify important master regulators of high-grade

gliomas [46], characterize carbon and nitrogen gene regulation

in Arabidopsis [47] and identify Staphylococcus aureus transcrip-

tion factors involved in pathogenesis [48]. However, no single

algorithm can accurately infer all network motifs, and some

algorithms are complementary [48]. As such, several algor-

ithms were reviewed and combined to analyse and evaluate

gene regulation of the C4 photosynthesis network.

First, microarray data from four studies representing

216 maize leaf samples were used to develop a network.

Data were generated as previously described [49]. To ensure

robustness, samples below a predetermined quality score

were removed, ambiguously labelled probe sets were excluded

and remaining probe sets were filtered based on negative

controls. A total of 16 179 genes were measured. The algo-

rithms incorporated into the analysis included TIGRESS [50],

C3NET [51], Pearson correlation [40] and GENIE3 [52]. The

default parameters of each algorithm were used to predict

gene interactions. A consensus network was then created
from the networks generated by each method as described in

Marbach et al. [48].

A second dataset was created by focusing on genes anno-

tated as transcription factors. Transcription factors are good

candidates for control points and master regulators of plant

metabolism due to their regulatory role, controlling the

expression of metabolic genes. A set of maize transcription

factors was identified from three sources: Grassius [53],

PlantTFDB [54] and Gene Ontology [55,56]. Master regulators

were then determined from this set based on the connections

of the transcription factors with C4 pathway genes in the con-

sensus network via Fisher’s Exact Test [46]. These master

regulators were predicted to significantly control C4 photo-

synthesis. Core C4 genes formed the basis of the analysis.

The master regulator method defines a statistically significant

relationship between gene interactions. It identifies transcrip-

tion factors predicted to regulate several genes in the network

and identifies genes that are potential lead candidates.

Independently each gene network method produces many

false positives and these false positives carry through into the

consensus network. Thus, a final filtering step was performed

to create a focused list of genes for further investigation.

A number of multiple linear regression models that predicted

the combination of connected genes that can predict the

expression of the genes involved in the C4 network were

tested. Only the models with the smallest standard error were

retained. This final set then formed the final gene network.

Not all master regulators survived this final filtering step.

There was overlap with the GWAS results, the master regulator

analysis and multiple linear regression models which identified

the genes in table 2 as putative regulators of C4 metabolism.
4. Mathematical modelling of C4

photoassimilation
Mathematical models can be powerful tools to identify control

points in a metabolic network. A mathematical model of C4



Table 1. Leads identified by GWAS analysis of maize dry grind ethanol traits. The chromosome location of each lead is based on the maize V2 genome. The
traits are described in electronic supplementary material, table S1.

Gramene ID
linkage
group trait description begin end F p-value NegLogP

GRMZM2G012874 8 DG72P beta3-glucuronyltransferase,

uncharacterized protein

131688249 131694614 28.9817 1.29 � 1027 6.8903

GRMZM2G029912 9 DG24P uncharacterized protein 105190710 105197290 25.9833 5.46 � 1027 6.2628

GRMZM2G034302 1 DG48P uncharacterized protein 15069803 15075192 28.0265 2.04 � 1027 6.6911

GRMZM2G035741 6 OIL_P uncharacterized protein 35892952 35896625 26.2301 4.85 � 1027 6.3147

GRMZM2G056600 7 DG72P uncharacterized protein 129263776 129265926 25.2905 7.64 � 1027 6.1168

GRMZM2G066460 6 OIL_P 60S acidic ribosomal protein

P0

9203729 9206286 25.3335 7.48 � 1027 6.1259

GRMZM2G074604 5 OIL_P phenylalanine ammonia-

lyase

186677004 186680745 30.1549 7.35 � 1028 7.134

GRMZM2G089454 5 OIL_P uncharacterized protein 204908277 204911697 27.8408 2.23 � 1027 6.6523

GRMZM2G097884 5 OIL_P uncharacterized protein 190953138 190954236 28.171 1.90 � 1027 6.7212

GRMZM2G108474 5 STC_P translationally controlled

tumour protein

homologue

68020016 68022909 24.8886 9.29 � 1027 6.0319

GRMZM2G114127 5 OIL_P uncharacterized protein 184393704 184395078 28.9527 1.31 � 1027 6.8842

GRMZM2G122076 4 OIL_P putative homeobox DNA-

binding and leucine

zipper domain family

protein

77609764 77614223 28.8919 1.34 � 1027 6.8716

GRMZM2G137930 6 OIL_P soluble inorganic

pyrophosphatase,

uncharacterized protein

35680626 35684863 28.1908 1.88 � 1027 6.7254

GRMZM2G142093 5 DEN_N uncharacterized protein 53179092 53180352 27.3245 2.86 � 1027 6.5443

GRMZM2G145573 8 DG48P catalytic/oxidoreductase

acting on NADH or

NADPH

87238606 87243400 27.6341 2.46 � 1027 6.6091

GRMZM2G152041 6 DG72P uncharacterized protein 71014229 71016297 25.8101 5.94 � 1027 6.2263

GRMZM2G152764 5 RFA_P no description 18698735 18701561 25.5729 6.66 � 1027 6.1763

GRMZM2G155662 6 DG72P single-stranded DNA-binding

protein WHY1,

chloroplastic

71618436 71621497 26.5803 4.09 � 1027 6.3882

GRMZM2G163296 1 DG72P putative uncharacterized

protein

283309246 283311287 26.6681 3.92 � 1027 6.4067

GRMZM2G169114 6 OIL_P uncharacterized protein 104848940 104858629 25.4782 6.98 � 1027 6.1564

GRMZM2G431900 7 DG72P uncharacterized protein 22154867 22161180 26.8555 3.58 � 1027 6.446

GRMZM2G540538 5 OIL_P adenosine kinase 2,

uncharacterized protein

186517098 186522957 30.5717 6.02 � 1028 7.2203
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photoassimilation [30] was used as the basis for analysing

the contribution of each enzyme (or network component) to

photoassimilation. An in silico transformation algorithm was

developed to interrogate the network for control points

that might increase photoassimilation if enzyme activity were

increased. Given the thousands of possible gene combinations,

a molecular genetic or empirical approach to this problem is

intractable. Model interrogation was used to narrow the solutions
to those most likely to have a positive impact. It also revealed the

theoretical maximum improvement that might be achievable.

Upregulation at each enzyme step was examined alone and

in combination with other steps. First, a systematic analysis

identified 1, 2, 3 and 4 component combinations that increased

assimilation by a minimum of 5%. This narrowed the solutions

an order of magnitude from thousands to hundreds. Next, the

sensitivity of photoassimilation to the model’s predicted level



Table 2. Leads identified by gene regulatory network analysis of maize leaf gene expression profiling data. The chromosome location of each lead is based on
the maize V2 genome.

Gramene ID description linkage group start end

GRMZM2G026024 uncharacterized protein 4 158996579 158993661

AC204212.4_FG001 SANT/MYB protein 5 201120649 201120939

GRMZM2G017429 uncharacterized protein 5 207899002 207900503

GRMZM2G440529 putative uncharacterized protein 3 190314296 190317061

GRMZM2G372102 36.4 kDa proline-rich protein 2 5922079 5922834

GRMZM2G306732 fructose-1,6-bisphosphatase 1 38850785 38848595

GRMZM5G886257 malic enzyme 6 130130465 130134088

GRMZM2G456568 putative NAC domain transcription factor superfamily

protein isoforms 1 and 2

6 147925808 147921021

GRMZM2G113779 no description 2 201972947 201971116

GRMZM5G863645 uncharacterized protein 1 269289476 269284325

GRMZM2G060265 no description 1 1955584 1957660
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of upregulation was examined. This was necessary because gen-

etic engineering is not an exact science. It is impossible to predict

exactly how a trait gene will function once stably integrated

into the host genome. Furthermore, the most viable solutions

involve three and four genes which will likely influence trait

behaviour in ways that have not been explored in much detail.

This further reduced the solutions to tens. Finally, the frequency

a particular enzyme appeared in a solution was tabulated.

Table 3 shows that NADP-ME topped the list followed by phos-

phoenolpyruvate carboxylase, fructose-bisphosphate aldolase

and NADP-malate dehydrogenase.

There were no single or double enzyme combinations that

met established performance criteria to improve photoassimila-

tion by at least 5%. This suggests shared control of overall

network flux. It is notable that no further improvement was

predicted when more than four enzymes were manipulated.

Some steps such as ribulose-bisphosphate carboxylation

were not examined because perturbation at that step is not

accessible to current genetic engineering technology. Ribulose-

bis-phosphate carboxylase/oxygenase (Rubisco), the enzyme

that catalyses this step, is a heterooctamer consisting of a large

subunit encoded in the plastid genome and a small subunit

encoded by a three-member gene family in the nuclear

genome. Since the holoenzyme has subunits from both nuclear

and chloroplast compartments, there is no simple way to

upregulate its expression. Electronic supplementary material,

table S2 shows that the top three-gene solutions are predicted

to improve photoassimilation by just over 11%, and electronic

supplementary material, table S3 shows the top four-gene

solutions are predicted to produce just over 13% improvement.
5. Prioritizing computational leads for trait
development

The computational approaches listed above provide compelling

evidence implicating new genes as control points in C4 carbon

assimilation. However, several additional steps are required to

translate gene leads derived from computational approaches

into targets for transgenic genetic modification. First, computa-

tional discovery methodology relies heavily on maize genome
annotation which remains relatively incomplete relative to

model plants. While robust leads are often identified by more

than one approach, many of the leads presented here are often

genes that have not been previously investigated. Additional

evidence helps to build confidence in a lead and prioritize it

for further investigation. Once identified, each lead was ana-

lysed using a variety of tools and resources. For example,

internal databases show if a lead is associated with yield quan-

titative trait loci or other genetic characteristics that might be of

interest. A lead’s expression pattern can inform on its role in

photoassimilation as well as other biological processes. These

data can also be used to determine if a lead responds to environ-

mental signals such as temperature, water availability or

nitrogen. The protein-coding sequence may reveal functional

information that can inform on the mechanism by which the

lead influences photoassimilation. It is also useful to know if a

lead has been subject to transgenic experiments or if genetic

mutants at that locus have been characterized. In some cases,

a lead’s orthologue in another species has been studied in

detail, and can reveal a specific functional role. Taken together,

a rich body of information can be applied that formulates a com-

pelling hypothesis and is supported by the available evidence

consistent with trait development objectives.

While most of the strategy focus is aimed at GM technol-

ogy as a solution for increased photosynthetic efficiency,

leads identified by computational methods can also be eval-

uated as markers for targeted breeding. This provides an

alternative to GM technology products which are challenging

and costly to commercialize due to the rigorous health

and safety assessments required for registration. Of course,

a breeding approach is limited to current genetic varia-

tion and does not take advantage of the broader genetic

manipulations possible through GM technology.
6. Concluding remarks
Genetic modifications through biotechnology are powerful

crop improvement tools. However, GM has been less success-

ful with respect to improving intrinsic plant processes

important to plant performance traits, such as photosynthesis.
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Theory suggests that enhancing C4 carbon assimilation is one

way to improve crop productivity. Much is known about the

C4 process, and recent work suggests there is much more to

learn. Maize genomics has greatly expanded trait development

opportunities. To take advantage of this, we developed com-

putational tools to scan the genome for high-quality trait

development leads. This represents the next wave in lead dis-

covery and will pave the way to new high-performing crops

to meet the needs of a growing global population.
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