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Cognitive fatigue in individuals with 
traumatic brain injury is associated 
with caudate activation
G. R. Wylie1,2,3, E. Dobryakova1,2, J. DeLuca1,2,4, N. Chiaravalloti1,2, K. Essad5 & H. Genova1,2

We investigated differences in brain activation associated with cognitive fatigue between persons 
with traumatic brain injury (TBI) and healthy controls (HCs). Twenty-two participants with moderate-
severe TBI and 20 HCs performed four blocks of a difficult working memory task and four blocks of a 
control task during fMRI imaging. Cognitive fatigue, assessed before and after each block, was used as a 
covariate to assess fatigue-related brain activation. The TBI group reported more fatigue than the HCs, 
though their performance was comparable. Regarding brain activation, the TBI group showed a Task X 
Fatigue interaction in the caudate tail resulting from a positive correlation between fatigue and brain 
activation for the difficult task and a negative relationship for the control task. The HC group showed 
the same Task X Fatigue interaction in the caudate head. Because we had prior hypotheses about 
the caudate, we performed a confirmatory analysis of a separate dataset in which the same subjects 
performed a processing speed task. A relationship between Fatigue and brain activation was evident 
in the caudate for this task as well. These results underscore the importance of the caudate nucleus in 
relation to cognitive fatigue.

Traumatic Brain Injury (TBI) is one of the most prevalent causes of neurological insult in the US, with over 1.7 
million cases reported annually1, and it is a growing problem in other countries2. The effects of TBI on cognition 
are profound and diverse: TBI has been shown to affect working memory (the ability to hold information ‘in mind’ 
for short periods of time, and also to manipulate that information) e.g., refs 3–5, processing speed e.g. refs 6 and 7,  
neural efficiency4, 5 and cognitive fatigue e.g. refs 8–11. In the work presented here, we focused on cognitive 
fatigue, or the fatigue that results from performing cognitive tasks.

Cognitive fatigue can be defined as a subjective lack of mental energy that is perceived by the individual (or 
caregiver) to interfere with usual and desired activities12. It has been known for over a century that individuals 
who have sustained neurological damage frequently report cognitive fatigue13, yet a comprehensive and accurate 
model for studying fatigue remains elusive. This difficulty stems, at least in part, from the lack of consistent cor-
relation between objective measures of fatigue such as response time (RT), error rate (ER) or even brain lesions14 
and subjective reports of fatigue13. That is, although subjects’ experience of fatigue may increase as a cognitive task 
is repeatedly performed, performance is not usually affected.

The inability to relate behavioral decrements to self-reported cognitive fatigue led us to investigate other 
dependent measures that may correlate better with fatigue: specifically, the BOLD signal associated with changes 
in neural activation8. While others have investigated the relationship between fatigue and white matter integrity15, 
we chose fMRI on the hypothesis that increased BOLD activation represented an increase in the cognitive work 
that individuals with TBI must expend in order to perform a given task16. In that work8, we showed that individ-
uals with TBI recruit the fronto-striatal network more during performance of a demanding cognitive task com-
pared to healthy participants, including ventromedial prefrontal cortex (VMPFC), parietal areas, and the basal 
ganglia. This network has been previously shown to be involved in cognitive fatigue16–19.
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Additionally, cognitive fatigue research has been limited due to the fact that historically, investigators have 
assessed subjective fatigue using scales which assess “trait” fatigue, rather than “state” fatigue. For example, one 
frequently used fatigue questionnaire is the Fatigue Severity Scale (FSS), which asks participants to rate their 
fatigue over the past week. Thus, the FSS is a measure of trait fatigue, or the extent to which subjects are prone to 
experiencing fatigue over an extended period of time. Recently, the literature on fatigue has begun to distinguish 
between state and trait fatigue19–21. The assessment of state fatigue, or the extent to which subjects are experienc-
ing fatigue at the instant of assessment, may more consistently correlate with behavior inasmuch as it is measured 
at the same time the behavior is measured. Thus, in the current study, we used the Visual Analog Scale of Fatigue 
(VAS-F), which asks subjects to rate the amount of fatigue they experience at the time of behavioral performance.

In previous work, we have shown that the caudate nucleus of the basal ganglia shows a different pattern of 
activation over time in individuals with TBI relative to HCs8. This result accorded well with a model of fatigue 
proposed by Chauduri & Behan17 in which the basal ganglia played a key role in the experience of fatigue; how-
ever, Kohl et al.8 did not assess subjects’ instantaneous (state) experience of fatigue, but rather inferred the pres-
ence of fatigue based on the pattern of brain activation over time. The current study therefore represents the first 
investigation of state fatigue in individuals with moderate-severe TBI. Furthermore, we specifically investigated 
the role of the caudate nucleus in fatigue by investigating whether the caudate modulates its activity in direct 
proportion to subjects’ instantaneous (state) experience of fatigue19. Indeed, while the caudate nucleus, and the 
striatum as a whole, have been previously considered to be responsible purely for the control of motor behav-
ior22, recent evidence from animal and human research demonstrates that this region plays a significant role in 
a variety of cognitive behaviors, such as learning23–25, outcome processing26, 27, and working memory28, 29. More 
recent evidence suggests that the fatigue resulting from such cognitive processes may also be reflected in caudate 
nucleus activation30. This is particularly likely in the TBI population given the nature of brain injury sustained by 
most individuals with TBI: damage to the prefrontal cortex that sends afferent connections to the basal ganglia 
and interruption of dopamine transmission in the basal ganglia after TBI31. Indeed, cognitive fatigue has been 
associated with a network of areas in the striatum and PFC including vmPFC, nucleus accumbens and anterior 
cingulate cortex (ACC) in children who have sustained a TBI32.

In the current study, we investigated the role of the caudate nucleus in fatigue by asking subjects to per-
form a working memory task (the N-Back task), since working memory is known to be compromised in TBI. 
Secondly, we included both a difficult task (the 2-back condition) and a less difficult task (the 0-back condition). 
We hypothesized that the TBI group would show more fatigue-related activation for both the 0-back task and for 
the 2-back task than the healthy control (HC) group, and that this would be associated with basal ganglia activa-
tion17. We then performed a second experiment using a processing speed task to confirm that the activation in the 
caudate was related to fatigue rather than to the task.

Experiment 1
Methods.  Participants.  Twenty-two right-handed participants with moderate to severe TBI (mean 
age = 41.4 ± 13.2 (standard deviation [S.D.]) years; education = 14.6 ± 1.9 (S.D.) years; mean time since 
injury = 79.5 ± 51.0 (S.D.) months) and 20 healthy control participants (age = 37.7 ± 10.9 (S.D.) years; educa-
tion = 15.3 ± 1.8 (S.D.) years) participated in the study. The majority of the individuals in the TBI group had 
sustained their injury as a result of a motor-vehicle accident (59%), followed by falls (32%), followed by assault 
(9%). The groups did not differ in age or education. The groups were marginally different in terms of gender (14 
men in the TBI group, 8 men in the HC group; χ2 (1) = 3.6, p = 0.057). While this was not a robust difference, 
we nevertheless included gender as a covariate in all analyses. Twenty of the 22 participants in the TBI group had 
sustained a moderate-to-severe TBI, defined as the lowest Glasgow Coma Scale (GCS) rating in the first 24 hours 
following injury being below 1333. When a GCS score was not available, subjects were included only when there 
was sufficient medical documentation that allowed for a post-hoc estimation of initial GCS, or if other confirm-
atory data (e.g., positive anatomic neuroimaging findings, focal neurologic signs) were available. Two subjects 
in the TBI group were included who were considered to have had complicated mild TBIs. One participant had a 
GCS of 15, but had sustained a subarachnoid hemorrhage at the time of the accident. The other had a GCS of 14, 
but had sustained a subdural hematoma, intra-parenchymal hemorrhage, and had cerebral edema as a result of 
the accident. Because the results did not change when the data from these participants was excluded, their data 
were retained in the sample.

For both the TBI and HC groups, subjects were: 1) free of a history of prior neurological insult or disease 
(other than TBI for the TBI group) (e.g., stroke, seizures, or brain tumor); 2) free from significant psychiatric 
history (such as schizophrenia or bipolar disorder) due to the potential influence of such disorders on cognitive 
functioning (assessed by self-report corroborated by medical records when available); 3) right handed due to 
the effect of mixed hand dominance on cerebral organization; 4) free of alcohol or drug abuse history. Subjects 
currently taking benzodiazepines, neuroleptics, or psycho-stimulants were excluded due to the potential effects of 
these medications on cognition and the hemodynamic response. For all study participants, additional exclusion-
ary criteria associated with MRI (ferrous metal in the body) were discussed and strictly enforced.

All subjects participated in two scanning sessions which, for expository purposes, we will refer to as 
Experiment 1 and 2. In one session, subjects performed the N-Back working memory task (see below for details) 
and in the other they performed the modified symbol-digit modalities task (SDMT; see Experiment 2). The order 
in which subjects performed these tasks was counterbalanced (see Fig. 1).

The Institutional Review Boards of Kessler Foundation and Rutgers University Medical School approved the 
study (which included Experiments 1 and 2), and the study was performed in accordance with the relevant guide-
lines and regulations. Informed consent was obtained from all subjects.
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Scan session 1.  A 3-Tesla Siemens Allegra scanner was used to acquire all neuroimaging data. Behavioral data 
acquisition, randomization and stimulus presentation was administered using the E-Prime software34. The 
N-Back paradigm was presented in the scanner in counterbalanced order across participants in an event-related 
design. A T2*-weighted pulse sequence was used to collect functional images in 32 contiguous slices during eight 
blocks (four at each of two difficulty levels), resulting in 140 acquisitions per block (echo time = 30 ms; repeti-
tion time = 2000 ms; field of view = 22 cm; flip angle = 80°; slice thickness = 4 mm, matrix = 64 × 64, in-plane 
resolution = 3.438 mm2). A high-resolution magnetization prepared rapid gradient echo (MPRAGE) image was 
also acquired (TE = 4.38 ms; TR = 2000 ms, FOV = 220 mm; flip angle = 8°; slice thickness = 1 mm, NEX = 1, 
matrix = 256 × 256, in-plane resolution = 0.859 × 0.859 mm), and was used to normalize the functional data 
into standard space. A fluid attenuation inversion recovery (FLAIR) image was acquired to assess lesion load 
(TE = 81 ms; TR = 8530 ms; FOV = 256 × 320 mm; flip angle = 180°; slice thickness = 4 mm; matrix = 320 × 154; 
in-plane resolution = 0.688 × 0.688 mm).

Behavioral paradigm.  All participants completed a series of practice trials before scanning, exposing them to 
the two difficulty levels of the N-Back task. During the fMRI scan, participants were presented with the N-Back 
working memory task in which task difficulty was varied by presenting the 0-back condition, which places a rel-
atively low load on working memory, and the 2-back condition, which places a higher load on working memory. 
There were 4 blocks of each level of the N-Back task (8 blocks total), with 65 trials per block (16 of which were 
targets). The 4 blocks of each task were always presented together (that is, the two tasks were not interleaved), and 

Figure 1.  A flow diagram of the experimental design. Thirty-six individuals with TBI and 33 HCs were 
enrolled. After exclusions were applied (e.g., MRI incompatibility, psychiatric history, claustrophobia), 
the sample was reduced to 32 individuals with TBI and 31 HCs. Subjects then participated in a day of 
neuropsychological (NP) testing. Three subjects did not complete the NP test battery (1 TBI, 2 HC), and 
because the focus of the current study was on functional neuroimaging, these subjects were retained in the 
sample. Subjects were then randomized into two groups. One group performed the N-Back test while in the 
fMRI scanner on Day 2 and the SDMT task in the scanner on Day 3. For the other group, the order of N-Back 
and SDMT tasks was reversed. There was some attrition during this three-day experiment, resulting in a final 
sample of 31 individuals with TBI and 28 HCs. After applying data quality control (e.g., excluding subjects with 
excessive motion) and matching the two groups on Age and Education, the final sample was 22 individuals with 
TBI and 20 HCs.
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the order of presentation (0-back first vs. 2-back first) was counterbalanced across subjects. During the 0-back 
task, participants were asked to respond each time the target letter “K” was presented on the screen, while during 
the 2-back task, participants were asked to respond when the target letter corresponded to the letter presented 
two trials before. In all cases, the letter stimuli remained on the screen for 1.5 sec. and there was an inter-trial 
interval of 500 ms.

Visual Analog Scale of Fatigue.  To evaluate the level of on-task ‘state’ fatigue, participants were presented with 
a visual analogue scale of fatigue before and after each block of the N-Back task. Participants were asked: “How 
mentally fatigued are you?” and were asked to indicate their level of fatigue on a scale form 0 to 100, with 0 being 
not fatigued at all and 100 being extremely fatigued. The visual analogue scale (VAS) has historically been used as 
a tool for capturing subjective ratings of sensations and feelings or moods. The VAS has been studied with vari-
ous clinical populations and has demonstrated moderate to high validity and reliability35. Previous fMRI studies 
have utilized the VAS to assess energy and fatigue levels12, 19, perceived pain36, and changes in mood or emotional 
intensity19. Lee et al. developed the VAS-F, a visual analogue scale for capturing fatigue severity that consisted of 
fatigue and energy subscales37. In order to mask the purpose of the study, five additional VASs were administered 
as well, in randomized order. These assessed happiness, sadness, pain, tension and anger.

Questionnaires.  After the completion of the fMRI procedure, participants filled out the Fatigue Severity Scale 
(FSS), Modified Fatigue Impact Scale (MFSI) and Chicago Multiscale Depression Inventory (CMDI). These ques-
tionnaires provided a measure of trait fatigue and depression.

Data analysis.  Behavioral data.  The response time (RT) and accuracy data were each analyzed with linear 
mixed effects models using the R statistical analysis package (version 1.0.136). The between-subjects factor was 
Group (TBI vs. HC) and the within-subjects factors were Task (0-back vs. 2-back) and Block (block 1–4 of each 
task; this was included to account for any order effects, because the four blocks of each task were run sequen-
tially). Three covariates were also included: fatigue, gender and lesion load (see below). The fatigue score used for 
each block was the average of the VAS-F score reported before and after each block. Because the VAS-F scores 
differed between the groups, the scores were centered separately for each group prior to analysis. The behavioral 
data from eight HCs and two individuals with TBI was lost due to equipment failure during scanning (their neu-
roimaging data is included in the neuroimaging analyses).

The ratings from the visual analog scale of fatigue (VAS-F) were analyzed with a 2 × 4 × 2 mixed, between- 
and within- subjects ACNOVA, with gender as a covariate. The within-subjects factors were Task (0-back vs. 
2-back), and Block (block 1, block 2, block 3, block 4). The between-subjects factor was Group (TBI vs. HC).

fMRI data.  For each of four fMRI blocks, the first 5 images were discarded to ensure steady state magnet-
ization. All images were preprocessed using Analysis of Functional NeuroImages (AFNI)38. The realignment, 
co-registration and normalization were done in a single transform. This was accomplished by calculating and 
saving the parameters necessary for realignment using 3dvolreg (i.e., the spatial co-registration of all images 
in each time-series to the first image of the series). Next, the parameters necessary to co-register the first image 
in each time-series with the high resolution MPRAGE were calculated and saved (using 3dAllineate). Third, 
the MPRAGE image (1 × 1 × 1 mm voxels) was warped into standard Talairach space using a non-linear warp-
ing algorithm (3dQwarp), and the warping parameters were saved. Finally, the transforms necessary to realign, 
co-register and warp the data into standard space were combined and applied to the functional time-series data 
in a single transformation. The images were then smoothed using an 8 × 8 × 8 mm Gaussian smoothing kernel 
(using 3dBlurToFWHM), and scaled to the mean intensity (using 3dcalc). Each of the four blocks of each task 
(0-back and 2-back) were then deconvolved separately (using 3dDeconvolve). Motion parameters and two poly-
nomial regressors (to model signal drift) were included as regressors of no interest.

Subject motion: Because it has been shown that clinical populations tend to move more in the MRI scanner 
than HCs39, we analyzed the motion parameters with two between- and within-subjects ANOVAs: one for trans-
lational motion and one for rotational motion. For the analysis of translational motion, the between-subjects 
factor was Group (TBI vs. HC) and the within-subjects factors were Task (0-back vs. 2-back), Run (Run 1–4), and 
Movement (displacements in the superior/inferior direction, the left/right direction, and the anterior/posterior 
direction). For the analysis of rotational motion, the factors were the same, but the levels of the factor Movement 
were roll, pitch and yaw. Both analyses showed a significant effect of Group (translation: F(1,39) = 4.34, p < 0.05; 
rotation: F(1,39) = 4.95, p < 0.05), and in both cases, this was because the TBI group moved more than the HC 
group (translation: 0.46 mm for TBIs vs. 0.25 mm for HCs; rotation: 0.45° for TBIs vs. 0.28° for HCs). Because 
subject motion translates directly into increased noise in the fMRI dataset, these results suggest that the TBI data 
were noisier than the HC data. In order to control for this, we employed the ‘data scrubbing’ technique proposed 
by Power et al.40, 41 in which a ‘framewise displacement’ (FD) is computed for each acquisition. The FD is the sum 
of the absolute values of the derivatives of the translational and rotational realignment estimates, and is used 
in two ways: it is included in the deconvolution of each subject’s data as a regressor, and it is used to censor out 
acquisitions where subjects’ motion was excessive (defined as ≥ 0.5 FD). This was done for all subjects, in both 
groups, and resulted in the removal of 1.90% of TRs in the HC group and 5.33% of TRs in the TBI group.

Lesion load: Because our sample was moderate/severe TBI, we assessed lesion load in all of our TBI subjects. 
This was done by manually tracing lesions evident on the FLAIR image using the Jim 6 medical image display 
package (Xinapse Systems, England). The volume of each lesion was calculated by interpolating across slices; 
these were then summed to derive total lesion load for each subject42.

The fMRI data were analyzed with the same linear mixed effects model as was used for the RT and accu-
racy data. This model included a between-subjects factor of Group (TBI vs. HC), within-subjects factors of Task 
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(0-back vs. 2-back) and Block (block 1–4 of each task), and the three covariates of fatigue, gender and lesion load. 
Two follow-up analyses were then run to investigate each group separately. For these analyses, the factors and 
covariates were the same, with the exception of Group, which was omitted. All group-level statistical maps were 
thresholded using both the alpha level and cluster size correction (extent of activation). The alpha level was set 
at p < 0.01 and the cluster size was set at 108 contiguous voxels. The results of Monte Carlo simulations showed 
that this combination resulted in a corrected alpha level of p < 0.05. Because we had a prior hypothesis about the 
involvement of the caudate, a separate Monte Carlo simulation was conducted on just the caudate. Based on this, 
clusters of at least 26 voxels within the caudate were also considered significant.

Results
Behavioral results.  For RT, as expected, there were main effects of both Group (F(1,21.1) = 4.66, p < 0.05) 
and Task (F(1,150.9) = 94.42, p < 0.0001). The effect of Group resulted from individuals in the TBI group 
responding with longer latencies (RT = 742 ms) than individuals in the HC group (RT = 665 ms). The effect of 
Task resulted from subjects responding with longer latencies when performing the 2-back task (RT = 779 ms) than 
when performing the 0-back task (RT = 643 ms). The interaction between Group and Task was not significant.

For the accuracy data, as expected, there was a main effect of Task (F(1,159.4) = 73.67, p < 0.0001). This 
resulted from subjects being significantly less accurate on the 2-back task (87.9%) compared to the 0-back task 
(96.4%). Task also interacted with Fatigue (F(1,161.0) = 8.37, p < 0.005), which was due to a stronger relationship 
between fatigue scores and accuracy during the 2-back task (coefficient = 0.0017) than between fatigue scores and 
accuracy during the 0-back task (coefficient = 0.00004). Finally, there was an interaction between Group, Task 
and Fatigue (F(1,162.9) = 4.32, p < 0.05). This resulted from the interaction between Task and Fatigue (above) 
being seen mainly in the HC group. Thus, the relationship between fatigue and accuracy for the 2-back task in the 
HC group was stronger (coefficient = 0.0013) than for the 0-back task (coefficient = 0.00008). For the TBI group, 
the relationship between fatigue and accuracy was relatively weak for both tasks (0-back coefficient = −0.00050; 
2-back coefficient = 0.00026).

VAS results.  The main effect of Group was significant (F(1,46) = 7.51, p < 0.01, η2 = 0.12), which resulted 
from the TBI group reporting greater fatigue (35.8) than the HC group (16.8). The main effect of Block was also 
significant (F(4,184) = 6.48, p < 0.001, η2 = 0.01), which resulted from subjects reporting more fatigue as the 
experiment (blocks) progressed (VAS scores = 22.9, 26.1, 26.4, 29.7, 30.7). No other main effects or interactions 
were significant.

fMRI results.  In the analysis of BOLD data, there were main effects of Group and of Task, and there were 
Group X Task interactions (see Table 1). These effects, which do not involve fatigue, are consistent with the litera-
ture on working memory in TBI; they are reported here for completeness, but because fatigue is the primary focus 
of the current paper, effects that do not involve fatigue are not discussed further.

As Table 1 shows, there was a Group X Fatigue interaction in the precuneus and lingual gyrus. The interaction 
in the precuneus resulted from HCs showing a negative relationship between fatigue scores and activation in the 
precuneus (coefficient = −0.0021) while the TBI group showed a positive relationship (coefficient = 0.00076). 
That is, those individuals with TBI who reported higher fatigue had more activation in the precuneus while HCs 
who reported lower fatigue had more activation in the precuneus. This pattern was reversed in the lingual gyrus 
where HCs showed a positive relationship between fatigue scores and activation (coefficient = 0.0011) and the 
TBI group showed a negative relationship (coefficient = −0.00068). Taken together, these results show that in the 
TBI group, lower fatigue was associated with lower activation in the precuneus and greater activation in visual 
processing areas (lingual gyrus) whereas in the HCs lower fatigue was associated with greater activation in precu-
neus and lower activation in visual processing areas (lingual gyrus).

Fatigue interacted with Task in several areas (collapsing across Group). These included frontal areas (mid-
dle and inferior frontal gyri, and the cingulate), basal ganglia (caudate), inferior parietal areas, temporal areas 
(superior temporal gyrus and parahippocampal areas), and occipital areas (cuneus, fusiform gyrus and middle 
occipital gyrus). (see Table 1). Because there was no interaction with Group in these areas, they are included for 
completeness.

Finally, there were several regions where Fatigue interacted with Group and Task. These are detailed in Table 1 
and included frontal areas (superior, middle, inferior and medial gyri), basal ganglia (caudate), temporal areas 
(superior temporal gyri), occipital areas (middle occipital and fusiform gyri) and cerebellum (declive). Because 
we had prior hypotheses about the caudate, the differences in activation there where investigated further (see 
Fig. 2). This showed that for the HC group, the activation in the caudate was negatively associated with fatigue 
during the 0-back task (coefficient = −0.0013); however, during the 2-back task, the relationship between activa-
tion and fatigue was positive (coefficient = 0.0035). This pattern was not evident in the TBI group. Indeed, for the 
TBI group, the relationship between fatigue and activation during either task was very weak (coefficients = 0.0003 
for 0-back and 0.0002 for 2-back).

Group-specific results.  In order to better understand the relationship between fatigue and brain activation 
following a TBI, we performed two more analyses in which we focused on the data from each group separately. 
The factors were the same as in the analysis above, with the exception of Group, which was omitted.

For the TBI group, there was a main effect of Fatigue in the caudate (coefficient = 0.00054), the posterior 
cingulate (coefficient = 0.0082) and in the superior temporal gyrus (coefficient = 0.00076) (see Table 2). All 
three coefficients were positive, meaning that as activation increased in these areas, fatigue increased as well. 
Furthermore, Fatigue interacted with Task in frontal areas (the anterior cingulate and insula), in the basal ganglia 
(caudate), the posterior cingulate bilaterally, and in parietal areas (the precuneus and inferior parietal areas). As 
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Fig. 3 shows, the activation in the caudate was due to a negative relationship between fatigue and activation dur-
ing the 0-back task (coefficient = −0.0005), whereas during the 2-back task the relationship between fatigue and 
brain activation was positive (coefficient = 0.0009). This interaction is similar to the interaction seen in the HC 
group in the head of the caudate (see Fig. 2), but was more posterior.

Analysis of N-Back task

BA X Y Z Voxels F Stat.

Group

Cingulate Gyrus 32 11 9 36 126 20.83

Task

Superior Frontal Gyrus 8 −13 41 44 223 17.97

Superior Frontal Gyrus 10 25 47 4 119 14.7

Middle Frontal Gyrus 6 −27 −3 56 23538 92.56

Parahippocampal Gyrus 36 −31 −33 −8 233 15.62

Cuneus 18 13 −75 6 219 14.3

Lingual Gyrus 18 −15 −73 0 121 13.42

Group x Task

Middle Frontal Gyrus 9 43 19 32 547 20.58

Angular Gyrus 39 37 −55 32 319 15.54

Parahippocampal Gyrus 36 39 −31 −14 168 17.29

Group x Fatigue

Precuneus 31 3 −69 28 150 11.55

Lingual Gyrus 18 −33 −71 −8 191 32.87

Task x Fatigue

Middle Frontal Gyrus (extending into 
medial PFC and caudate head) 6 −25 −11 54 4165 26.25

Middle Frontal Gyrus 6 25 −5 52 181 24.08

Inferior Frontal Gyrus 9 49 −1 24 899 27.9

Inferior Frontal Gyrus 10 33 37 8 288 21.89

Caudate/Caudate Head — 1 7 4 46 10.85

Cingulate Gyrus 31 −15 −35 42 295 16.53

Precentral Gyrus 6/9 −51 −1 24 1599 26.47

Inferior Parietal Lobule 7 −29 −53 40 1855 42.34

Inferior Parietal Lobule 40 33 −51 40 1213 24.28

Suprior Temporal Gyrus 41 45 −31 12 465 17.36

Parahippocampal Gyrus 30 −17 −37 6 141 12.32

Cuneus 18 13 −83 24 133 14.96

Fusiform Gyrus 19 −33 −73 −12 715 20.06

Middle Occipital Gyrus 19 37 −79 4 135 17.59

Group x Task x Fatigue

Middle Frontal Gyrus 9 −39 35 36 312 33.66

Middle/Superior Frontal Gyrus 9/10 37 37 26 221 12.88

Medial Fronal Gyrus 8 1 27 38 348 16.13

Inferior Frontal Gyrus 10 −35 37 4 561 18.48

Caudate/Caudate Body — −1 7 6 61 11.96

Precentral Gyrus 9/6 45 −1 26 407 24.17

Precentral Gyrus 6 −47 −1 48 213 25.42

Angular Gyrus 39 −29 −55 38 461 22.91

Superior Temporal Gyrus 22 −53 −35 6 318 17.84

Superior Temporal Gyrus 22 53 −27 2 228 17.39

Middle Occipital Gyrus 19 −37 −77 −10 333 22.81

Fusiform Gyrus 19 31 −75 −16 475 24.17

Declive — −35 −65 −18 252 15.99

Table 1.  Areas of significant brain activation for the analysis of the N-Back task. ‘BA’ denotes Broadman’s Area; 
‘X’, ‘Y’, and ‘Z’ denote the location in Talairach space of the voxel in the cluster with the highest activation; 
‘Voxels’ denotes the number of voxels in each cluster; ‘F-Stat.’ denotes the F-statistic associated with the voxel of 
highest activation.
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For the HC group, Fatigue interacted with Task in several frontal areas (middle, medial and inferior frontal 
gyri, and the insula bilaterally), the basal ganglia (caudate), the thalamus, inferior parietal areas, and occipital 
areas (middle occipital, fusiform and lingual gyri) (see Table 2).

Experiment 2
In Experiment 2, subjects were asked to perform the modified symbol-digit modalities task (SDMT), which is a 
task that relies heavily on processing speed8, particularly in the visual domain. In this task, subjects must match 
a probe stimulus against a list of potentially matching stimuli to see whether the probe does or does not match. 
This task thus is very different from the N-Back task in Experiment 1, and was included as a test for the generaliz-
ability of the findings from Experiment 1. We reasoned that if the caudate is implicated in fatigue, we should find 
fatigue-related activation in the caudate regardless of the task.

Methods.  The subjects, VAS and data preprocessing were the same as in Experiment 1. The scanning param-
eters were comparable, with the single difference that 240 volumes of functional data were acquired because each 
block of the SDMT task was longer than the N-Back blocks.

Behavioral Paradigm.  On each trial, subjects were presented with a reference grid at the top of the screen that 
had two rows and nine columns8. In the top row were the numbers 1–9, in the bottom row were nine unique 
symbols. Below this reference grid a probe stimulus was presented that consisted of one number and one symbol. 
For the SDMT task, subjects reported whether the probe number-symbol pair matched the number-symbol pair 
in the reference grid. As with the N-Back task, a control task was also included, which was similar in stimulation, 
but was far easier to perform. Here, the control task consisted of the same stimuli, but when there was a match 
between the probe and the reference grid, it was highlighted by a yellow box overlaid on the reference grid. Thus, 
as with the 0-Back condition of the N-Back task, the control condition was essentially a visual monitoring task.

Data processing.  The analyses of the behavioral data and the VAS data were the same as for Experiment 1. For 
the fMRI data, we restricted the analysis to the caudate, since our a priori hypothesis was specific to the caudate. 
Moreover, because the analysis of the N-Back task had showed that the areas in the caudate associated with fatigue 
were different in the TBI and HC groups, we confined all analyses to the TBI group.

Results
Behavioral results.  For RT, there was a main effect of Task (F(1,95.79) = 1313.00, p < 0.0001), resulting from 
individuals in the TBI group responding with longer latencies during the SDMT task (RT = 2004.1) than during 
the control task (RT = 936.0). The effect of Fatigue approached significance (F(1,107.58) = 3.02, p = 0.08), result-
ing from a negative relationship between Fatigue and RT (coefficient = −0.70). That is, the longer their latencies, 

Figure 2.  The interaction of Group, Task and Fatigue in Experiment 1 in the caudate head (indicated by blue 
arrow). The plots on the left are included only to show the slopes of the regression lines. For the HC group, there 
was a negative correlation between fatigue and activation for the 0-back task (top left), and a positive correlation 
for the 2-back task (top right). For the TBI group, the correlations between fatigue and activation in both tasks 
were very weak (lower plots). In all cases, the vertical axis is the percent signal change in the caudate head and 
the horizontal axis is the normalized fatigue score. On the right is a 3-dimensional rendering of the activation in 
the caudate head for Experiment 1.
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the less fatigue they reported. Finally, there was an interaction between Task and Fatigue (F(1,96.65,p < 0.001) 
resulting from a negative relationship between RT and Fatigue for the SDMT task (coefficient = −0.41), and a 
positive relationship for the control task (coefficient = 0.95).

In the accuracy data, there was a significant main effect of Task (F(1,96.09) = 22.55, p < 0.0001): subjects were 
less accurate on the SDMT task (93.4%) than the control task (99.4%). The only other effect to approach signif-
icance was that of Fatigue (F(1,58.15) = 3.21, p = 0.08). This was due to a positive relationship between fatigue 
and accuracy (coefficient = 0.0006): the more accurate individuals with TBI were, the more fatigue they reported.

VAS results.  The main effect of Group was significant (F(1,46) = 7.03, p < 0.001, η2 = 0.11), which resulted 
from individuals in the TBI group reporting more fatigue (36.1) than individuals in the HC group (14.4). The 
effect of Block was also significant (F(4,184) = 12.25, p < 0.001, η2 = 0.01), which resulted from subjects reporting 
more fatigue as the experiment (blocks) progressed (VAS scores = 23.0, 27.4, 27.4, 31.4, 33.1).

fMRI results.  In this confirmatory analysis, only voxels anatomically defined within the caudate were 
included. The same thresholding criterion was used as above. As Fig. 3 shows, there was a main effect of Fatigue 
in the caudate (X Y Z = −17, −41 12; extent = 26 voxels; F = 12.18). Unlike in Experiment 1, there was no inter-
action between Task and Fatigue. Rather, there was a negative relationship between Fatigue and activation in the 
caudate across Task in the TBI group (coefficient = −0.0023).

Analysis of N-Back task, separated by Group

BA X Y Z Voxels F Stat.

Fatigue

Group: TBI

Caudate/Caudate Tail — −19 −25 16 36 12.96

Posterior Cingulate 23 9 −39 24 247 16.32

Superior Temporal Gyrus 39 −41 −51 12 109 17.8

Task x Fatigue

Anterior Cingulate 24 −7 31 6 265 19.39

Caudate/Caudate Body — 13 −13 22 286 18.38

Caudate Tail/Posterior 
Cingulate 30 −21 −47 14 236 15.33

Insula 13 −37 −25 18 273 21.75

Precentral Gyrus 4 −19 −21 56 702 17.52

Posterior Cingulate 30 23 −61 12 156 13.54

Precuneus 7 27 −47 42 371 17.67

Inferior Parietal Lobule 40 39 −33 38 343 22.81

Task X Fatigue

Group: HC

Middle Frontal Gyrus 10 37 43 24 345 17.62

Middle Frontal Gyrus 6 −27 −5 58 312 8.15

Middle Frontal Gyrus 6 23 1 50 249 7.29

Medial/Superior Frontal 
Gyrus 10 −19 45 2 2053 9.02

Medial Frontal Gyrus, 
extending into right caudate 
head

32 −9 13 44 1756 8.73

Inferior Frontal Gyrus 9 59 9 28 635 7.69

Caudate/Caudate Head — 3 1 6 564 11.46

Caudate/Caudate Tail — −15 −31 20 36 9.95

Thalamus/Pulvinar — −25 −25 4 125 7.9

Thalamus — 7 −23 2 219 13.63

Insula 13 −43 −5 18 776 7.11

Insula 13/22 41 −27 2 567 7.76

Precental Gyrus 6 −43 −7 44 437 7.55

Inferior Parietal Lobule 40 37 −39 48 558 7.77

Middle Occipital Gyrus 19/37 43 −71 4 382 8.85

Fusiform Gyrus 37 37 −53 −16 191 12.72

Lingual Gyrus 18 −31 −71 −10 2154 14.24

Table 2.  Areas of significant brain activation for the analysis the N-Back task, separately for each Group. ‘BA’ 
denotes Broadman’s Area; ‘X’, ‘Y’, and ‘Z’ denote the location in Talairach space of the voxel in the cluster with 
the highest activation; ‘Voxels’ denotes the number of voxels in each cluster; ‘F-Stat.’ denotes the F-statistic 
associated with the voxel of highest activation.
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Discussion
The aim of the current study was to understand the neural correlates of cognitive fatigue in individuals who 
have sustained a TBI. In Experiment 1, we used a working memory task to induce fatigue because prior studies 
have shown that individuals with TBI experience deficits in working memory43–45. In Experiment 2, we used a 
task that relies on processing speed to induce fatigue, as we have used in the past8. The results from both studies 
showed a relationship not only between subjective cognitive fatigue and activation in brain areas such as the cau-
date, but also between subjective cognitive fatigue and behavioral performance. For the N-Back task, there was 
a three-way interaction between Group, Task and Fatigue in the accuracy data, such that as accuracy increased 
during the 2-back task, fatigue also increased. This relationship was far weaker for the 0-back task, and was weak 
for both tasks in the TBI group. Subjects’ accuracy during the 2-back task suggests that the task was difficult for 
them (87.9% correct during the 2-back compared to 96.4% during the 0-back task), and the positive relationship 
between fatigue and accuracy during the 2-back suggests that as subjects worked harder to improve their accu-
racy, cognitive fatigue resulted.

The differential effect of the two tasks on fatigue was also evident in the brain activation data for the N-Back 
task. Activation in the head of the caudate showed a pattern very similar to that seen in the accuracy data: a 
three-way interaction between Group, Task and Fatigue. As activation increased during the 2-back task, fatigue 
also increased (similarly to the accuracy data). During the 0-back task, this positive correlation was not evident; 
indeed, there was a negative correlation such that as activation increased, fatigue decreased. Finally, as with the 
accuracy data, this relationship was seen in the HC data and was essentially absent in the data from the TBI group. 
However, when the data from the TBI group was analyzed separately, a qualitatively similar interaction was evi-
dent in the caudate tail: a positive relationship between fatigue and activation for the 2-back task, and a negative 
relationship for the 0-back task.

Figure 3.  The relationship between Fatigue and activation in the caudate tail in the TBI group across 
Experiments. The plots on the left are included only to show the slopes of the regression lines. For the 0-back 
task (top left), there was a negative relationship between Fatigue and activation, while the relationship was 
positive for the 2-back task (top right). For the SDMT, the relationship between Fatigue and activation was not 
modulated by Task: for both tasks the relationship was negative (lower plot). For all plots the vertical axis is the 
percent signal change in the caudate tail and the horizontal axis is the normalized fatigue score. On the right 
are 3-dimensional renderings of the activation in the caudate tail (indicated by blue arrow) for the N-Back task 
(top) and the SDMT (bottom).
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For the SDMT task, there was also an interaction between activation in the caudate tail and self-reported 
fatigue. However, in this case the behavioral data and the functional imaging data diverged. The RT and accu-
racy data for the SDMT showed that individuals with TBI found the SDMT to be more difficult than the control 
task: they responded with longer latencies and made more errors during the SDMT than during the control task. 
However, while the activation in the caudate tail was related to fatigue, it was not modulated by task. Moreover, 
the relationship between activation in the caudate tail and fatigue for the TBI group was negative, meaning that 
increased activation in the caudate tail was associated with decreased fatigue. This was also the case during the 
less difficult condition of the N-Back task (0-back).

The negative relationships between activation in the caudate and self-reported fatigue are consistent with 
the Dopamine Imbalance Hypothesis46–48 that suggests a U-shaped relationship between the amount of dopa-
mine in the brain (or activation in the structures enervated by dopamine) and levels of fatigue. That is, at low 
levels of dopamine, fatigue is high; as levels of dopamine increase, fatigue decreases; however, at high levels of 
dopamine, fatigue increases again. Indeed, it has been shown that dopamine agonists (e.g., methylphenidate) 
lead to fatigue reduction in individuals with TBI49 and other clinical populations50, 51. The caudate nucleus is 
one of the structures enervated with dopamine. Dopaminergic activation of the striatum and firing of dopamine 
neurons has been shown to be crucial in reward processing, as well as during working memory tasks such as the 
N-Back and during attentional tasks such as the SDMT. For example, several studies have shown a correlation 
between dopamine release and working memory capacity52, 53. The Dopamine Imbalance Hypothesis proposes 
that dopamine levels are disrupted following brain injury or disease, due to damage of frontal dopaminergic 
systems. Additionally, brain injury such as a TBI also disrupts information transmission (due to diffuse axonal 
injury [DIA]) resulting in less efficient, more effortful processing54. Taken together, the increase in the effort 
required to perform cognitive work following a TBI creates an imbalance between effort and outcome. It is our 
larger hypothesis that fatigue is a signal the brain generates when the outcome (or reward) no longer merits the 
effort required30, 55. On this view, low dopamine and DAI work together to change the balance between effort and 
reward in TBI, resulting in persistent fatigue.

For the SDMT, the SDMT control task, and the 0-back task, lower activation in the caudate was associated 
with higher self-reported fatigue, which is consistent with the Dopamine Imbalance Hypothesis. However, for 
the 2-back task, the relationship between activation in the caudate and fatigue was reversed: more activation was 
associated with more fatigue. This too is consistent with the Dopamine Imbalance Hypothesis, because the rela-
tionship between dopamine levels and fatigue is proposed to have a U-shaped function30. Thus, while low levels 
of dopamine result in fatigue, so too do high levels of dopamine. Because the 2-back task is a challenging working 
memory task that requires frontal circuits, continued performance of the 2-back likely results in increased release 
of dopamine, and thus in increased fatigue. This is true for both groups, though in different areas of the caudate. 
For the less challenging 0-back task, and for both the SDMT and the SDMT control task, which are more visual 
tasks, there is less frontal involvement, leading to less dopamine release. Because the relationship between dopa-
mine and fatigue is proposed to have a U-shaped function, this can also lead to fatigue.

As previous attempts to study cognitive fatigue using ‘trait’ measures (i.e., FSS) have been inconsistent, we 
used a measure of ‘state’ fatigue: the VAS-F. In Experiment 1, individuals with TBI reported more cognitive fatigue 
on the N-Back task than HCs, even when the task demands were low (0-back). Furthermore, for both groups, 
self-reported fatigue was found to covary with brain activation in the caudate: the caudate head in HCs and the 
caudate tail in individuals with TBI. The involvement of the caudate with fatigue replicates and extends previous 
work that has investigated fatigue in several clinical populations, including individuals with TBI8, 9, 18, multiple 
sclerosis19, 56, 57 and healthy controls58. For example, in Kohl et al.8, we showed that activation in the caudate 
nucleus differed between HCs and individuals with TBI during continued performance of the SDMT. In that 
study, we operationally defined a difference between HCs and individuals with TBI to be fatigue, but we could not 
verify this definition in our sample because no measure of subjective fatigue was collected. Here we have shown 
that the relationship between subjective cognitive fatigue and caudate activation is negative in the TBI group for 
three tasks that do not heavily rely on frontal systems (the 0-back task, the SDMT and the control task for the 
SDMT), such that increased activation in the caudate is associated with lower self-reported fatigue. For a task that 
does rely on frontal systems (the 2-back task), the relationship between subjective cognitive fatigue and caudate 
activation is positive, which we interpret as representing the higher-dopamine arm of the U-shaped function 
describing the relationship between dopamine and fatigue. These findings reinforce the importance of the role of 
the caudate in cognitive fatigue17.

It was also expected that, as the task demands were increased, the TBI group would report greater fatigue. 
The results did not support this expectation in either experiment. In fact, while self-reported fatigue (VAS-F) 
increased in both groups throughout task performance, this increase did not vary by task for either group, and 
this was true in both experiments. These findings accord well with recent work in MS, in which we found that 
fatigue increased as a function of time-on-task, rather than as a function of task difficulty21. The similarity in the 
subjective reports of fatigue across these two populations (MS and TBI) suggests that cognitive fatigue, assessed 
following task performance, may rely on similar mechanisms across these two clinical populations.

Another similarity across the TBI and MS populations is that state fatigue measures were associated with 
activation in the caudate. While there is no evidence that the caudate was itself damaged in any of the individuals 
in our TBI group, there is evidence from animal studies that brain trauma in rats results in decreased dopamine 
transmission in the caudate31. Therefore, our finding that the caudate responds differently to fatigue in individuals 
who have sustained a TBI relative to controls may reflect differences in dopamine transmission in the two groups. 
Indeed, because the basal ganglia are strongly dopaminergic, these observations suggest that the basal ganglia, 
and the caudate in particular, may represent a target for clinical interventions to alleviate fatigue in TBI. Indeed, it 
has been shown that dopamine agonists (methylphenidate) reduce fatigue in individuals with TBI49, a result that 
is entirely consistent with our findings.
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There are, of course, some limitations to the conclusions we can draw from these data. The sample size was rela-
tively modest, and it would be encouraging to see these results replicated in a larger sample. Moreover, because the 
design of the current study is cross-sectional, we cannot conclude that increased activation of the caudate causes 
decreased fatigue in individuals with TBI for tasks that do not rely on frontal systems. While it is tempting to make 
assertions of this kind, longitudinal studies are required to draw conclusions regarding causation. Finally, the anal-
yses here rely on a self-report measure of fatigue, the VAS-F, and it cannot be determined with absolute certainty 
that all subjects rated their fatigue in exactly the same way. For example, some subjects may have reported ‘fatigue’ 
because they were bored while others may have reported ‘fatigue’ because they had worked hard on the mental 
tasks, and it is therefore difficult to determine whether subjects’ reports of ‘fatigue’ derived from boredom or men-
tal labor. This concern goes to the heart of the nature of fatigue. It is our view that fatigue is a signal the brain gen-
erates to ‘tell’ itself that sufficient time and energy have been expended on the task at hand and that it is time to stop 
performing that task. On this view, fatigue is an outcome that derives from a number of potential causes, including 
labor, boredom, depression, etc. It may be valuable to study fatigue that derives from each potential source (e.g., 
labor, boredom, depression, etc.), but the results reported here suggest that – whatever the source – the experience 
of fatigue appears to be associated with activation in the caudate nucleus of the basal ganglia.

Conclusions
In this work, we have demonstrated that fatigue-related brain activation can be induced and measured in TBI. 
This extends our prior work using a similar approach in MS19, and adds to the work that has been done inves-
tigating the neural correlates of fatigue in TBI8, 59. The results reported here underscore the importance of the 
caudate nucleus in relation to cognitive fatigue. Furthermore, the results reported here also show that levels of 
self-reported state fatigue do not vary as a function of task difficulty, which is in line with recent work in MS21.

References
	 1.	 Faul, M., Xu, L., Wald, M. M. & Coronado, V. G. Traumatic brain injury in the United States: emergency department visits, 

hospitalizations, and deaths. Centers Dis. Control Prev. Natl. Cent. Inj. Prev. Control 891–904, doi:10.1016/B978-0-444-52910-
7.00011-8 (2010).

	 2.	 Das, A., Botticello, A. L. & Wylie, G. R. Neurologic disability: a hidden epidemic for India. Neurology 79, 2146–2147 (2012).
	 3.	 Christodoulou, C. Functional magnetic resonance imaging of working memory impairment after traumatic brain injury. J. Neurol. 

Neurosurg. Psychiatry 71, 161–168 (2001).
	 4.	 McAllister, T. W. et al. Differential working memory load effects after mild traumatic brain injury. Neuroimage 14, 1004–12 (2001).
	 5.	 Hillary, F. G. et al. Changes in resting connectivity during recovery from severe traumatic brain injury. Int. J. Psychophysiol. 

doi:10.1016/j.ijpsycho.2011.03.011 (2011).
	 6.	 Carlozzi, N. E., Kirsch, N. L., Kisala, P. A. & Tulsky, D. S. An Examination of the Wechsler Adult Intelligence Scales, Fourth Edition (WAIS-

IV) in Individuals with Complicated Mild, Moderate and Severe Traumatic Brain Injury (TBI). Clin. Neuropsychol. 29, 1–17 (2015).
	 7.	 Madigan, N. K., DeLuca, J., Diamond, B. J., Tramontano, G. & Averill, A. Speed of information processing in traumatic brain injury: 

modality-specific factors. J. Head Trauma Rehabil. 15, 943–56 (2000).
	 8.	 Kohl, A. D., Wylie, G. R., Genova, H. M., Hillary, F. G. & Deluca, J. The neural correlates of cognitive fatigue in traumatic brain injury 

using functional MRI. Brain Inj. 23, 420–32 (2009).
	 9.	 Pardini, M., Krueger, F., Raymont, V. & Grafman, J. Ventromedial prefrontal cortex modulates fatigue after penetrating traumatic 

brain injury. Neurology 74, 749–54 (2010).
	10.	 Ponsford, J. et al. Factors influencing outcome following mild traumatic brain injury in adults. J. Int. Neuropsychol. Soc. 6, 568–79 (2000).
	11.	 Olver, J. H., Ponsford, J. L. & Curran, C. A. Outcome following traumatic brain injury: a comparison between 2 and 5 years after 

injury. Brain Inj. 10, 841–8 (1996).
	12.	 DeLuca, J., Genova, H. M., Capili, E. J. & Wylie, G. R. Functional Neuroimaging of Fatigue. Phys. Med. Rehabil. Clin. N. Am. 20, 

325–337 (2009).
	13.	 Fatigue as a Window to the Brain. (MIT Press, 2005).
	14.	 Schönberger, M. et al. Brain lesion correlates of fatigue in individuals with traumatic brain injury. Neuropsychol. Rehabil. 1–15, doi:

10.1080/09602011.2016.1154875 (2016).
	15.	 Delano-Wood, L. et al. Brainstem white matter integrity is related to loss of consciousness and postconcussive symptomatology in 

veterans with chronic mild to moderate traumatic brain injury. Brain Imaging Behav. 9, 500–512 (2015).
	16.	 Gillis, M. M. & Hampstead, B. M. A two-part preliminary investigation of encoding-related activation changes after moderate to 

severe traumatic brain injury: hyperactivation, repetition suppression, and the role of the prefrontal cortex. Brain Imaging Behav. 9, 
801–820 (2015).

	17.	 Chaudhuri, A. & Behan, P. O. Fatigue and basal ganglia. J. Neurol. Sci. 179, 34–42 (2000).
	18.	 Dobryakova, E., DeLuca, J., Genova, H. M. & Wylie, G. R. Neural Correlates of Cognitive Fatigue: Cortico-Striatal Circuitry and 

Effort–Reward Imbalance. J. Int. Neuropsychol. Soc. 19, 1–5 (2013).
	19.	 Genova, H. M. et al. Examination of Cognitive Fatigue in Multiple Sclerosis using Functional Magnetic Resonance Imaging and 

Diffusion Tensor Imaging. PLoS One 8, 1–10 (2013).
	20.	 Krupp, L. B. & Enoka, R. M. Fatigue and fatigability in neurologic illnesses. Neurology 80, 409–416 (2013).
	21.	 Sandry, J., Genova, H. M., Dobryakova, E., DeLuca, J. & Wylie, G. Subjective Cognitive Fatigue in Multiple Sclerosis Depends on 

Task Length. Front. Neurol. 5, 1–7 (2014).
	22.	 Middleton, F. A. & Strick, P. L. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res. Rev. 31, 236–250 (2000).
	23.	 Tricomi, E. & Fiez, J. A. Feedback signals in the caudate reflect goal achievement on a declarative memory task. Neuroimage 41, 

1154–67 (2008).
	24.	 Dobryakova, E. & Tricomi, E. Basal ganglia engagement during feedback processing after a substantial delay. Cogn. Affect. Behav. 

Neurosci. 13, 725–36 (2013).
	25.	 Schultz, W., Apicella, P. & Ljungberg, T. Responses of monkey dopamine neurons to reward and conditioned-stimuli during 

successive steps of learning a delayed-response task. J. Neurosci. 13, 900–913 (1993).
	26.	 Delgado, M. R., Nystrom, L. E., Fissell, C., Noll, D. C. & Fiez, J. A. Tracking the hemodynamic responses to reward and punishment 

in the striatum. J. Neurophysiol. 84, 3072–7 (2000).
	27.	 Delgado, M. R., Locke, H., Stenger, V. & Fiez, J. Dorsal striatum responses to reward and punishment: Effects of valence and 

magnitude manipulations. Cogn. Affect. Behaviroal Neurosci. 3, 27–39 (2003).
	28.	 Lewis, S. J. G., Dove, A., Robbins, T. W., Barker, R. A. & Owen, A. M. Striatal contributions to working memory: a functional 

magnetic resonance imaging study in humans. Eur. J. Neurosci. 19, 755–60 (2004).
	29.	 Akhlaghpour, H. et al. Dissociated sequential activity and stimulus encoding in the dorsomedial striatum during spatial working 

memory. Elife 5 (2016).

http://dx.doi.org/10.1016/B978-0-444-52910-7.00011-8
http://dx.doi.org/10.1016/B978-0-444-52910-7.00011-8
http://dx.doi.org/10.1016/j.ijpsycho.2011.03.011
http://dx.doi.org/10.1080/09602011.2016.1154875
http://dx.doi.org/10.1080/09602011.2016.1154875


www.nature.com/scientificreports/

1 2Scientific Reports | 7: 8973  | DOI:10.1038/s41598-017-08846-6

	30.	 Dobryakova, E., Genova, H. M., DeLuca, J. & Wylie, G. R. The Dopamine Imbalance Hypothesis of Fatigue in Multiple Sclerosis and 
Other Neurological Disorders. Front. Neurol. 6 (2015).

	31.	 Wagner, A. K. et al. Controlled cortical impact injury influences methylphenidate-induced changes in striatal dopamine 
neurotransmission. J. Neurochem. 110, 801–10 (2009).

	32.	 Ryan, N. P. et al. Uncovering cortico-striatal correlates of cognitive fatigue in pediatric acquired brain disorder: Evidence from 
traumatic brain injury. Cortex 83, 222–230 (2016).

	33.	 Teasdale, G. & Jennett, B. Assessment of coma and impaired consciousness. A practical scale. Lancet 2, 81–4 (1974).
	34.	 Schneider, W., Eschman, A. & Zuccolotto, A. E‐Prime user’s guide (2002).
	35.	 McCormack, H. M., Horne, D. J. & Sheather, S. Clinical applications of visual analogue scales: a critical review. Psychol. Med. 18, 

1007–19 (1988).
	36.	 Schoedel, A. L. A., Zimmermann, K., Handwerker, H. O. & Forster, C. The influence of simultaneous ratings on cortical BOLD 

effects during painful and non-painful stimulation. Pain 135, 131–141 (2008).
	37.	 Lee, K. A., Hicks, G. & Nino-Murcia, G. Validity and reliability of a scale to assess fatigue. Psychiatry Res. 36, 291–8 (1991).
	38.	 Cox, R. W. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 29, 

162–73 (1996).
	39.	 Wylie, G. R., Genova, H., DeLuca, J., Chiaravalloti, N. & Sumowski, J. F. Functional magnetic resonance imaging movers and 

shakers: does subject-movement cause sampling bias? Hum. Brain Mapp. 35, 1–13 (2014).
	40.	 Power, J. D. et al. Recent progress and outstanding issues in motion correction in resting state fMRI. Neuroimage 105, 536–551 (2015).
	41.	 Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Spurious but systematic correlations in functional 

connectivity MRI networks arise from subject motion. Neuroimage 59, 2142–2154 (2012).
	42.	 Moen, K. G. et al. Traumatic Axonal Injury: The Prognostic Value of Lesion Load in Corpus Callosum, Brain Stem, and Thalamus 

in Different Magnetic Resonance Imaging Sequences. J. Neurotrauma 11, 1–11 (2014).
	43.	 Perlstein, W. M. et al. Parametric manipulation of working memory load in traumatic brain injury: behavioral and neural correlates. 

J. Int. Neuropsychol. Soc. 10, 724–41 (2004).
	44.	 Hillary, F. G. et al. Examining working memory task acquisition in a disrupted neural network. Brain 134, 1555–70 (2011).
	45.	 McAllister, T. W., Sparling, M. B., Flashman, L. A. & Saykin, A. J. Neuroimaging findings in mild traumatic brain injury. J. Clin. Exp. 

Neuropsychol. 23, 775–91 (2001).
	46.	 Dobryakova, E., Genova, H. M., Deluca, J. & Wylie, G. R. The dopamine imbalance hypothesis of fatigue in multiple sclerosis and 

other neurological disorders. Front. Neurol. 6, 1–8 (2015).
	47.	 Boksem, M. A. S., Meijman, T. F. & Lorist, M. M. Mental fatigue, motivation and action monitoring. Biol. Psychol. 72, 123–132 (2006).
	48.	 Lorist, M. M. et al. The influence of mental fatigue and motivation on neural network dynamics; an EEG coherence study. Brain Res. 

1270, 95–106 (2009).
	49.	 Johansson, B. et al. Evaluation of dosage, safety and effects of methylphenidate on post-traumatic brain injury symptoms with a 

focus on mental fatigue and pain. Brain Inj. 28, 304–310 (2014).
	50.	 Blockmans, D., Persoons, P., Van Houdenhove, B. & Bobbaers, H. Does methylphenidate reduce the symptoms of chronic fatigue 

syndrome? Am. J. Med. 119(167), e23–30 (2006).
	51.	 Mendonça, D. A., Menezes, K. & Jog, M. S. Methylphenidate improves fatigue scores in Parkinson disease: a randomized controlled 

trial. Mov. Disord. 22, 2070–6 (2007).
	52.	 Gibbs, S. E. B. & D’Esposito, M. Individual capacity differences predict working memory performance and prefrontal activity 

following dopamine receptor stimulation. Cogn. Affect. Behav. Neurosci. 5, 212–21 (2005).
	53.	 Harel, Y., Appleboim, N., Lavie, M. & Achiron, A. Single dose of methylphenidate improves cognitive performance in multiple 

sclerosis patients with impaired attention process. J. Neurol. Sci. 276, 38–40 (2009).
	54.	 Wright, D. W. et al. Very Early Administration of Progesterone for Acute Traumatic Brain Injury. N. Engl. J. Med. 371, 2457–2466 (2014).
	55.	 Dobryakova, E., DeLuca, J., Genova, H. M. & Wylie, G. R. Neural correlates of cognitive fatigue: cortico-striatal circuitry and effort-

reward imbalance. J. Int. Neuropsychol. Soc. 19, 849–53 (2013).
	56.	 Pardini, M., Bonzano, L., Mancardi, G. L. & Roccatagliata, L. Frontal networks play a role in fatigue perception in multiple sclerosis. 

Behav. Neurosci. 124, 329–36 (2010).
	57.	 Pardini, M. et al. Cingulum bundle alterations underlie subjective fatigue in multiple sclerosis. Mult Scler 21, 442–447 (2015).
	58.	 Nakagawa, S. et al. Basal ganglia correlates of fatigue in young adults. Sci. Rep. 6, 21386 (2016).
	59.	 Pardini, M., Krueger, F., Raymont, V. & Grafman, J. Ventromedial prefrontal cortex modulates fatigue after penetrating traumatic 

brain injury. Neurology 74, 749–54 (2010).

Acknowledgements
The authors would like to acknowledge grant support from The New Jersey Commission for Brain Injury 
Research (10.005.BIR1 to GW and HG), and The Kessler Foundation Research Center.

Author Contributions
G.W. analyzed the data, prepared the figures and wrote the bulk of the manuscript. E.K. assisted in the writing 
of the discussion and H.G. assisted in the writing of the introduction. K.E. drafted the methods. J.D. and N.C. 
provided important editorial input, and all authors reviewed the manuscript.

Additional Information
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://creativecommons.org/licenses/by/4.0/

	Cognitive fatigue in individuals with traumatic brain injury is associated with caudate activation

	Experiment 1

	Methods. 
	Participants. 
	Scan session 1. 
	Behavioral paradigm. 
	Visual Analog Scale of Fatigue. 
	Questionnaires. 

	Data analysis. 
	Behavioral data. 
	fMRI data. 


	Results

	Behavioral results. 
	VAS results. 
	fMRI results. 
	Group-specific results. 

	Experiment 2

	Methods. 
	Behavioral Paradigm. 
	Data processing. 


	Results

	Behavioral results. 
	VAS results. 
	fMRI results. 

	Discussion

	Conclusions

	Acknowledgements

	Figure 1 A flow diagram of the experimental design.
	Figure 2 The interaction of Group, Task and Fatigue in Experiment 1 in the caudate head (indicated by blue arrow).
	Figure 3 The relationship between Fatigue and activation in the caudate tail in the TBI group across Experiments.
	Table 1 Areas of significant brain activation for the analysis of the N-Back task.
	Table 2 Areas of significant brain activation for the analysis the N-Back task, separately for each Group.




