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Prolactin (PRL) is a pleiotropic cytokine promoting cellular proliferation and differentiation.
Because PRL activates the Src family of tyrosine kinases (SFK), we have studied the role of these
kinases in PRL cell proliferation signaling. PRL induced [*H]thymidine incorporation upon
transient transfection of BaF-3 cells with the PRL receptor. This effect was inhibited by cotrans-
fection with the dominant negative mutant of c-Src (K>A295/Y>F527, SrcDM). The role of SFK
in PRL-induced proliferation was confirmed in the BaF-3 PRL receptor-stable transfectant, W53
cells, where PRL induced Fyn and Lyn activation. The SFK-selective inhibitors PP1/PP2 and
herbimycin A blocked PRL-dependent cell proliferation by arresting the W53 cells in G1, with no
evident apoptosis. In parallel, PP1/PP2 inhibited PRL induction of cell growth-related genes c-fos,
c-jun, c-myc, and odc. These inhibitors have no effect on PRL-mediated activation of Ras/Mapk and
Jak/Start pathways. In contrast, they inhibited the PRL-dependent stimulation of the SFKs
substrate Sam68, the phosphorylation of the tyrosine phosphatase Shp2, and the PI3K-dependent
Akt and p70S6k serine kinases. Consistently, transient expression of SrcDM in W53 cells also
blocked PRL activation of Akt. These results demonstrate that activation of SFKs is required for

cell proliferation induced by PRL.

INTRODUCTION

Prolactin (PRL) is a pleiotropic cytokine promoting cellular
proliferation, differentiation, or survival, depending on the
physiological and cellular context (Doppler, 1994; Bole-Fey-
sot et al., 1998; Morales et al., 1999). These events are medi-
ated through activation of the PRL receptor (PRLR), a mem-
ber of the class I superfamily of cytokine receptors (Bazan,
1990; Horseman and Yu-Lee, 1994; Watowich et al., 1996).
The PRLR has no inherent enzymatic activity but triggers
activation of the associated Jak2 and Src family of tyrosine
kinases (SFKs) (Clevenger and Medaglia, 1994; Dusanter-
Fourt ef al., 1994; Berlanga et al., 1995; Fresno Vara et al.,
2000), which phosphorylate PRLR and other signaling mol-
ecules involved in the control of cell functions, including
PI3K and Shp2 (Ali et al., 1996; Al-Sakkaf et al., 1997; Ber-
langa et al., 1997).

The Src kinases are modular proteins sharing a high de-
gree of homology in the kinase, SH2 and SH3 domains,
whereas the amino-terminal portion confers to each of them
some degree of specificity (Thomas and Brugge, 1997; Corey
and Anderson, 1999). In addition to c-Src, the SFK prototype,
the family has other members: Blk, Fyn, Frg, Hck, Lck, Lyn,
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and Yes (Thomas and Brugge, 1997). Some of them, Blk,
Hck, Fgr, Lck, and Lyn are restricted to hematopoietic tissue,
whereas Fyn, c-Src, and Yes are widely expressed (Corey
and Anderson, 1999)

Although the association of SFKs to cytokine receptors has
been well established (Taniguchi, 1995; Corey and Ander-
son, 1999), their precise contribution to the signaling mech-
anisms induced by cytokines remains unclear. The activa-
tion of c-Src and Fyn in response to PRL has been previously
observed (Clevenger and Medaglia, 1994; Berlanga et al.,
1995), and it has been later shown that this event is inde-
pendent of Jak2 (Fresno Vara et al., 2000). SFK is required for
cellular growth induced by a number of growth factors and
cytokines, including colony stimulating factor one (CSF-1),
gradulocyte-colony stimulating factor (G-CSF), epidermal
growth factor (EGF), platelet-derived growth factor (PDGEF),
etc. (Thomas and Brugge, 1997; Corey and Anderson, 1999).
Recently, the discovery of the selective SFK inhibitors PP1/
PP2 (Hanke et al., 1996; Liu et al., 1999; Schindler ef al., 1999)
has helped to unravel the role of these kinases in signal
transduction (Schlaepfer et al., 1998; Broudy et al., 1999;
Conway et al., 1999; Osterhout et al., 1999; Park et al., 1999;
Owens et al., 2000).

We recently generated a new cell line by stable expression
of PRLR on the IL-3-dependent BaF-3 proB cell line (Palacios
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and Steinmetz, 1985). This new cell line, named W53, grows
in PRL-enriched media without IL-3 and expresses molecu-
lar markers related to B cell differentiation as the A5 gene
(Morales et al., 1999). Here, we have investigated the role of
SFK on PRL-induced proliferation. Expression of SrcDM
(double mutant c-Src K>A295/Y>F527) efficiently blocked
PRL-induced [*H]thymidine incorporation in PRLR tran-
siently transfected BaF-3. The use of the SFK-selective inhib-
itors, PP1/PP2 and herbimycin A, in W35 cells has helped us
to define the role of SFKs in PRL-induced proliferation. Here
we show that the SFKs are required for PRL-stimulated
DNA synthesis, as well as for expression of growth-related
immediate early genes (IEGs), c-fos, c-jun, and c-myc. More-
over, inhibition of SFKs blocks PRL-induced tyrosine phos-
phorylation of Sam68 and Shp2 and the PI3K-regulated
activation of Akt and the p70S6k. Consistently, transient
expression of SrcDM in W53 cells also blocked PRL activa-
tion of Akt. However, the SFK inhibitors do not affect Jak2
activation and phosphorylation of PRLR and Stat5.

MATERIALS AND METHODS
Reagents

Tissue culture media, sera, and Trizol were purchased from Life
Technologies (Renfrewshire, UK). Ovine PRL (PRL, NIDDK-oPRL-
20, 31 IU/mg) was kindly provided by the National Hormone and
Pituitary Program of the National Institute of Diabetes and Diges-
tive and Kidney Diseases (Bethesda, MD). BCA protein assay re-
agent was from Pierce (Rockford, IL). Anti-p70S6k was a gift of G.
Thomas (Friedrich Miescher Institute, Basel, Switzerland). Rabbit
polyclonal anti-Sam68 was a gift of S. Fumagalli (Friedrich Miescher
Institute). Mouse monoclonal antibody (mAb) U5 to PRLR was
purchased from Affinity Bioreagents (Golden, CO). The mAb 327 to
c-Src was a kind gift of ].S. Brugge (Harvard University, Cambridge,
MA). Anti-phosphotyrosine mAb 4G10 was purchased from Up-
state Biotechnology (Lake Placid, NY). Antibodies against Blk (K-
23), Fyn (Fyn3), Lyn (H-6), c-Src (SRC2), Jak2 (C-20), Erk2 (C-14),
Stat 5 (C-17), Akt1/2 (H-136), Shp2 (SH-PTP2, N-16), Jnk2 (FL), pJnk
(G-7), p38 (H-147), HA (Y-11), and c-Abl (K-12) were obtained from
Santa Cruz Biotechnology (Santa Cruz, CA). Antibodies against Lck
(L15620) and c-Yes (Y35320) were from Transduction Laboratories
(Lexington, KY), and anti-pMek1/2, pErk1/2 (pp42/44), pp70S6k,
pAkt, and anti-pp38 antibodies were from New England Biolabs
(Beverly, MA). The anti-Src-pY418 (recognizing the autophosphor-
ylation sequence of the SFKs, which is highly conserved) and the
secondary antibodies-horseradish peroxidase-conjugated were pur-
chased from Biosource International (Camarillo, CA). The enhanced
chemiluminiscence (ECL) kit, radiochemicals, and the Oligolabeling
kit were from Amersham Pharmacia Biotech (Buckinghamshire,
UK). PP1/PP2, herbimycin A, and LY-294002 were obtained from
Alexis Biochemicals (San Diego, CA). Specific probes were used for
Northern hybridization for c-fos, c-jun, c-myc, odc.

Constructions of Expression Vectors

The PRLR cDNA-coding sequence (P. A. Kelly, Institut National de
la Santé et de la Recherche Médicale, Paris, France) was excised
from pBlueScript with EcoRI (5') and Sall (3") and cloned into the
same sites of pEF-Bos-XC (Mizushima and Nagata, 1990) for tran-
sient coexpression in BaF-3 cells. The SrcDM (c-Src mutant,
K>A295/Y>F527; S. Roche, CRBM-Centre National de la Recher-
che, France), Csk (J.A. Cooper, Fred Hutchinson Cancer Research
Center, Seattle, WA), and the SrcK— (c-Src, K>M?295), a kinase-dead
mutant of ¢-Src (K. Ballmer, IMR-PSI, Zurich, Switzerland) were
cloned into pCl-neo (Promega, Madison, WI). The Jak2AK, a Jak2
form with the C-terminal kinase domain deleted, generated from
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the original Jak2 cDNA (J. N. Ihle, St. Jude Children’s Research
Hospital, Memphis, TN) as described elsewhere (Fresno Vara et al.,
2000) was also cloned into pCIl-neo. Akt-HA was cloned into
pcDNA3 (Luis del Peso, Hospital la Princesa, Madrid; B. Hem-
mings, Friedrich Miescher Institute, Basel, Switzerland; B. Burgerin,
University of Utrecht, the Netherlands).

Cell Lines and Culture Methods

The mouse IL-3—-dependent BaF-3 cell line (Palacios and Steinmetz,
1985) was cultured in RPMI-1640 medium supplemented with 10%
fetal calf serum (FCS), 4 mM L-glutamine, penicillin (100 U), and
streptomycin (100 pg/ml) and 10% of WEHI-3B supernatant as a
source of IL-3. The BaF-3-derived W53 cell line (PRLR transfectants)
was cultured in RPMI-1640 containing 10% FCS and 6 ng/ml PRL as
previously described (Morales ef al., 1999).

Transfection and PH]Thymidine Incorporation
Assays

Transient DNA cotransfection experiments were performed with 20
g of pEF-Bos-XC-PRLR plasmid and the pCI-neo plasmid empty or
containing the cDNA of either Jak2AK, SrcDM, Csk, and SrcK— (60
ug each) by electroporation (960 pF and 300 V) into BaF-3 cells (107
cells/sample) with the use of a Gene Pulser (Bio-Rad Laboratories,
Hercules, CA). Cells were cultured for 16 h and then seeded into
96-well plates (5 X 10* viable cells/well) with various concentra-
tions of PRL. After 48 h of culture, [*H]thymidine (1 uCi/well) was
added, and cells were harvested onto glass fiber filters after 4 h of
incubation. Radioactivity incorporation was quantitated in a
B-counter (1450 Microbeta Wallac LKB, Turku, Finland).

W53 cell growth was measured by plating 5 X 10* cells/well were
plated on 96-well flat-bottom plates and cultured for 24 h on RPMI-
1640 supplemented with 10% FCS and 6 ng/ml PRL, in the presence
of different concentrations of SFK inhibitors, LY-294002, or equiva-
lent amounts of solvent (dimethyl sulfoxide [DMSQ], dilution
1:1000) as a control. Each well was pulsed for 4 h with 0.5 uCi
[*H]thymidine, cells were harvested, and incorporated radioactivity
was quantified as above.

Transient coexpression of Atk-HA tagged and SrcDM in W53 cells
was carried out by electroporation as above: 4 X 107 cells/sample
were electroporated (960 uF and 300 V) with Akt-HA (40 ug) and
either pCl-neo empty or pCl-neo-SrcDM (80 ug each). After culture
for 24 h, cells were maintained for 16 h in RPMI-1640 containing 1%
horse serum to make them quiescent and subsequently stimulated
with 100 mg/ml PRL for 1 h. Cells were then lysed and analyzed.

BrdU Pulse-Label Experiments and Flow Cytometry
Analysis

Cell cycle kinetics were carried out by the bromodeoxyuridine
(BrdU)/anti-bromodeoxyuridine method as previously described
(Silva et al., 1997). Briefly, cultures of 5 X 10° cells/ml were incu-
bated with 10 uM PP1, and 90 min later, cells were pulse-labeled for
30 min with 10 uM of BrdU. At the end of the labeling period, cells
were washed twice with prewarmed culture media and resus-
pended at 5 X 10° cells/ml in culture media containing 6 ng/ml
PRL and 10 uM PP1. At given times, aliquots of 2 X 10° cells were
collected from the cultures, centrifuged at 500 X g for 5 min at room
temperature, and then fixed in 1 ml of phosphate-buffered saline
(PBS)-70% ethanol for at least 1 h at 4°C. Fixed cells were resus-
pended in 2 ml of 2 M HCI containing 10 ul of pepsin buffer (0.4
mg/ml pepsin in 0.1 M HCI) and incubated for 20 min at 37°C,
washed three times in PBS and incubated for 1 h at 25°C in PBS-
Tween buffer (PBS, with 0.5% Tween-20, 0.5% FCS) and 10 ul of
fluorescein isothiocyanate (FITC)-labeled anti-BrdU (Becton Dickin-
son, San Diego, CA). Cells were then washed twice in PBS and
resuspended in 1 ml of PBS containing 20 ul of propidium iodide
(10 mg/ml) just before the flow cytometry analysis, which was
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performed on an EPICS-XL flow cytometer (Coulter, Hialeah, FL).
Background signals were set by incubating BrdU-unlabeled cells
with 10 ul FITC-anti-BrdU. Because PP1 was dissolved in DMSO,
control cultures were incubated with the equivalent volume of
DMSO (dilution 1:1000) instead of PP1.

Cell Stimulation, Immunoprecipitation, and Western
Blot Analysis

W53 cultures were washed with RPMI-1640 to remove PRL and
cultured overnight with medium containing 1% horse serum. The
next day cells were pretreated for 2 h with 10 uM PP1/PP2, or the
equivalent volume of DMSO (dilution 1:1000), as a control. For
herbimycin A (0.7 uM), cells were pretreated overnight. Cells were
then left unstimulated or stimulated with 100 ng/ml PRL and
harvested after 10 min of incubation. Stimulation was stopped by
washing the cells once in ice-cold PBS; cells were subsequently lysed
with 1 ml per 2 X 107 cells of lysis buffer [LB: 1X PBS, 1% Nonidet
P-40, 0.5% sodium deoxycholate, 0.1% SDS, 1 mM Na;VO,, 1 mM
phenylmethylsulfonyl fluoride (PMSF), 1 mM phenantroline, 1 mM
benzamidine hydrochloride, 1 mM iodoacetamide]. The total cell
lysates, the supernatants from a centrifugation of 15,000 X g for 30
min at 4°C, were compensated with LB for the same protein con-
centration after being determined by the BCA protein assay. An
aliquot was boiled in 1X SDS sample buffer (62.5 mM Tris-HCI [pH
6.8], 5% B-mercaptoethanol, 2% SDS, 10% glycerol) and stored at
—80°C until further use. The remainder of the cell lysates were
incubated for 1 h at 4°C with the appropriate antibody. Immune
complexes were collected by incubation for 1 h at 4°C with 30 ul of
protein G-Sepharose beads (Sigma, St. Louis, MO), washed several
times with LB and eluted by boiling in 2X SDS sample buffer. The
immunoprecipitates of SFKs or Akt to be blotted were dissociated
with freshly prepared 2X SDS sample buffer (containing 18.3
mg/ml iodoacetamide, without B-mercaptoethanol) at 60°C for 3
min.

For Western blotting analysis, samples were subjected to SDS-
PAGE and transferred to Immobilon-P membranes (Millipore, Bed-
ford, MA). Filters were blocked with 5% fat-free dried milk (Fluka
BioChemika, Neu-Ulm, Switzerland) in TTBS (10 mM Tris-HCl, pH
7.4, 0.1% Tween 20), or 5% bovine serum albumen in TTBS for
anti-phosphotyrosine immunodetections. The blocked membranes
were incubated with the primary antibody in blocking buffer,
washed three times with TTBS, and further incubated with the
suitable horseradish peroxidase-conjugated anti-species—specific an-
tibody. Proteins were visualized by ECL (Amersham Pharmacia
Biotech, Buckinghamshire, UK).
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In Vitro AutoKinase Assay

The in vitro autokinase assays, were carried out as described pre-
viously (Fresno Vara et al., 2000). Briefly, the immune complexes
were washed with LB, then with TBS and finally with kinase buffer
[20 mM Tris-HCl (pH 7.4), 10 mM MnCl,], and then incubated for 4
min at 30°C in 30 ul of kinase buffer containing 2 mM B-mercapto-
ethanol, 1T uM ATP, 10 uCi [y-32P]ATP (4500 Ci/mmol, ICN). The
reaction was stopped by the addition of 2X sample buffer and
boiled for 5 min. Eluted proteins were resolved by SDS-7% PAGE,
the gels were treated with 1 M KOH for 1 h at 55°C to remove
background due to serine phosphorylation, and *?P-labeled proteins
were visualized by autoradiography.

Northern Blot Analysis

W53 cultures at 5 X 10° cells/ml were maintained overnight in
RPMI-1640 medium supplemented with 1% horse serum. Then cells
were pretreated for 2 h with 10 uM PP1/PP2 or the equivalent
volume of DMSO (dilution 1:1000) as a control. At 0 h cells were
stimulated with 100 ng/ml PRL. Aliquots of 5 X 10° cells were taken
at different times and total RNA was isolated from them with the
use of Tryzol. RNA was fractionated by electrophoresis through a
1% agarose gel containing 6% formaldehyde and transferred onto
Nytran membranes (Schleicher & Schuell, Dassel, Germany) by
capillary blotting. Blots were hybridized with cDNA probes labeled
with the Oligolabeling kit with the use of [a-3*P]dCTP (3000 Ci/
mmol; Amersham Pharmacia Biotech). After several washes, the
hybridization signals on the blotted membrane were visualized by
autoradiography.

RESULTS

The SFK is required for cellular growth induced by a num-
ber of growth factors and cytokines, including CSE-1, G-CSF,
EGF, PDGF, etc. (Thomas and Brugge, 1997; Corey and
Anderson, 1999). Because PRL induces the activation of
SFKs and Jak-2 kinases (Clevenger and Medaglia, 1994; Ber-
langa et al., 1995), independently of one another (Fresno
Vara et al., 2000), we analyzed the involvement of these
enzymes in the PRL-induced proliferative response. The first
observation was that, in BaF-3 cells transiently cotransfected
with the PRLR and the empty pCl-neo plasmid, PRL stim-
ulated [*H]thymidine incorporation in a dose-dependent
manner, reaching a plateau at ~1000 ng/ml PRL (Figure 1,
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PRLR/pClI-neo).

SFK activity is abolished by mutation at the ATP-binding
site (K>M295 in the chicken c-Src kinase-dead mutant,
SrcK—) or through phosphorylation of the tyrosine residue
at the C-terminal tail (Y527 in the chicken c-Src) catalyzed by
Csk, which facilitates an inactive enzyme conformation
(Brown and Cooper, 1996). With the use of BaF-3 cells we
analyzed the effect of transient coexpression of PRLR with
pCl-neo containing the cDNAs of SrcK—, Csk, or SrcDM, a
dominant negative form of c-Src combining the mutation
both at the ATP-binding site (K>A295) and at the Csk
tyrosine phosphorylation site (Y>F527; Mukhopadhyay et
al., 1995), which confers an open conformation to this mu-
tant. As shown in Figure 1, coexpression of the receptor with
either SrcK— (PRLR/SrcK—) or Csk (PRLR/Csk) partially
inhibited PRL-induced DNA replication, as compared with
cells that expressed only PRLR (PRLR/pCI-neo). When
SrcDM (K>A295/Y>F527) was cotransfected with PRLR
(PRLR/SrcDM), a 78% inhibition on PRL stimulation of
DNA synthesis was observed, as compared with cells co-
transfected with the receptor together with the empty pCI-
neo plasmid (Figure 1). The role of Jak2 on PRL-dependent
cell proliferation was also analyzed by cotransfection of
BaF-3 cells with PRLR and Jak2AK (PRLR/Jak2AK). This
dominant negative mutant of Jak2, with the kinase domain
deleted (Fresno Vara ef al., 2000), blocked PRL-stimulated
[*H]thymidine incorporation to the same extent as SrcDM
(Figure 1). These data with the use of different mutants in

2174

PAGE and immunoblotted with specific antibodies
against the members of the SFK. (B) Quiescent and
10-min PRL-stimulated (100 ng/ml) W53 cells were
lyzed and Blk, Fyn, and Lyn were immunoprecipi-
tated with their specific antibodies. One-third of the
immune complexes was subjected to autophosphor-
ylation reactions and analyzed by SDS-7% PAGE
and autoradiography (Auto-P). The other two-thirds
of immune complexes were separated by SDS-7%
PAGE and blotted against their specific antibodies
(see MATERIALS AND METHODS).

transient DNA cotransfection experiments strongly favor
the requirement of SFK and Jak2 for cellular proliferation
induced by PRL.

To further investigate the role of SFK on cell proliferation,
we used W53 cells, a PRLR-stable transfectant BaF-3-derived
cell line that depends on PRL for proliferation (Morales et al.,
1999). Because W53 cells showed changes in the gene ex-
pression pattern associated with B cell differentiation pro-
gram (Morales et al., 1999), we first determined the expres-
sion of SFK members in BaF-3 and in W53 cells by Western
blotting of total cell extracts. From the seven members of this
family of kinases, only Fyn, Lyn, and Blk were expressed
both in BaF-3 and in W53 cells (Figure 2A). It should be
noted that the levels of Fyn were higher in W53 than in
BaF-3. Next, we determined which of these Src kinases were
activated upon PRL stimulation of W53 cells. To this end,
cultures of W53 cells were maintained overnight in RPMI-
1640 containing 1% horse serum to make them quiescent. A
set of cultures were then stimulated with 100 ng/ml PRL for
10 min. From extracts of quiescent and PRL-stimulated cells,
normalyzed for protein concentration, Fyn, Lyn, and Blk
were immunoprecipitated. One-third of each of the immune
complexes was submitted to autokinase reaction for 4 min at
30°C in the presence of [y->?P]ATP, to separation by SDS-
PAGE, and to subsequent autoradiography (see MATERI-
ALS AND METHODS). As shown in Figure 2B, PRL stim-
ulated only autophosphorylation/activation of Fyn (pp59)
and Lyn (pp53/pp56) (Figure 2B, top). No autophosphory-
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lation signal could be observed for Blk. The other two-thirds
of the immune complexes were blotted against their specific
antibodies to determine the amounts of Fyn (p59) and Lyn
(p53/p56) (Figure 2B, bottom).

To study the role of SFKs in PRL induction of W53 pro-
liferation, we used selective inhibitors of the SFK, such as the
pyrazolopyridine derivatives PP1 and PP2 (Hanke ef al,
1996; Liu et al., 1999; Schindler et al., 1999) or the ansamycin
antibiotic herbimycin A (Schlaepfer et al., 1998; Abe et al.,
2000; Bosco et al., 2000; Langlais et al., 2000). Addition of PP1,
PP2, or herbimycin A to W53 cells inhibited the PRL stim-
ulation of thymidine incorporation in a dose-dependent
manner, with an IC5, of ~5 uM for PP1 and PP2 (Figure 3A)
and of ~0.4 uM for herbimycin A (Figure 3A). To prove the
efficacy of these SFK inhibitors, we monitored the tyrosine
phosphorylation of the SFK activation loops by Western blot
analysis with the anti-Src-pY418 polyclonal antibody. Be-
cause the sequence around the autophosphorylation site is
highly conserved among the SFKs, this antibody should
recognize autophosphorylated Fyn (pp59) and Lyn (pp53/
pp56). As observed in Figure 3B, PRL induced autophos-
phorylation of Fyn and Lyn, detected as a doublet. After 10
min, phosphorylation increased by 1.7-fold; results alike
were observed in PRL-stimulated hepatocytes (Berlanga et
al., 1995). After 30 min phosphorylation decreased toward
basal levels. Treatment of W53 cells with PP1 abolished both
basal and PRL-induced activation of Fyn and Lyn autophos-
phorylation (Figure 3B). Similarly, herbimycin A (0.7 uM)
inhibited activation of these SFKs (Fresno Vara, Céceres,
Silva, and Martin-Pérez, unpublished results).

The phosphorylation of Sam68, a specific SFK cellular
substrate in G1 and mitosis (Fumagalli et al., 1994; Lock et al.,
1996; Fusaki et al., 1997; Lang et al., 1999) was also deter-
mined. Stimulation of W53 cells with 100 ng/ml PRL for 10
min caused an increase in the phosphotyrosine content of
Samé68 (Figure 3C), as detected by Western blot with the
anti-phosphotyrosine mAb 4G10 on the Sam68 immunopre-
cipitates. As observed above for the activation loop of the
SFKs, some basal tyrosine phosphorylation was observed in
Sam68 (Figure 3C). Treatment of W53 with PP1 before ad-
dition of PRL abolished Samé68 phosphorylation (Figure 3C).
Together with the results of Figure 2B, we concluded that
addition of PRL to W53 cells induced activation of Fyn and
Lyn and, as a consequence, brought about an increase in the
phosphotyrosine content of Sam68, which was eliminated by
PP1 treatment. Furthermore, SFKs also phosphorylate the
SH2 domain containing tyrosine phosphatase Shp2 (Feng et
al., 1993; Liu et al., 1997), which is activated by PRL on 293
PRLR transfected cells (Ali ef al., 1996). We observed that
PRL caused tyrosine phosphorylation of Shp2 when added
to unstimulated W53 cells. This PRL action was mediated by
SFKs as it was blocked by PP1 (Figure 3D).

To analyze the involvement of SFKs in Jak2-mediated
effects on PRLR activation, PRL-stimulated W53 cells were
treated with PP1, a selective SFK inhibitor. As shown in
Figure 4A, no effect was observed on Jak2 autophosphory-
lation, which has been described as one of the earliest intra-
cellular events after PRLR activation (Bole-Feysot ef al.,
1998). Moreover, PRLR tyrosine phosphorylation was not
inhibited by PP1 treatment (Figure 4B), an event reported to
be mediated by Jak2 activity (Lebrun et al., 1994; Fresno Vara
et al., 2000). Finally, we evaluated tyrosine phosphorylation
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of Stat5 by Jak2 after recruitment by phosphotyrosine resi-
dues of the intracellular domain of PRLR (Gouilleux et al.,
1994; DaSilva et al., 1996). As shown in Figure 4C, PRL-
induced tyrosine phosphorylation of Stat5 in W53 cells was
not modified by addition of PP1. Herbimycin A was also
unable to inhibit Jak2-dependent phosphorylation of Stat5
(Fresno Vara, Céceres, Silva, and Martin-Pérez, unpublished
results). Therefore, we conclude that the Jak2/PRLR/Stat5
pathway is independent of PRL stimulation of Fyn and Lyn
in W53 cells.

To define more precisely the role of these kinases on cell
cycle progression, BrdU pulse-label experiments on W53
cells with or without 10 uM PP1 were carried out. PRL-
stimulated cells, pulse-labeled during S-phase, progressed
through G2-, M-, and Gl-phases. Therefore, 24 h after the
BrdU pulse, a homogeneous distribution of the labeled cell
population was observed in each of the three cell cycle
compartments G1, S and G2+M in DMSO-treated cells (Fig-
ure 5A). In contrast, addition of 10 uM PP1 to the cultures
caused accumulation of cells in the G1-phase (Figure 5B). It
should be noted that no signs of apoptotic cells were de-
tected during the course of these experiments. These results
indicate that SFKs were required for the G1/S transition of
PRL-stimulated W53 cells.

Induction of cell proliferation by growth factors and cy-
tokines is associated with transcriptional stimulation of
growth related genes such as c-fos, c-jun, c-myc, etc., which
are required for G1/S transition (Karin et al., 1997), and we
have previously shown in rat liver hepatocytes that PRL
induces c-fos and c-jun expression (Berlanga et al., 1995).
Therefore we studied the role of SFKs on PRL-mediated
induction of these genes by analyzing the effect of PP1 and
PP2 on their expression by Northern blot. PRL stimulation of
W53 cells induced the expression of c-fos, c-jun, c-myc and
odc, a c-myc-dependent cell growth-related gene (Bello-Fer-
nandez ef al., 1993), at later times (Figure 6, Control). The
c-fos and c-jun expression was transient, reaching maximal
expression 0.5 h poststimulation and was no longer detected
after 3 h. Interestingly, a second peak of c-jun was observed
after 9 h of PRL stimulation. In contrast, c-myc expression
increased up to 1 h poststimulation, was maintained for at
least 6 h and diminished by 9 h poststimulation. Finally, odc
expression was observed 3 h after PRL stimulation and
reached a plateau between 6 and 9 h poststimulation. Inhi-
bition of SFKs activities by PP1 caused a strong decrease in
the levels of all these growth-related genes, although it did
not alter their temporal pattern of expression (Figure 6, PP1).
Similar amounts of total RNA were loaded for each sample
as it is shown by membrane staining with methylene blue
(Figure 6, lower panel). These results are in agreement with
the requirement of SFKs for PRL-induced cell proliferation,
although it is surprising the inhibitory effect of PP1 on all
these genes. However, a general inhibitory effect of PP1 on
PRL-induced gene transcription was excluded because PP1
did not inhibit the bcl-2 increase induced by PRL. The same
effect on the expression of these genes was observed with
PP2 (Fresno Vara, Céceres, Silva, and Martin-Pérez, unpub-
lished results).

PP1 caused accumulation of cells in the Gl-phase and a
significant decrease in the PRL induction of c-fos. Expression
of c-fos is mediated by the Mapk pathway (Karin et al., 1997),
and previous data have shown that PRL induces Erk1/2
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Figure 3. Effect of selective SFK inhibitors on PRL
induction of W53 proliferation. (A) W53 cells expo-
nentially growing in RPMI-10% FCS and 6 ng/ml
PRL were cultured for 24 h in the presence of in-
creasing concentrations of PP1, herbimycin A, or
DMSO (as a control) and then pulsed with [*H]thy-
midine, and the incorporation of radioactivity into
DNA was quantitated as described in MATERIALS
AND METHODS. (B) W53 serum-starved cells were
incubated with 10 uM PP1 or DMSO (as a control)
for 2 h before PRL stimulation (100 ng/ml) for the
indicated times. Cell extract protein (20 ug) was
subjected to SDS-7% PAGE and the activation of
SFKs was measured by Western blot with the use of
anti-phospho-specific ¢-Src-PY418 polyclonal anti-
body. The doublet (labeled with arrows) represents
pEyn (pp59) plus pLyn (pp53 + pp56). Samé8 (C) or
Shp2 (D) were immunoprecipitated from cell ex-
tracts (0.5 mg of protein). Inmunoprecipitates were
subjected to SDS-7% PAGE and Western blot analy-
sis with anti-phosphotyrosine mAb 4G10 (top). As a
loading control, membranes were stripped and re-
probed with anti-a-tubulin, anti-Samé8, or anti-Shp2
antibodies, respectively (bottom), as described in
MATERIALS AND METHODS.

Molecular Biology of the Cell
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Figure 4. PRL-induced activation of Jak2, PRLR, and Stat5. W53
serum-starved cells were incubated with 10 uM PP1 or DMSO for
2 h before stimulation with 100 ng/ml PRL for 10 min. Cell extracts
were prepared and Jak2 (A), the PRLR (B), and Stat5 (C) were
immunoprecipitated with their specific antibodies from 0.5 mg of
protein. Immunoprecipitates were subjected to SDS-7% PAGE and
Western blot analysis with anti-phosphotyrosine mAb 4G10 (top).
As a loading control, membranes were stripped and reprobed with
the corresponding specific antibody (bottom), as described in MA-
TERIALS AND METHODS.

activation (Piccoletti et al., 1994). Here, we observed that
Mek1/2 and Erk1/2 (p42/p44), members of Mapk signaling
cascade, were stimulated in W53 cells upon PRL stimulation
(Figure 7); a little effect was observed in Jnk-activation,
whereas no stimulation was detected in p38 (Fresno Vara,
Céceres, Silva, and Martin-Pérez, unpublished results).
Phosphorylation/activation of Mek1/2 and Erk1/2 by PRL
is SFKs-independent because its inhibition did not alter this
kinase cascade.

Activation of PI3K by growth factors and cytokines takes
a central stage in cell signaling (Leevers et al., 1999) and
could be mediated by SFK (Pleiman et al., 1994). Because
PRL activates both SFKs (Fresno Vara et al., 2000) and PI3K
(Al-Sakkaf et al., 1997; Berlanga et al., 1997), we determined
whether the PRL mitogenic activity required PI3K activity in
W53 cells. The PI3K-selective inhibitor LY-294002 blocked
[*H]thymidine incorporation in PRL-stimulated W53 cells
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Figure 5. Role of SFKs in W53 cell cycle progression. W53 cells were
pretreated with 10 uM PP1 (B) or DMSO (A, as a control) for 2 h in the
presence of PRL (6 ng/ml) and labeled for the last 30 min with BrdU.
Cultures were then washed to eliminate BrdU and stimulated with
PRL (6 ng/ml) in the presence of 10 uM PP1 or DMSO. Aliquots of cells
were collected and fixed at the indicated times, labeled with FITC-anti-
BrdU and PI and then analyzed by flow cytometry as described in
MATERIALS AND METHODS. The results are expressed as percent-
ages of BrdU-labeled cells in the three cell cycle compartments, G1, S,
and G2+M, as defined by the PI label. This is one representative
experiment of four independent experiments.

(Figure 8A). It has been established that PI3K mediates
activation of Akt and p70S6k via the Pdks (Brennan et al.,
1999; Paradis ef al., 1999). So, we next assessed the ability of
PRL to stimulate these kinases and the role of SFKs in this
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Figure 6. Effect of the SFK inhibition on PRL-induced expression
of growth-related IEGs. W53 serum-starved cultures were pre-
treated with PP1 or DMSO (as a control) for 2 h and then stimulated
with PRL, aliquots of cells were collected at the indicated times,
total RNA was extracted, and the expression of c-fos, c-jun, c-myc,
odc, and bcl2 was analyzed by Northern blot as described in MA-
TERIALS AND METHODS. As a loading control the rRNAs were
visualized by methylene blue staining (bottom).
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Figure 7. PRL stimulation of Mapk was independent of SFKs. W53
serum-starved cells were incubated with 10 uM PP1 or DMSO for
2 h before stimulation with 100 ng/ml PRL for 10 min. Cell extract
protein (20 ug) was subjected to SDS-9% PAGE and the activation of
Mekl1 and Erk1/2 was measured by Western blot with the use of
anti-phospho-specific antibodies (top). Membranes were stripped
and reprobed with the corresponding specific antibody for loading
controls (bottom), as described in MATERIALS AND METHODS.

signaling pathway. As observed in Figure 8B, addition of
PRL to W53 cells activated both p70S6k and Akt. While Akt
phosphorylation was rapidly stimulated, within 5 min of the
cytokine addition, the activation of the p70S6k occurred at
much later times. Treatment of cells with PP1 blocked PRL
stimulation of both p70S6k and Akt (Figure 8B), indicating
that the PRL activation of this PI3K-regulated pathway is, at
least in part, modulated by SFKs. Consistent with these
observations, inhibition of SFKs with herbimycin A also
blocked PRL activation of both p70S6k and Akt (Fresno
Vara, Céceres, Silva, and Martin-Pérez, unpublished re-
sults). To reinforce the evidences that SFKs control PRL-
mediated activation of the PI3K pathway, W53 cells were
transiently cotransfected with Akt HA-tagged and either
pCI-neo or pCl-neo-SrcDM, and 40 h later cells were stim-
ulated with PRL (100 ng/ml) for 1h. The transfected Akt-HA
was recovered by immunoprecipitation with the anti-HA
mAb 12CA5 and its phosphorylation was determined by
Western blotting with anti-pAkt. As expected, after 1 h of
PRL stimulation, Akt was phosphorylated, however coex-
pression of SrcDM blocked PRL stimulation/phosphoryla-
tion of Akt (Figure 8C), demonstrating that the SFKs are
directly involved in PRL mediation of Akt activation.

DISCUSSION

Biochemical evidences suggest that Src kinases are essential
components of the growth factor/cytokines receptor signal-
ing (Taniguchi, 1995; Thomas and Brugge, 1997; Corey and

Molecular Biology of the Cell



Figure 8. PRL-stimulated W53 cell proliferation re-
quired PI3K-dependent pathways. (A) W53 cells ex-
ponentially growing in RPMI-10% FCS and 6 ng/ml
PRL were cultured for 24 h in the presence of in-
creasing concentrations of LY294002 or DMSO (as a
control) and then pulsed with [*H]thymidine. The
incorporation of radioactivity into the newly synthe-
sized DNA was quantitated. The results represent
the averages * SD of three independent experiments
carried out in triplicate. (B) W53 serum-starved cells
were incubated with 10 uM PP1 or DMSO for 2 h
before addition of PRL (100 ng/ml) for the indicated
times. Cell extract protein (20 ug) was subjected to
SDS-7% PAGE and the activation of p70S6k and Akt
was measured by Western blot with the use of anti-
phospho-specific antibodies (top). The stripped
membranes reprobed with the corresponding spe-
cific antibody for loading controls are shown at the
bottom. (C) W53 cells were transiently transfected
with Akt-HA alone or with SrcDM, 24 h later cells
were made quiescent in 1% horse serum without
PRL for 16 h, and then stimulated with 100 ng/ml
for 1 h. Akt-HA was immunoprecipitated with an-
ti-HA mAb 12CA5 and the phosphorylated Akt-HA
was detected by Western blot with anti-pAkt. The
membrane was later reblotted with anti-HA Y11
polyclonal antibody for control of Akt-HA expres-
sion. In parallel, SrcDM expression was determined
by Western blot with 327 mAb.
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Anderson, 1999). Because PRL stimulation of SFKs occurs
independently of Jak2 (Fresno Vara et al., 2000), we explored
the signaling pathways activated by PRL in which SFKs
could be implicated. For this purpose we used dominant
negative mutants of Src and SFK-selective inhibitors of dif-
ferent natures, such as the pyrazolopyridine derivatives PP1

Vol. 12, July 2001

and PP2 (Hanke et al., 1996; Liu et al., 1999; Schindler et al.,
1999) or the ansamycin antibiotic herbimycin A (Schlaepfer
et al., 1998; Abe et al., 2000; Bosco et al., 2000; Lang]lais ef al.,
2000). We found that SFK was required for PRL-induced
proliferation, because the transient expression of PRLR with
SrcK—, Csk, or SrcDM inhibited [*H]thymidine incorpora-
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tion, in BaF-3 cells. SrcK— and Csk partially blocked PRL-
induced cell growth, and the SrcDM caused the strongest
inhibition. SrcK— contains the mutation K>M295 at the
ATP-binding site, whereas Csk phosphorylates a tyrosine
residue at the C terminus of SFKs, which facilitates an inac-
tive enzyme conformation (Brown and Cooper, 1996). The
SrcDM is a dominant negative form of c-Src, combining both
the mutation at the ATP-binding site (K>A295) and at the
Csk tyrosine phosphorylation site (Y>F527) (Mukho-
padhyay et al., 1995). The greater inhibitory effect of SrcDM
could be explained by the fact that, in addition to being a
kinase-dead mutant, it also has an open conformation that
exposes its SH2 and SH3 domains (Pawson, 1997), which
suggests that they could be implicated in the modulation of
SFK functions. The relevance of the Src molecule as an
adaptor protein has been previously described; in transgenic
mice, expression of chicken SrcK— could rescue osteoclast
functions in src—/ — mice and complement adhesion defects
in src—/— mouse fibroblasts (Kaplan et al., 1995;
Schwartzberg et al., 1997). Several members of SFK, Fyn, Blk,
and Lyn are expressed in both BaF-3 and W53 cells. Notice-
ably, the levels of Fyn are slightly higher in W53 than in
BaF-3 cells. However, PRL induces activation of only Fyn
and Lyn. Although c-Src is not detected in W53 cells, SrcDM
inhibits PRL-induced cell proliferation. Perhaps, the high
degree of structural homology among the SFK members and
their functional redundancy (Lowell and Soriano, 1996;
Thomas and Brugge, 1997) could explain the effects of the
chicken C-Src mutants, SrcK— and SrcDM, in W53 cells.

We also investigated the role of Jak2 in PRL signaling.
Coexpression of Jak2AK with the receptor blocked PRL in-
duction of [*H]thymidine incorporation to the same extent
as SrcDM. This result is in agreement with those indicating
that Jak2 is required for PRL induction of cell proliferation
(DaSilva et al., 1994; Lebrun et al., 1995; Parganas et al., 1998).

Consistent with the above described findings, the SFK-
selective inhibitors PP1/PP2 and herbimycin A inhibited
PRL-induced cell growth. In fact, PP1 caused cell cycle arrest
and accumulation in G1, suggesting that SFKs are required
by PRL-stimulated W53 cells for G1/S transition, as it has
been previously shown for some growth factors in fibro-
blasts (Twamley et al., 1993; Barone and Courtneidge, 1995;
Roche et al., 1995). These data together with those obtained
with CSK, SrcK—, and SrcDM substantiate the requirement
of SFKs for PRL induction of cell proliferation.

Cytokines and growth factors activate signal transduction
cascades leading to the induction of a large number of IEGs,
which in turn initiate processes driving cells to DNA syn-
thesis and mitosis. Because SFK inhibition altered the nor-
mal G1/S transition, we analyzed the role of SFKs on IEGs
expression induced by PRL. We found that inhibition of
SFKs resulted in a strong decrease in the levels of c-fos, c-jun,
and c-myc and of the delayed c-myc-responsive gene odc but
did not alter their temporal expression pattern. However,
this inhibitory effect seems specific for cell cycle-related
genes because no changes were observed in cell cycle-unre-
lated genes, such as bcl2.

It has been proposed that, after activation of PDGF-recep-
tor in fibroblasts, c-myc expression is dependent on SFK,
whereas c-fos transcription relies on the Ras/Mapk pathway
(Barone and Courtneidge, 1995). Indeed, the c-fos promoter
contains responsive elements activated by Ras/Mapk and
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Jak/Stat pathways (Rajotte et al., 1996; Karin et al., 1997). It is
also well established that PRL also activates the Jak/Stat
pathways (Bole-Feysot et al., 1998). Here we observed that
PRL-induced phosphorylation of the PRLR and activation of
Mek1/2, Erk1/2, and Jak2/Stat5 was independent of SFKs.
Therefore, we conclude that inhibition of cell proliferation
by SrcDM or by SFK inhibitors was concomitant with the
blockage of IEGs c-fos, c-jun, and c-myc expression, indepen-
dently of PRL-mediated activation of the Jak/Stat, Ras/
Mapk pathways. Whether these two pathways are intercon-
nected in this model system remains to be determined. In
293 cells expressing growth hormone receptors, Jak2 was
involved in the activation of the Erk1/2- and Stat-signaling
pathways by growth hormone (Winston and Hunter, 1995).

The phosphorylation/activation of Shp2 upon PRL stim-
ulation of W53 cells was mediated, at least in part, by SFKs,
considering its inhibition by PP1. However, in 293 PRLR-
transfected cells, PRL stimulation of Shp2 phosphorylation
seems to be mediated by Jak2, because a mutant PRLR
unable to stimulate this tyrosine kinase fails to transmit
signals for Shp2 activation (Ali et al., 1996). Both results are
not necessarily contradictory, because activation/phosphor-
ylation of Shp2 may require Jak2 and SFKs. The inhibition of
Shp2 tyrosine phosphorylation by PP1 was concomitant
with a slight increase in the tyrosine phosphorylation of
Jak2, PRLR, and Stat5, suggesting that Shp2 could negatively
regulate the phosphorylation of PRLR/Jak2/Stat5. In this
context, it has been recently shown that mutation of a ty-
rosine residue of the growth hormone receptor, which pre-
vents binding of Shp2 to the receptor, prolongs growth
hormone receptor /Jak2/Stat5b phosphorylation induced
by growth hormone (Stofega et al., 2000).

PRL induction of W53 proliferation required PI3K activ-
ity, as demonstrated by its blocking effect by LY-294002.
Moreover, transient expression of SrcDM as well as the SFK
inhibitors PP1 and herbimycin A blocked PRL stimulation of
PI3K-mediated pathways leading to activation of Akt and
p70S6k. The IL-3 activation of PI3K has been linked to Shp2
(Welham ef al., 1994; Craddock and Welham, 1997; Gadina et
al., 1998; Gu et al., 2000). Shp2 has been described as an
adaptor protein mediating interaction between the cytokine
receptors and the PI3K/Akt pathway via Shp2/Grb2/Gab2
(Gu et al., 2000). Shp2 also has been found associated with
Grb2-Sos, leading to activation of the Ras/Mapk pathway
(Li et al., 1994; Pazdrak et al., 1997; Gadina et al., 1998). In
W53 cells, inhibition of PRL induction of Shp2 tyrosine
phosphorylation by PP1 did not modify the PRL activation
of either Mek1/2-Erk1/2 or Jak2/Stat5 pathways but paral-
leled inhibition of the PI3K/Akt as well as cell proliferation.
Together, these data suggest that Shp2 could mediate a
variety of signaling pathways, depending on the cellular
context and the specific stimulatory cytokine. Whether Shp2
mediated SFK activation of the PI3K pathways in PRL-
stimulated W53 remains to be determined.

The efficacy of PP1 on the SFKs was shown by its inhibi-
tory effect on the PRL-stimulated tyrosine autophosphory-
lation of Fyn and Lyn activation loops. This inhibition was
also observed with herbimycin A (Fresno Vara, Caceres,
Silva, and Martin-Pérez, unpublished results). Consistently,
the phosphorylation of Sam68, initially described as an SFK
mitotic substrate (Fumagalli ef al., 1994) and also associated
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Figure 9. Role of SFKs in the control of PRL
induction of W53 cell proliferation. Our
model places Src kinases associated with
PRLR and activated by PRL induction of
PRLR dimerization. The SFKs control stimu-
lation of the PI3K-dependent p70S6k and Akt,
which in turn should provide signals leading
to G1/S-phase progression. Our results show
that PRL activation of Jak2/Stat and Ras/
Mapk pathways is independent of SFK-stim-
ulated signals.

with G1/S transition in lymphocytes (Barlat et al., 1997), was
abolished by treatment with PP1.

It has been reported that c-Abl and p38 are both sensitive
to PP1 in vitro (Liu et al., 1999). We therefore analyzed the
stimulation/phosphorylation of p38 and c-Abl by PRL in
W53 cells but were unable to detect their activation (Fresno
Vara, Céceres, Silva, and Martin-Pérez, unpublished re-
sults), indicating that the effects of PP1 in W53 cells are
mediated by the inhibition of Src kinases.

Jak2 activation by PRL seems to be required for most
cytokine responses (Lebrun ef al., 1994; Goupille et al.,
1997; Pezet et al., 1997). However, PRL can independently
stimulate Src kinases, as observed with a PRLR mutant
unable to bind Jak2 but capable of activating c-Src (Fresno
Vara et al., 2000), and the findings described here support
this conclusion. Our data also demonstrate that Src ki-
nases control PRL-mediated activation of Shp2 and the
PI3K pathway in W53 cells, which are also implicated in
modulating the expression of cell cycle-regulating genes. Our
results, together with those obtained by others (Brennan et al.,
1999; Dufner et al., 1999; Gu et al., 2000), allows us to
implicate SFKs in PRL-induced proliferation of W53 cells
(Figure 9). Future experiments with the use of inducible
expression of SrcDM and dominant negative forms of the
PI3K subunits and Akt will help to clearly define the
SFK-signaling pathways. In addition, expression different
mutant forms of the PRLR, in tyrosine residues, and in
box I, as well as inducible expression of Jak2 inactive
forms, will help us to further determine the role of the
SFKs and Jak2 on PRL signaling.
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