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RNA-Seq reveals MicroRNA 
expression signature and genetic 
polymorphism associated with 
growth and muscle quality traits  
in rainbow trout
Bam Dev Paneru   1, Rafet Al-Tobasei2, Brett Kenney3, Timothy D. Leeds4 & Mohamed Salem   1,2

The role of microRNA expression and genetic variation in microRNA-binding sites of target genes on 
growth and muscle quality traits is poorly characterized. We used RNA-Seq approach to investigate 
their importance on 5 growth and muscle quality traits: whole body weight (WBW), muscle yield, 
muscle crude-fat content, muscle shear force and whiteness. Phenotypic data were collected from 
471 fish, representing 98 families (~5 fish/family) from a growth-selected line. Muscle microRNAs and 
mRNAs were sequenced from 22 families showing divergent phenotypes. Ninety microRNAs showed 
differential expression between families with divergent phenotypes, and their expression was strongly 
associated with variation in phenotypes. A total of 204 single nucleotide polymorphisms (SNPs) 
present in 3′ UTR of target genes either destroyed or created novel illegitimate microRNA target sites; 
of them, 78 SNPs explained significant variation in the aforementioned 5 muscle traits. Majority of 
the phenotype-associated SNPs were present in microRNA-binding sites of genes involved in energy 
metabolism and muscle structure. These findings suggest that variation in microRNA expression and/
or sequence variation in microRNA binding sites in target genes play an important role in mediating 
differences in fish growth and muscle quality phenotypes.

MicroRNAs are important post-transcriptional regulators of genes. In humans, about one-third of the genes 
are regulated by microRNAs1, which suggests an important regulatory role of microRNAs in gene expression 
and hence phenotype determination2. There is evidence that a single microRNA can regulate hundreds of genes 
whereas the same gene can be regulated by hundreds of microRNAs3. The seed region in mature microRNA 
sequence, usually extending from 2–7 nts at the 5′ end, binds to the microRNA recognition element seed site 
(MRESS) in 3′ UTR of target gene, and plays a vital role in determining specificity of microRNA-mRNA binding1.  
This ‘microRNA-target mRNA’ binding leads to downregulation of the gene by various mechanisms such 
as translation suppression4, target mRNA cleavage5 and deadenylation6. Therefore, any mutation that either 
destroys or creates a novel illegitimate MRESS in target genes have important functional consequences in  
phenotype7, 8.

MicroRNA mediated gene regulation plays critical role in embryonic myogenesis as well as post-embryonic 
skeletal muscle growth. Myogenic microRNAs mir-1, mir-133 and mir-206 control skeletal muscle growth by 
directly or indirectly regulating genes involved in myogenesis(see review9). Loss of mir-206 function in Nile 
tilapia leads to accelerated muscle growth because insulin-like growth factor-1 is a direct target of mir-20610. In 
zebrafish, mir-1 and mir-133 are responsible for more than half of the microRNA-mediated gene regulation in 
muscle11. Non-muscle specific microRNAs also regulate different aspects of myogenesis and muscle development 
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in fish. As an example, mir-143 and mir-203b target myoD, a member of myogenic regulatory factors (MRFs), 
in Mandarin fish and Nile tilapia, respectively12, 13. A novel zebrafish microRNA, mir-In300, targets dickkopf-3 
(dkk3) gene and hence abolishes the promoter activity of myogenic protein 5 (myf5)14. Similarly, zebrafish mir-
214 controls hedgehog signaling mediated speciation of muscle cell by regulating suppressor of fused (sufu) 
gene15. Further, Let-7, mir-19 and mir-130 show regulated expression during transition from muscular hyperpla-
sia to hypertrophy in fish16. Despite these aforementioned studies, there is still need for complete microRNAome 
expression and genetic variant profiles to understand the genetic basis of variation in muscle growth and quality 
traits in food fish production.

Scientists at the USDA, ARS National Center for Cool and Cold Water Aquaculture (NCCCWA) have 
developed a pedigreed line of rainbow trout selectively bred for 5 generations for improved growth perfor-
mance to the standard US market body weight and beyond17 and have characterized muscle yield and quality 
traits in nucleus families within the line. The objectives of this study were to 1) investigate association of 
microRNA expression with muscle growth and muscle quality traits in the NCCCWA growth-selected line 
and 2) investigate effects of single nucleotide polymorphisms (SNPs) in microRNA binding sites on growth 
and muscle quality traits. Using high throughput deep small RNA sequencing approach, we identified differ-
entially expressed (DE) microRNAs between fish families showing contrasting phenotype for whole-body 
weight (WBW), muscle yield, crude fat content, shear-force and whiteness of the muscle. We performed 
‘phenotype-microRNA expression’ association using a random sample of 90 fish from 3rd-generation families 
(2010 hatch year) to investigate potential impact of microRNA expression to the phenotype in the popula-
tion. SNPs capable of creating or destroying microRNA binding sites in protein coding target genes were 
identified and their functional consequence on growth and muscle quality phenotypes was evaluated by 
‘SNP-phenotype’ association analysis using a sample of 786 fish from 3rd- and 4th-generation families (2010 
and 2012 hatch years).

Result and Discussion
Muscle trait phenotypes and Small RNA sequencing.  Phenotypic divergence between the 4 high-
est-ranked and 4 lowest-ranked families for the 5 traits were: WBW (1221.6 g ± 84.25 vs. 502.1 ± 28.0 g); muscle 
yield (50.9% ± 1.6 vs. 43.3% ± 2.3); crude-fat (9.24% ± 1.2 vs. 4.77% ± 1.3); shear force (grams force/grams of 

Fish 
family

Read count and annotation 
statistics Putative microRNA count and annotation statistics

Number of 
raw reads

Number of reads 
after trimming 
and filtration

Total number 
putative microRNAs 
detected

Putative microRNAs 
annotated to Mirbase: 
Count (Percentage)

Number of non-
redundant annotated 
microRNAs

195i 11,168,118 9,881,880 150,902 35,355 (23.4%) 1,221

262ehi 14,841,753 12,357,559 318,231 42,577 (13.4%) 1,335

277e 11,012,983 8,522,071 160,763 31,794 (19.8%) 1,188

366fb 10,352,049 7,551,995 149,061 31,321 (21.0%) 1,212

390eia 13,682,126 12,138,640 219,575 42,283 (19.3%) 1,277

399hb 10,313,768 7,804,634 168,925 31,952 (18.9%) 1,194

405i 10,309,353 7,979,759 145,673 31,256 (21.5%) 1,173

556dfhb 9,954,340 8,203,301 146,394 32,682 (22.3%) 1,205

565d 10,384,499 7,709,062 189,110 30,388 (16.1%) 1,236

580e 7,490,428 4,261,515 147,037 24,980 (17.0%) 1,115

595 g 12,040,061 8,372,165 319,839 35,112 (11.0%) 1,209

191cj 21,246,629 18,766,660 247,811 30,175 (12.2%) 1,092

193gja 25,361,890 19,439,379 141,126 35,160 (24.9%) 1,121

201cja 12,676,918 11,296,840 138,647 21,561 (15.6%) 989

357c 19,472,380 14,507,911 251,792 29,545 (11.7%) 1,054

408 g 13,845,919 12,152,718 94,556 21,053 (22.3%) 948

51hi 20,964,015 17,185,620 241,354 37,891 (15.7%) 1,246

559dfjb 13,714,117 11,099,365 136,184 18,551 (13.6%) 966

593d 23,474,784 19,593,896 573,692 42,111 (7.3%) 1,261

597c 22,048,522 20,079,565 255,680 33,440 (13.1%) 1,160

65e 15,949,419 13,873,696 103,005 22,097 (21.5%) 998

194a 9,115,039 7,974,575 138,450 31,695 (22.9%) 1,189

Table 1.  Small RNA sequencing and annotation statistics of 22 samples used in the study. Table shows name 
of fish families used for different traits, number of raw reads, number of reads after trimming/filtration, total 
number of putative microRNAs detected in each sample and number of putative microRNAs annotated to the 
miRBase microRNA reference. Last column represents the number of non-redundant microRNAs annotated to 
MiRBase microRNA reference in each sample. Note: aHigh WBW, bLow WBW, cHigh muscle yield, dLow muscle 
yield, eHigh crude fat, fLow crude fat, gHigh shear, hLow shear, iHigh muscle whiteness, jLow muscle whiteness 
and families used for more than one muscle traits are indicated with corresponding multiple superscripts.
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sample; 539.64 ± 12.3 vs. 310.01 ± 49.2); and muscle/fillet whiteness index (44.7 ± 0.8 vs. 41.23 ± 0.4) (Fig. 1). 
Since some fish families were common between the traits, the total number of sequenced families was 22 (Table 1).

High throughput small RNA sequencing resulted into mean sequencing depth of 14.5 million reads per 
sample. After trimming of sequencing adaptor, average length of reads was 22 nucleotides (Supplementary 
Dataset 1A), which is a typical length average for mature microRNAs. After filtration and adapter trimming, the 
average number of reads in each sample was 11.9 million. On average, ~0.2 million potential microRNA tran-
scripts were detected from trimmed reads in each sample. Of these potential microRNA transcripts, ~17.5% had 
sequence homology with mature microRNAs in the miRBase database. From these annotated microRNAs in each 
sample, different variants of the same microRNA were collectively counted as a single microRNA, which resulted 
into an average of 1,154 unique microRNA per sample (Table 1).

RNA-Seq based principal component analysis (PCA) of 22 families sequenced for gene expression study 
showed no cluster suggesting genetic divergence within the population (Supplementary Dataset 1B).

Differentially expressed microRNAs between high and low ranked families for growth and 
muscle traits.  In order to identify microRNAs associated with growth and muscle quality traits, we pro-
filed DE microRNAs between families with divergent phenotypes. None of the microRNAs were DE in associ-
ation with WBW. However, 90 microRNAs were DE in remaining four muscle traits (Fig. 2 and Supplementary 
Dataset 1C). Two of the DE microRNAs were recently discovered microRNAs in rainbow trout; new-miR-66 
and new-miR-3418. A total of 18, 9, 56 and 77 microRNAs were DE between high and low ranked families for 
muscle yield, crude fat content, shear force and muscle whiteness, respectively. Most of the DE microRNAs were 
shared between several phenotypic traits (Fig. 2 [Venn diagram] and Supplementary Dataset 1C). For example, 
mir-19b was DE in all four muscle traits. All 18 DE microRNAs in muscle yield families were also DE in shear 
force and muscle whiteness families. Similarly, out of 56 DE microRNAs in shear force families, 49 were also DE 

Figure 1.  Phenotype comparison of high and low ranked families of growth and muscle quality traits. 
Phenotypic difference for whole body weight (WBW) and 4 muscle quality traits (muscle yield, crude fat 
content, shear force and whiteness index) of top 4 high ranked and 4 low ranked families (5 fish/family) of 
selectively-bred trout at ~13-month post-hatch. Phenotypes were statistically different between high ranked and 
low ranked families (P < 0.01). Error bars on graph show standard deviation.
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in association with muscle whiteness. This observation suggests that common mechanisms including coordinated 
expression of microRNAs may affect muscle yield and quality traits in rainbow trout. This argument is supported 
by previous report pinpointing to interrelated nature of these muscle traits in fish 19.

Figure 2.  Heat map of fold change of differentially expressed (DE) microRNAs between high vs low ranked 
families of various traits (left) and Venn-diagram showing shared DE microRNAs between different traits 
(right). In heat map, dark green and yellow colors indicate downregulation and upregulation respectively 
in high ranked family compared to low ranked family. Dark color indicates no differential expression of 
microRNAs. Note that the value of color limit (−5 to 5) does not reflect true fold change as values of fold change 
were transformed (log2) and color scale was adjusted to make the heat map more visible. True fold change is 
given in Supplementary Dataset 1B.

http://1B
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Interestingly, the direction of change of the shared DE microRNAs were consistently either positively or neg-
atively correlated between traits. For example, all 18 DE microRNA that were downregulated in association with 
increased muscle yield were also downregulated in families showing high shear force (R2 = 0.54) (Fig. 2 [heat 
map] and Supplementary Dataset 1C). In contrast, most of these downregulated microRNAs in families with 
high muscle yield (16 out 18) were upregulated in the high-whiteness families (R2 = −0.56). In addition, 47 out of 
49 of the shared DE microRNAs between the shear force and muscle whiteness groups showed opposite pattern 
of differential expression (R2 = −0.87). Similarly, all 5 shared DE microRNAs between crude fat and whiteness 
groups were downregulated in high ranked families of both traits (R2 = 0.87). Out of 3 DE shared microRNAs 
between shear and fat group, 2 microRNAs showed opposite fold change pattern between the traits. In accordance 
with this observation, growth and muscle quality phenotypes of 500 fish population used in this study showed 
correlation between traits (Table 2). WBW showed positive correlation with muscle yield (R2 = 0.32, p < 0.0001) 
and crude fat content (R2 = 0.33, p < 0.0001). Similarly, muscle yield showed very weak but significant positive 
correlation with crude fat (R2 = 0.061, p < 0.0001) and shear force (R2 = 0.03, p = 0.0003), and negative correla-
tion with whiteness (R2 = −0.023, p = 0.0009). Crude fat content and whiteness had weak but positive correlation 
(Table 2). This finding suggests that correlation among phenotypic traits could be, at least partially, explained by 
variation in expression level of DE microRNAs. Consistent with this observation, a recent report in salmon has 
indicated that crude fat content is negatively correlated with muscle shear force and positively correlated with L* 
(lightness) and b* (yellowness) of raw salmon muscle19.

Targets of DE microRNAs and their functional annotation.  A total of 6,837 protein-coding genes 
were identified as potential targets with high confidence for 90 DE microRNAs (Supplementary Dataset 2). 
To investigate the functional significance of the predicted target genes, we performed gene enrichment analy-
sis (GEA) using DAVID20, 21. A list of all overrepresented pathways in different GO categories are provided in 
Supplementary Dataset 3. As shown in Fig. 3, in the biological process category, genes involved in multicellular 
organism development (4.2-fold), transcription (3.7-fold) and mitosis/cell division (4.0-fold) were highly over-
represented. Other significantly enriched pathways included RNA processing, DNA repair, gene silencing by 
RNA, protein ubiquitination, lipid metabolism, muscle organ development, regulation of growth, cell prolifer-
ation and apoptosis. Similarly, among the signal transduction pathways, Wnt signaling pathway was overrepre-
sented, which is involved in skeletal muscle growth/myogenesis22–24 and regulation of growth control genes25.

In the molecular function pathways category, most of the overrepresented gene sets had functions related 
to epigenetic gene regulation such as methyltransferase activity, histone binding and chromatin binding activ-
ity (Fig. 3). Methyltransferases are important in epigenetic gene-regulation and are known to regulate skeletal 
muscle growth by regulating expression of myoD transcription factor26. Another enriched gene set included var-
ious ligases that post translationally modify proteins by adding specific amino acid; e.g. protein-glycine ligases, 
protein-glutamic acid ligase and tubulin-glycine ligase. These findings suggest that DE microRNAs may control 
growth and muscle quality phenotypes primarily via post-transcriptional regulation of genes involved in develop-
ment, muscle growth as well as the genes involved in epigenetic gene regulation and protein modification.

MicroRNAs associated with growth and muscle quality traits.  To estimate the association between 
microRNA expression and variation in phenotypes, 12 highly and commonly (among traits) DE microRNAs 
were selected for ‘microRNA expression-phenotype’ regression analysis. Expression level of microRNA was 
qPCR-quantified and correlated to phenotypes in 90 randomly selected fish from the same population. Out of the 
12 microRNAs, 10, 12, 10, 5 and 6 correlated with WBW, muscle yield, crude fat content, shear force and muscle 
whiteness respectively (cut off: R2 > 0.05, p-value < 0.05) (Table 3). When the effect of all 12 microRNA expres-
sion levels was combined, about 31%, 42%, 22%, 13% and 26% variation in WBW, muscle yield, muscle crude 
fat, muscle shear force and muscle whiteness, respectively, was explained by variation in microRNA expression.

MicroRNAs associated with each phenotypes and their relevant protein coding target genes are described in 
separate section below.

Whole body weight (WBW).  No microRNA was DE between the high and low ranked families of WBW phe-
notype. However, microRNA expression-phenotype regression analysis performed on 90 randomly sampled fish 
showed that variation in expression of 10 DE microRNAs explained significant variation in WBW (Table 3). 
These microRNAs included muscle specific myogenic microRNAs as well as other microRNAs that were DE in 
response to muscle yield and/or muscle crude fat content. Expression of individual microRNA explained 5.6% to 

Whole Body 
Weight (WBW) Muscle yield Muscle shear force

Muscle 
whiteness

Muscle yield 0.323 (<0.0001)

Muscle shear force 0.045 (<0.0001) 0.030 (0.0003)

Muscle whiteness 0.001 (0.530) −0.023 (<0.0001) −0.030 (0.0002)

Muscle crude fat 
content 0.328 (<0.0001) 0.061 (<0.0001) 0.00001 (0.946) 0.050<0.0001)

Table 2.  Pairwise comparison showing correlation between different growth and muscle quality phenotypes. 
Correlation was calculated from phenotypic data of ~500 individual fish of USDA-ARS-NCCCWA’s growth 
selected line used in this study. Table shows correlation coefficients (R2) between each pair of traits and p value 
inside the brackets. Negative (−) value indicates negative correlation.

http://1C
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16.5% variation in WBW depending on the microRNA (Table 3). We calculated the fold change between high vs 
low ranked WBW families for these 10 microRNAs based on qPCR data. Majority of these microRNAs showed 
small but significant fold change between high vs low ranked WBW families. It is possible that RNA-Seq failed to 
detect such a small change in fold change, which qPCR did. Future mechanistic study involving gene knockout 
or dose-dependent response of individual microRNA on WBW may help understand biology of WBW growth.

Figure 3.  Enrichment map and enriched gene pathways of predicted microRNA targets classified into the 
biological process (top) and molecular function (bottom) categories. In enrichment map, enriched gene-sets 
represent nodes, which are related/connected by their GO relation(s) (edges). Red node color represents 
enriched gene-set. Color intensity of the node represents significance of enrichment; node size represents 
number of genes in the gene-set (proportional relation) and edge thickness represents degree of overlap 
between gene-sets (proportional relation). Note: Same node size in molecular function and biological process 
category does not include the same number of genes because maps are generated separately and then combined.
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Muscle yield.  There were a total of 18 microRNAs downregulated in the high muscle yield families compared 
to their low muscle yield counterparts (Fig. 2 and Supplementary Dataset 1C). Of them, expression pattern of 
12 microRNAs including mir-1, mir-133 and mir-206 was validated by real time PCR, which showed consist-
ency between qPCR and RNA-Seq approaches (Supplementary Dataset 1D). In addition, all 9 DE microRNAs 
that were chosen for phenotype-genotype regression analysis, negatively correlated with muscle yield (p < 0.05). 
Variation in expression level of each microRNA explained 6.8% to 18.8% of the variation in muscle yield, with the 
most significant microRNA being mir-1a-3p (Table 3). Although expression of mir-10c-5p and mir-181a-3p was 
not statistically different in the RNA-Seq data between high and low ranked muscle yield groups, their expression 
was significantly and negatively correlated with muscle yield based on qPCR quantification in random 90 indi-
viduals (Table 3). To the best of our knowledge, 8 out of 18 DE microRNAs (mir-19d, mir-100–5p, mir-99a-5p, 
mir-148-3p, mir-199-5p, mir-148-3p*, mir-19b-3p and mir-140) were not reported before as associated with 
muscle growth. The remaining 10 DE microRNAs are known to directly or indirectly regulate skeletal muscle 
development in different species by regulating genes involved in myogenesis12, 27, muscle-growth-related signal 
transduction pathways9, 28, 29 and cell cycle30. As an example, mir-1 and mir-133 are responsible for more than half 
of the microRNA-mediated gene regulation in muscle of zebrafish11. Similarly, mir-143 regulates expression of 
myoD in skeletal muscle of fish12. These findings suggest that differential gene expression has identified several 
microRNAs previously known to regulate myogenesis as well as several additional microRNAs potentially impli-
cated in muscle growth.

A total of 1,743 protein-coding genes were predicted as potential targets of 18 downregulated microRNAs 
in high muscle yield group (Supplementary Dataset 2). Interestingly, 10 significantly enriched gene pathways in 
the target gene list were directly involved in muscle growth e. g. muscle organ development (4.4-fold), skeletal 
muscle tissue development (4.5-fold) and muscle cell differentiation (3.1-fold) (FDR-p < 0.05) (Supplementary 
Dataset 4). Other enriched gene pathways included chromatin modification (5.4-fold), transcription (3.2-fold), 
cell cycle (4.7-fold), and multicellular organism development (4.6fold). These findings suggest that DE microR-
NAs may regulate muscle yield by regulating genes directly involved in skeletal muscle development, transcrip-
tion, cell cycle, and/or protein degradation12, 27, 29, 30.

Crude fat content in muscle.  A total of 9 microRNAs were significantly downregulated in the high-fat fish fami-
lies compared to low-fat families (Fig. 2 and Supplementary Dataset 1C). Seven out of 9 DE microRNAs are well 
documented as associated with adipogenesis and/or body fat deposition in different species31–35. The remaining 
2 DE microRNAs (mir-10c-5p and mir-19b-3p) were not reported before, to the best our knowledge. A total of 
494 protein-coding genes were predicted as potential target of the 9 DE microRNAs (Supplementary Dataset 2). 
Four biological pathways multicellular organism development (4.7-fold), cell differentiation (4.1-fold), tran-
scription (3.3-fold) and regulation of transcription (3.1-fold) were significantly enriched in the target gene list 
(FDR-p < 0.05) (Supplementary Dataset 4). Mir-10c-5p and mir-19b-3p, whose association with adipogenicity 
was previously unknown, targeted several genes involved in adipocyte differentiation (e. g. suppressor of cytokine 
signaling 6), fat storage (e. g. perilipin-2 isoform), lipid metabolism (e. g. peroxisomal fatty acyl-coA oxidase-1, 
lysophosphatidylcholine acyltransferase 2) and lipid transport (e. g. apolipoprotein b-100 and microsomal tri-
glyceride transfer protein) (Supplementary Dataset 2).

Three of the nine microRNAs (mir-10c-5p, mir-10b-5p and mir-181a-3p) were qPCR analyzed for asso-
ciation with variation in muscle fat content in 90 individual fish. The regression analysis showed that these 
microRNAs explained 6.3% to 8.1% of the variation in fat content in muscle (Table 3). In addition to these 3 
DE microRNAs, 7 non-DE microRNAs that were associated with muscle yield (mir-1a-3p, mir-19b-3p, mir-
148-3p*, mir-20-5p, mir-133a-5p, mir-143-5p and mir-99b) were also significantly correlated with muscle 
crude fat content (FDR-p < 0.05), (Table 3). These findings suggest that DE microRNAs may play crucial role in 
post-transcriptional regulation of genes associated with crude fat content in muscle.

DE 
microRNAs

Correlation with 
WBW (p value)

Correlation with 
muscle yield  
(p value)

Correlation with 
muscle crude fat 
content (p value)

Correlation with muscle 
shear force (p value)

Correlation with muscle 
whiteness (p value)

mir-1a-3p −0.165 (0.002) −0.188 (0.007) −0.075 (0.031) NA NA

mir-126-3p NA −0.068 (0.032) NA −0.065 (0.049) 0.076 (0.003)

mir-19b-3p −0.072 (0.03) −0.172 (0.0005) −0.090 (0.013) NA NA

mir-148-3p* −0.134 (0.002) −0.150 (0.001) −0.070 (0.030) −0.090 (0.024) 0.087 (0.019)

mir-20-5p −0.103 (0.008) −0.183 (0.0003) −0.081 (0.019) −0.073 (0.033) 0.088 (0.018)

mir-206 −0.084 (0.02) −0.140 (0.002) NA −0.072 (0.04) 0.084 (0.022)

mir-133a-5p −0.110 (0.006) −0.158 (0.001) −0.138 (0.001) −0.070 (0.04) 0.065 (0.042)

mir-143-5p −0.0730 (0.030) −0.130 (0.001) −0.073 (0.028) NA 0.061 (0.049)

mir-99b −0.056 (0.052) −0.110 (0.010) −0.122 (0.004) NA NA

mir-10c-5p −0.100 (0.010) −0.082 (0.018) −0.063 (0.040) NA NA

mir-10b-5p NA −0.067 (0.034) −0.081 (0.021) NA NA

mir-181a-3p −0.078 (0.022) −0.100 (0.009) −0.066 (0.035) NA NA

Table 3.  Correlation between microRNA expression level and phenotypic variation for different muscle quality 
traits. Correlation was performed based on real time PCR quantification of microRNAs in 90 random individual 
fish and their phenotypic measurements for different traits. Negative value (−) indicates negative correlation.
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Muscle Shear force.  A total of 56 microRNAs were DE between high and low shear force groups, of them 46 
microRNA were downregulated and 10 microRNAs were upregulated in fish with high shear force (Fig. 2 and 
Supplementary Dataset 1C). Correlation between expression level and variation in muscle shear force was studied 
for 10 DE microRNAs in 90 fish, of them, 5 microRNAs (mir-126-3p, mir-148-3p*, mir-20-5p, mir-206 and mir-
133a-5p) explained 6.5% to 9.0% variation in muscle shear force depending on the microRNA (FDR-p < 0.05) 
(Table 3). To the best of our knowledge, association of microRNAs with muscle firmness has not been previously 
reported in salmonids. The connective tissue proteins, especially collagen, play an important role in determining 
muscle shear force. Density of collagen fibers in connective tissue determines fish muscle firmness36. Interestingly, 
out of 56 DE microRNA, 31 microRNAs targeted 49 genes coding for collagen proteins or regulators of collagen 
biosynthesis, metabolism or structure (Supplementary Dataset 2, see name and GO terms of target genes). In 
addition, 31 DE microRNAs targeted at least 61 genes coding for extracellular matrix proteins and their regulators 
other than collagens and collagen regulators (Supplementary Dataset 2, see GO terms of target genes). It has been 
observed that abundance of collagen and connective tissue in extracellular matrix determines stiffness and gaping 
in fish muscle37. These DE microRNAs, which target collagens and other extracellular matrix connective tissues 
and their regulators, may be used to develop suitable genetic markers to improve muscle firmness in rainbow 
trout.

Muscle whiteness index.  Seventy-seven microRNAs were DE, 58 upregulated and 19 downregulated, in fish 
families with high muscle whiteness index compared to low whiteness index families (Fig. 2 and Supplementary 
Dataset 1C). From DE microRNA, correlation between microRNA expression level and variation in phenotype 
was performed for 11 microRNAs, of them, variation in expression level of 6 microRNAs significantly corre-
lated with variation in muscle whiteness index (Table 3). Expression of mir-20-5p, mir-148-3p* and mir-206 
explained 8.8%, 8.7% and 8.4% of the variation in muscle whiteness respectively. Gene enrichment analysis of 
DE microRNA targets revealed that 30 biological pathways were significantly overrepresented which included 
transcription, transcription regulation, multicellular organism development, protein ubiquitination and Wnt 
signaling (Supplementary Dataset 4). We observed that most of the DE microRNA in response to variation in 
muscle yield, crude fat content and shear force were also DE in response to variation in muscle whiteness. These 
data suggest that muscle whiteness may be, at least partially, impacted by the mechanisms that regulate the other 
three muscle quality traits. Muscle color parameters correlate to muscle fat content in Atlantic salmon38. Perhaps 

MicroRNA Target gene
MicroRNA-target gene 
expression correlation (R2)

Common cis regulatory promoter 
motifs in microRNA and target gene

mir-92-5p GSONMT00020058001: homeobox protein 
orthopedia b-like 0.9 HNF-3beta, AML1, TFIID, HNF-3

mir-26a-5p GSONMT00040924001: kelch repeat and btb 
domain-containing protein 11-like 0.9

AR, C/EBPbeta, c-Jun, Fli-1, IRF-2, 
NF-AT1, NF-AT2, NF-AT3, NF-
muNR, POU1F1, PR B

let-7a-5p GSONMT00042722001: inhibitor of growth 
protein 5-like 0.8

AP-3, AR, C/EBPbeta, CBF(2), CP2, 
GATA-1, HNF-3alpha, HNF-3beta, 
HOXA4, NF-Y, PR B, Smad3, 
SXR:RXR-alpha, TBP

mir-222-3p GSONMT00046577001: synembryn-b-like 
isoform × 2 0.8 C/EBPgamma, c-Jun, NF-Y, RAR-

gamma, Smad3, WT1 I

mir-10c-5p GSONMT00022788001: transcription elongation 
factor SPT6-like 0.8 HNF-3alpha, Elk-1, HNF-3beta

let-7c-5p GSONMT00013587001: collectrin-like isoform 0.8
AR, Crx, HNF-3alpha, HNF-3beta, 
HOXD10, HOXD9, Pax-2.1, PR B, 
TFIID

mir-130-5p GSONMT00036000001: uncharacterized protein 0.8 CP2, HNF-3alpha, HNF-3beta, PR B, 
RAR-gamma

mir-27b-5p GSONMT00073742001: serine threonine-protein 
phosphatase 6 regulatory ankyrin repeat subunit c 0.8 AhR, AR, c-Myb, NFI/CTF, POU1F1b, 

POU1F1c, PR A, PR B

mir-29c-5p GSONMT00037095001: protein NLRC3-like 0.8 AP-3, ENKTF-1, HNF-3beta, NF-Y, 
PPAR-alpha:RXR-alpha, PR B

mir-221-5p GSONMT00080720001: lathosterol oxidase 0.7 AR, C/EBPbeta, c-Jun, HNF-3beta, 
p53, PEA3, PR B

mir-132-3p GSONMT00033564001: dihydropyrimidinase 0.7
AP-3, CBF(2), CP2, Elk-1, ER-alpha, 
ER-beta, MyoD, NF-1, NF-Y, PU.1, 
SF-1, T3R-beta

mir-30d-5p GSONMT00002523001: solute carrier family 12 
member 9-like 0.7 AR, PR B, CP2

mir-462-5p GSONMT00075887001: ATP-dependent 
6-phosphofructokinase, muscle type-like 0.7 HNF-3alpha, MyoD, NF-AT3, NF-

AT2, PR B

mir-133a-3p GSONMT00002111001: TPA_inf: tachykinin 4 0.7
c-Fos, c-Jun, COE1, GATA-1, HNF-3, 
HNF-3beta, IRF-1, MAZ, NF-AT1, 
Pbx1b, PEA3, PR B

Table 4.  Cis-regulatory transcription factor binding motifs that exist in promoter sequences of differentially 
expressed (DE) microRNAs and their positively correlated target genes.
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MicroRNA MRESS with SNP
SNP NCBI 
Sr.

MRESS 
destroying 
allele

Frequency ratio of MRESS destroying 
allele (High/Low family) (WBW; MY; 
CFC; SF; MWI)

Target gene harboring 
SNP

SNP association with phenotype (R2) 
(WBW; MY; CFC; SF; MWI)

pma-miR-
7a-3p TGTC[C/T]TGT 2711239550 T 11.00; 3.55; 2.33; 0.96; 1.21 troponin fast skeletal 

muscle isoform 0.042; NA; NA; NA; NA

cgr-miR-598 TCCTAC[T/G]A 2711263652 G 0.30; 0.44; 0.11; 0.25; 0.31 malate dehydrogenase 
cytoplasmic-like 0.031; NA; NA; NA; 0.019

efu-miR-9203a ACTATC[C/T]AA 2711277723 T 1.62; 1.04; 3.00; 0.83; 1.00
ranbp-type and 
c3hc4-type zinc finger-
containing protein 1

0.031; NA; NA; NA; NA

oha-miR-
30e-5p AC[C/T]GGAAGG 2711281551 C 3.24; 5.00; 1.06; 0.27; 0.25

phosphate carrier 
mitochondrial 
precursor

0.026; NA; NA; NA; 0.019

ssa-miR-139-
5p CA[C/A]TGTAGA 2711237958 A 0.29; 1.57; 0.37; 0/0.25; 0.39 novel protein vertebrate 

nebulin 0.028; NA; NA; NA; NA

ssa-miR-139-
5p CACT[G/A]TAGA 2711228680 A 0.29; 1.57; 0.37; 0/0.25; 0.39 novel protein vertebrate 

nebulin 0.028; NA; NA; NA; NA

dvi-miR-968-
5p TATCAT[C/T]AG 2711283561 C 5.50; 1.00; 0.56; 30.67; 2.57

ATP-dependent 
6-phosphofructokinase, 
muscle type

0.026; NA; NA; NA; NA

ssy-miR-508 GT[A/G]GCTGG 2711210896 A 2.56; 0.68; 9.20; 2.52; 0.58 ankyrin repeat and socs 
box protein 5 0.029; 0.016; NA; NA; NA

ppc-miR-
8229a-5p GCTGAGG[A/T] 2711244497 T 5.09; 5.48; 4.00; 0.18; 1.17 calsequestrin-1-like 0.021; NA; NA; NA; 0.012

oha-miR-26-5p GGATA[C/A]GGT 2711271866 A 1.11; 1.71; 1.40; 0.16; 0.25 fk506-binding protein 
1a 0.027; 0.015; NA; NA; NA

oha-miR-24-3p AGCAG[G/A]
AAA 2711198793 A 1.83; 0.35; 0.44; 1.90; 2.20

spectrin beta non-
erythrocytic 1 isoform 
×1

0.019; NA; NA; NA; NA

mmu-miR-
3547-3p CCCC[T/C]CTT 2711211990 C 0.31; 3.21; 0.20; 1.00; 0.27 gamma-adducin-like 

isoform ×6 0.024; 0.031; NA; NA; NA

oha-miR-365a-
2-5p CAGAA[G/A]GA 2711268945 A 2.16; 0.55; 8.44; 0.43; 2.50

nuclear receptor 
subfamily 1 group d 
member 2

0.020; NA; NA; NA; NA

ssa-miR-196b-
5p GT[A/T]GTTGTT 2711240153 A 0.40; 0.09; 1.50; 0.53; 0.64

histone-lysine 
n-methyltransferase 
setd7-like

0.024; NA; NA; NA; NA

ppc-miR-8298-
3p CATA[A/C]TTC 2711225442 A 0.67; 1.81; 0.50; 0.39; 0.51

atp synthase lipid-
binding mitochondrial 
precursor

0.024; 0.024; NA; NA; NA

oha-miR-181a-
5p T[G/T]AATGTT 2711263991 T 3.75; 1.89; 1.21; 2.13; 0.67 phosducin-like protein 

3 0.020; NA; NA; NA; NA

eca-miR-9171 CAG[A/G]CTGT 2711198125 G 2.10; 1.00; 0.56; 1.40; 6.50
nfu1 iron-sulfur cluster 
scaffold mitochondrial-
like

0.022; NA; NA; NA; NA

mmu-miR-
7241-3p AGTATT[C/T]G 2711278279 T 1.75; 5.50; 0.42; 1.25; 0.60 3-hydroxyacyl-CoA 

dehydratase 1 0.017; 0.018; NA; NA; NA

cgr-miR-29a-
5p GTGTACG[G/T]C 2711192504 G 2.89; 1.00; 11.33; 3.33; 1.47

phosphorylase b 
kinase gamma catalytic 
subunit

0.015; 0.017; NA; NA; NA

efu-miR-9186e TCT[C/A]TGGTA 2711207216 C 2.05; 3.08; 21.11; 0.37; 2.16 manganese superoxide 
dismutase 0.019; 0.013; NA; NA; NA

ccr-miR-729 TACCCA[T/C]C 2711280997 C 5.47; 2.86; 2.75; 21.11; 0.40 profilin-2-like isoform 
×1 0.016; NA; NA; NA; NA

cfa-miR-8804 TCTA[T/C]CTA 2711247534 C 0.64; 0.32; 0.11; 0.43; 0.79 14-3-3 protein beta 
alpha-2 0.017; 0.019; NA; NA; NA

ssa-miR-210-
5p [T/G]TACATTA 2711275155 T 3.26; 0.49; 1.07; 0.90; 6.51 60 s ribosomal protein 

l17 0.016; 0.024; NA; NA; NA

eca-miR-9011 [T/A]CCTGTACA 2711195787 T 0.29; 8.80; 0.90; 0.44; 1.14 monocarboxylate 
transporter 9 0.010; NA; NA; NA; NA

api-miR-3015a TTGAAAAC[C/A] 2711235305 C 1.32; 2.67; 3.78; 0.58; 0.82 parvalbumin-7-like 
isoform ×2 0.015; NA; NA; NA; 0.012

ssa-miR-93a-5p AGCA[T/C]TTTG 2711192683 T 0.99; 0.72; 7.82; 0.25; 5.09 protein nap homolog 
2-like 0.013; NA; 0.02; NA; 0.02

mmu-miR-
6975-3p [G/A]CAGACGAC 2711260618 G 0.46; 0.08; 2.53; 0.98; 6.33 wolframin 0.012; 0.012; NA; NA; NA

hsa-miR-8086 ATGTAT[T/G]CC 2711280737 T 0.08; 0.17; 0.74; 0.66; 0.19 muscleblind-like 
protein 1-like NA; 0.010; NA; NA; NA

osa-miR818f ACAATCT[A/G]T 2711274522 G 0.21; 0.13; 0.40; 5.44; 1.68 nexilin isoform ×1 NA; 0.012; NA; NA; NA

mmu-
miR-6989

GCAACT[C/T]
CAA 2711191913 T 0.21; 0.11; 0.74; 2.70; 1.00 arrestin domain-

containing protein 2 NA; 0.013; NA; NA; NA

Continued
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this is among the first genome-wide studies aimed at exploring the genetic/molecular basis of muscle whiteness 
in salmonids.

MicroRNA-target gene co-expression and transcriptional regulation.  MicroRNAs and their target 
genes are usually co-expressed and co-regulated by common transcription factors39. To investigate co-expression 
of DE microRNAs and their target genes, first, we calculated Pearson correlation between each DE microRNA 
and their target genes based on their expression values in 30 RNA-Seq samples (see methods section). Next, we 
investigated whether this co-expression was regulated via common transcription factors (TF). For this purpose, 
we scanned promoter sequences of the strongly correlated (R2 > 0.70) DE microRNAs and their target genes 
for TF binding cis regulatory motifs. Out of 90 DE microRNAs, 15 microRNAs had strong positive expression 
correlation (R2 > 0.70) with 194 different target genes, and these correlated microRNA-target gene pairs shared 
common TF binding motifs in their promoters. Selected microRNA-target gene pairs and common TF binding 
motifs in their promoters are given in Table 4. Some of those TFs are known to be heavily involved in muscle 
development (e. g. myoD, c-Fos, c-Jun, MAZ, NF-AT1, Smad3, Elk1, PEA3, NFI/CTF and NFY), development  
(e.g. HOXD9, HOXD10 and COE1), metabolism (e. g. HNF-3) and adipogenesis (e. g. C/EBPbeta). These find-
ings suggest that myogenic TFs may regulate expression of muscle related microRNAs and their target genes. 
Wang and coworkers suggested that both miRNAs and TFs must stay active to simultaneously regulate their target 
genes39.

Genetic polymorphism in microRNA target sites.  In order to explore phenotype-associated genetic 
polymorphism on microRNA and microRNA binding sites in target genes, first we predicted target genes of 
all rainbow trout microRNAs that were reported previously18. We performed SNP prediction on the mature 
microRNA sequences. In addition, SNPs on microRNA target genes were predicted by mRNA sequencing of the 
same fish families used in this study (data under review for publication elsewhere). A total of 249 SNPs existing 
in microRNA recognition element seed site (MRESS) of target genes showed allelic imbalance (>2.0 as an ampli-
fication and <0.5 as loss of heterozygosity) between high and low ranked families of different muscle traits. Out 
of 249 SNPs, 240 SNPs either destroyed or created a novel illegitimate microRNA target, and only 9 SNPs had no 
potential effect on microRNA binding (Supplementary Dataset 5). This alteration in target recognition is due to 
presence of the SNPs in MRESS which plays crucial role in microRNA-mRNA binding1. Any SNP in the MRESS 
has an important impact on microRNA recognition7. Out of 240 SNPs capable of destroying or creating a novel 
illegitimate MRESS, 204 SNPs were found to be true polymorphic SNPs by genotyping fish, and showed allelic 
imbalance between high and low ranked families (>2.0 as an amplification and <0.5 as loss of heterozygosity). 
Interestingly, 78 unique SNPs showed significant association with growth and muscle quality phenotypes based 
on genotype-phenotype association analysis performed on a larger number of fish from 2 generations (n = 786) 
(FDR-p-value < 0.05). Table 5 lists selected SNPs with high correlation coefficients with growth traits while com-
plete list of SNPs in microRNA binding sites and their association with phenotype is given in Supplementary 
Dataset 5. A total of 55, 28, 7 and 9 MRESS-destroying SNPs in 3′ UTR were significantly associated with WBW, 
muscle yield, crude fat content and muscle whiteness respectively (FDR-p-value < 0.05).

Previous reports indicated that SNPs in MRESS of target genes have important impact in phenotype deter-
mination7. Phenotype associated MRESS-destroying SNPs were present in various classes of genes including 
metabolic enzymes, transporter proteins, transcription factors, signaling molecules and muscle related proteins. 
Among the WBW associated SNPs, those present in 3′ UTR of troponin, malate dehydrogenase, ranbp-type 
and c3hc4-type zinc finger-containing protein 1, phosphate carrier mitochondrial like protein, cytochrome b-c1 
complex, novel protein vertebrate nebulin, ATP-dependent 6-phosphofructokinase, ankyrin repeat and socs box 
protein 5 and calsequestrin-1 each SNP explained more than 2% variation in WBW phenotype (Table 5 and 
Supplementary Dataset 5). Similarly, SNPs existing in 3′ UTR of beta-sarcoglycan, 60 S ribosomal protein 117, 
ATP-synthase lipid binding protein and gamma-adducin-like isoform × 6 each explained over 2% variation in 

MicroRNA MRESS with SNP
SNP NCBI 
Sr.

MRESS 
destroying 
allele

Frequency ratio of MRESS destroying 
allele (High/Low family) (WBW; MY; 
CFC; SF; MWI)

Target gene harboring 
SNP

SNP association with phenotype (R2) 
(WBW; MY; CFC; SF; MWI)

ggo-miR-4738 AGCAGC[G/A]T 2711275288 G 4.11; 12.50; 2.48; 0.18; 0.71 sarcosine 
mitochondrial-like NA; 0.013; NA; NA; NA

prd-miR-
7957d-3p TC[T/A]GGACAT 2711274238 T 4.74; 15.63; 2.48; 0.18; 0.60 profilin-2-like isoform 

×2 NA; 0.013; NA; NA; NA

oha-miR-133b-
5p GTGCAC[G/T]T 2711249814 G 0.09; 0.18; 0.25; 38.00; 0.85 inactive dual specificity 

phosphatase 27 NA; 0.016; NA; NA; NA

ppc-miR-
8304a-3p [C/A]TTTGG 2711194746 A 0.17; 2.71; 0.14; 1.90; 0.50 atlastin-2 isoform 1 NA; NA; 0.017; NA; NA

ipu-miR-34b TGTT[A/C]ACT 2711267634 C 1.64; 2.87; 3.71; 0.50; 1.41 creatine kinase m-type-
like NA; NA; 0.019; NA; NA

Table 5.  SNPs in microRNA recognition element seed site (MRESS) of target gene, allele frequency ratio of 
MRESS-destroying SNPs between high vs low ranked families of different muscle traits, and correlation between 
the SNP and phenotype. Column 1 shows potential regulatory microRNA and column 2 shows microRNA 
binding site in 3′ UTR of target gene. Note that only MRESS with SNP, not full microRNA sequence is shown. 
Complete datasets are given in Supplementary Dataset 5. Note: WBW: whole body weight, MY: muscle yield of 
WBW (%), CF: muscle crude fat content (%), SF: muscle shear force; and MWI: muscle whiteness index.
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muscle yield. Presence of MRESS-destroying alleles may stabilize the target genes against microRNA-mediated 
downregulation, which may contribute to the difference in phenotype between high vs low ranked families. As 
an example, allele destroying MRESS in troponin fast skeletal muscle was 11 times more frequent in high WBW 
family compared to low WBW family, and explained 4.2% variation in WBW (Table 5). Previous study performed 
in this trout population has also identified 3 SNPs present in 3′ UTR of troponin C associated with growth traits 
in trout40. Similarly, allele destroying MRESS in ATP-dependent 6-phosphofructokinase, a glycolytic gene, was 
5.5 times more frequent in high WBW family compared to low WBW family, and explained 2.6% variation in 
WBW. Consistent with our finding, SNPs associated with growth traits in trout from our previous study were 
mainly present in genes involved in energy metabolism and muscle structure40. Above findings suggest that 3′ 
UTR SNPs capable of destroying or creating an illegitimate MRESS may have important functional consequences.

In contrast to target genes, no SNPs with allelic imbalances were detected in the microRNA mature sequences. 
This may be due to high degree of negative selective pressure as hundreds of genes are regulated by the same 
microRNA3. Previous studies from mammals suggest that SNPs in microRNA sequence, especially seed region, 
are rare due to high degree of selective pressure41. These findings suggest that due to high selective pressure to 
conserve microRNA sequence, cell may introduce genetic variation in microRNA binding site of appropriate 
target gene to regulate the phenotype.

Conclusion
Improvement of muscle growth and quality in salmonids has long been sought by aquaculture industries. So far, 
little progress has been made toward genetic improvement of muscle growth and quality in salmonids. Muscle 
quality traits are lethally-measured traits which are hard to include in a breeding objective. In addition, com-
plex interrelated relationship among muscle quality traits19, 42, and influence of several genetic and non-genetic 
factors complicates genomic selection. Previous studies have found genetic variation for muscle traits in trout 
and other salmonids43–45. Genomic technologies could be used to exploit within-family genetic variation for 
these lethally-measured muscle quality traits to identify suitable genetic markers. In this study, we investigated 
microRNA expression and genetic polymorphism in microRNA-binding sites in target genes associated with 
phenotypic variation in muscle growth and quality in a pedigreed rainbow trout population undergoing selection 
for improved growth performance.

Muscle specific myogenic microRNAs (e. g. mir-1, mir-206 and mir-133) as well as several non-muscle specific 
microRNAs showed regulated expression in response to variation in muscle yield and other muscle quality phe-
notypes. Most of the DE microRNAs between high vs low muscle yield families were also DE between high vs low 
families of muscle whiteness and muscle shear force phenotype. This observation may be, in part, due to interre-
lated nature of these muscle growth phenotypes19, 42. Biological pathways such as development, cell cycle, mus-
cle growth, transcription and muscle proteolysis were significantly overrepresented in the list of DE microRNA 
targets suggesting that DE microRNAs may regulate growth and muscle quality traits by post-transcriptionally 
regulating the genes involved in these pathways. Presence of common cis regulatory motifs for myogenic TFs in 
DE microRNAs and their respective target genes may suggest that myogenic TFs may regulate expression of both 
myogenic microRNAs and their target genes.

Due to crucial role of MRESS in microRNA-mediated gene regulation, SNPs creating or destroying MRESS in 
target genes have important functional consequences7, 46. In this study, we identified 72 true SNPs in 3′ UTR capa-
ble of abrogating or creating MRESS on several metabolic and growth-related genes, which explained significant 
variation in growth, muscle yield and other muscle phenotypes. However, functional significance of these SNPs 
in microRNA target recognition needs to be experimentally validated. To make the present study more robust in 
identifying potential genetic markers for muscle and growth phenotypes, we applied dual approach by analyzing 
differential microRNA expression as well as genetic variation analysis in their target genes. We believe that this 
approach is more productive as high negative selective pressure imposes constraints on expression/genetic var-
iation in microRNA41. In support of this argument, we found several SNPs on microRNA binding site of target 
genes that showed allelic-imbalance between high and low WBW groups though microRNA itself did not show 
variation in sequence or expression between the two groups. In this study, we performed a genome wide approach 
to investigate variation in expression and variation in target recognition of growth and muscle-important microR-
NAs, and the study may help identify suitable genetic marker for genetic selection of these traits.

In a separate study performed in the same set of fish, an unexpectedly low number of protein coding genes 
were observed as DE between high and low ranked families of these phenotypes (data will be published else-
where). But, in this study, we observed significant number of DE microRNAs and their target protein coding 
genes that are associated with these phenotypes. These findings suggest that variation in these muscle quality 
phenotypes may be explained largely by variation in microRNA expression and genetic variation affecting rec-
ognition of microRNA targets rather than by direct regulation of mRNA expression. Consequently, the current 
study pinpoints to a greater role of microRNA-mediated gene regulation in determination of muscle traits in 
rainbow trout.

Using genomics approach, we have identified significant correlation of microRNA gene expression and SNPs 
in microRNA binding sites with growth/muscle quality traits of economic importance. Some of the genotype x 
phenotype associations reported in this study although significant, present low-to-medium values, not allowing 
to make definitive inferences about the behavior of some characteristics of the muscle growth and quality traits. 
The highly polygenic nature of traits demands identification of more genetic markers. Incorporation of genomics 
selection, based on genetic markers, can greatly help traditional breeding programs, based on quantitative evalu-
ation techniques, in improving accuracy of breeding value prediction.
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Materials and Methods
Ethics statement.  Fish were maintained at the NCCCWA and all experimental protocols and animal pro-
cedures were approved and carried out in accordance with the guidelines of NCCCWA Institutional Animal Care 
and Use Committee Protocols #053 and #076.

Fish population and muscle sampling.  Phenotypic data and muscle samples were collected from 471 
fish representing 98 families (~5 fish/family) from USDA/NCCCWA growth selected trout line from each harvest 
year 2010 as previously described40. Briefly, fish families were produced and reared till ~13 month post-hatch as 
previously described17. Single-sire x single-dam mating was used to produce full sib families and eggs were reared 
in spring water. Water temperature was manipulated from 7 °C to 13 °C to synchronize the hatching time. Each 
family was reared in a separate 200-L tank at ~600 alevins/tank density. Random culling of fish was performed 
every month to maintain stock density of <50 kg/m3. At the age of 5 month, each fish was given unique iden-
tification PIT (passive integrated transponder) tag, and tagged fish were combined and reared in a big 1,000-L 
commercial tanks. Commercial fishmeal-based diet (16% fat, 42% protein; Ziegler Bros Inc., Gardners, PA) was 
fed using automatic feeder. Feeding rate was gradually reduced from 2.5% of body weight to 0.5% of body weight 
as fish grew older. WBW of all fish belonging to 98 families was measured, and families were ranked based on 
their WBW measurements. Second or third ranked fish from each family was selected for muscle sampling so 
that WBW of sampled fish is adjusted around median of each family. Selected fish were randomly assigned to 
one of the 5 harvest group (~100 fish/harvest group) and each harvest groups were sampled in 5 consecutive 
weeks. Fish were anesthetized in 100 mg/L tricaine methanesulfonate and weighted, slaughtered and eviscerated. 
Muscle samples were separated from dorsal musculature and were stored in liquid nitrogen until processing and 
phenotype measurement. Muscle quality phenotypes were measured at West Virginia University (WVU), meat 
processing laboratory. Muscle yield was calculated as percentage of WBW, and proximate analysis of muscle fillet 
was performed according to previously described protocol47. Briefly, fresh fillet surface color was measured with 
a chromameter (Minolta, Model CR-300; Minolta Camera Co., Osaka, Japan) calibrated using a standard white 
plate No. 21333180 (CIE Y 93.1; ×0.3161; y 0.3326). L* (lightness), a* (redness), and b* (yellowness) values were 
recorded at three locations above the lateral line along the long axis of the right fillet, and these values were used 
to calculate a fillet whiteness index according to the following equation; whiteness index = 100 − [(100 − L)2 + 
a2 + b2]1/248. Muscle crude fat content was measured using Soxhlet solvent extractor with petroleum ether. For 
muscle peak shear force measurement, texture was analyzed using a five blade Allo-Kramer shear attached to the 
texture analyzer; and Texture Expert Exceed software (version 2.60; Stable Micro Systems Ltd., Surrey, U.K.) was 
used to record the peak shear force.

Library construction and sequencing.  For differential gene expression analysis, 4 highest ranked and 
four lowest ranked families for each trait were sequenced. White muscle sample was isolated from five individ-
uals belonging to each family and total RNA was isolated using Trizol protocol (Invitrogen, Carlsbad, CA) as 
described previously49, 50. To allow enough transcriptome sequence total RNA from 5 individual fish from each 
family was pooled and sequenced on Illumina’s HiSeq platform (Illumina Inc, CA, USA).

D a t a  p r o c e s s i n g  a n d  p r e d i c t i o n  o f  t r o u t  m i c r o R N A .   S e q u e n c i n g  a d a p t e r 
5′GCCTTGGCACCCGAGAATTCCA-3′ was trimmed and reads were annotated using miRBase microRNA 
reference (release 21) in CLC Bio small RNA analysis tool. Read alignment was run at default settings (i.e. mis-
match ≤ 2, additional/missing upstream/downstream bases ≤ 2). MicroRNAs with mismatches and/or addi-
tional/missing upstream/downstream nucleotides were considered as variants of the same microRNA. Read 
count from all variants of the same microRNAs were summed and were used as expression value for that particu-
lar microRNA (default method of merging expression values in CLC Bio’s small RNA analysis toolkit).

Identification of DE microRNAs.  DE microRNAs were identified using EDGE test in CLC genomics 
workbench using expression values from the above step. The fold change in gene expression between two groups 
was considered significant if FDR-p < 0.05 and fold change <−2 or >2 fold.

Real time PCR validation of DE microRNAs and ‘microRNA expression-phenotype variation’ 
correlation.  Same RNA samples from high and low ranked families used for sequencing were used to validate 
RNA-Seq differential expression. cDNA was synthesized using miScript II RT kit (Qiagen, Valencia, CA, USA) 
and microRNA was quantified in Bio-Rad CFX96™ Real Time System (Bio-Rad, Hercules, CA) using miScriptR 
SYBRR green (Qiagen, Valencia, CA, USA). A non-coding RNA U6 was used as a endogenous control for normal-
ization, and fold change was calculated by ΔΔCt method51, as described previously52, 53.

Correlation between microRNA expression and phenotype was studied in 90 random individual fish from 
3rd-generation families (2010 hatch year) from the growth-selected line. ΔCt value of each microRNA in all 90 
fish was calculated. Pearson correlation and simple linear regression was run between ΔCt and quantitative value 
of muscle phenotype.

Bioinformatics prediction of DE microRNA target.  For prediction of microRNA targets, 3′-UTR of 
trout mRNA were retrieved from the genome reference54. Due to difference in sensitivity and specificity of dif-
ferent target prediction algorithms, targets were predicted using 3 tools: miRanda, PITA and TargetSpy in small 
RNA analysis server sRNAtoolbox55. If the same target site is predicted by all 3 tools it was considered a potential 
microRNA target. For PITA, prediction parameters chosen were: seed length 6–8 nts, no G:U wobble allowed in 
seed of size 6 nts, one G:U wobble allowed in seed of size 7–8 nts, no mismatches allowed in seed of size 6 and 
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7 nts, one mismatch allowed in seed of size 8 nts, and no loop is allowed in microRNA or target for any seed 
size. Miranda parameters chosen for target prediction were: score threshold 150, gap-open penalty −4.0 and 
gap-extend penalty 9.0. For TargetSpy score a minimum threshold of 0.99 was used. For all tools, minimum 
energy threshold was chosen as −15Kcal/mole.

Gene enrichment analysis of microRNA targets.  Gene enrichment analysis (GEA) was performed by 
using DAVID 20, 21 (FDR-p < 0.05) and overrepresented pathways were visualized by EnrichmentMap app56 in 
cytoscape57 (p value < 0.005 and FDR-q < 0.05). Overlap between gene-sets was computed according to overlap 
coefficient, which was set to the default recommended value of 0.5.

MicroRNA-target gene co-expression and identification of cis regulatory promoter motifs.  
Small RNA and mRNA sequencing reads from 22 families were used to calculate microRNA-target gene correla-
tion. For target genes, mRNA sequencing reads were mapped to trout mRNA reference and transcript per million 
(TPM) was calculated for each mRNA. For microRNA, small RNA sequencing reads were mapped to mature 
microRNA sequence from miRBase release 21 (June 2014) and total count was calculated for each microRNA. 
TPM (for mRNA) and total count (for microRNA) were normalized and used to calculate expression correlation.

Transcription factor (TF) binding motifs were searched in the 500 upstream promoter sequences of DE 
microRNAs and correlated target genes using.Alggen Promo TF motif search tool58, 59. Search parameters used 
were ‘only teleost transcription factors’ and ‘only teleost motif sites’. Maximum dissimilarity rate between putative 
and consensus TF binding site was set to 5%, and RE equality/query (expectation of finding motif in random 
sequence) was set to <0.05.

Prediction of single nucleotide polymorphism (SNP).  The same RNA samples used to sequence small 
RNAs were used to sequence protein coding genes. Details of SNP prediction are described in a publication 
under review. Briefly, sequencing libraries were prepared using Illumina’s Truseq RNA library preparation kit 
and sequenced on Illumina’s HiSeq platform (Illumina Inc, CA, USA). GATK60 and SAMTool61 were both used 
to call SNPs. In the SAMtool approach, STAR alignment tool62 was used to align sequencing reads from each 
family to the trout genome. SAMtools view/sort and mpileup functions were used to determine variant genotype. 
Popoolation2 package (version 1.201) was used to calculate allele frequencies61, 63. Initial SNPs were considered 
at minimum reads >10 and minor allele count >4 and minimum allelic frequency (MAF) >0.05. SNPs were 
considered as putative trait-associated SNPs if allele frequency (allele A/allele B) ratio between high and low 
ranked families was ≥2.0 (as an amplification) or ≤0.5 (as loss of heterozygosity). In GATK approach, reads 
were aligned to the genome using STAR alignment tool and then Picard tool was used to sort the SAM files and 
to mark duplicates. Split and trim function was performed to reassign mapping quality, Indel realignment and 
local realignment around the Indel to clean up any mapping artifacts. Finally, base quality score recalibration was 
performed on the data resulting from Picard tools. Haplotype Caller was used to determine variants, followed by 
filtration of SNPs using strict thresholds: Qual By Depth (QD) 2.0, Fisher Strand (FS) 60.0, RMS Mapping Quality 
(MQ) 40.0 and MAF > 0.05.

SNP genotyping and SNP-phenotype association analysis.  SNP genotyping was performed as a part 
of development of a 50 K SNP chip for rainbow trout (full SNP chip study will be published elsewhere). Putative 
SNPs were genotyped in ~1,900 individuals from USDA, NCCCWA growth selected lines harvest year 2010 and 
2012 using Affymetrix SNP array protocol (Geneseek Inc., Lincoln, NE, USA). Briefly, genomic DNA from each 
fish was extracted from a fin clip and was amplified by PCR. DNA samples were chemically fragmented and then 
biotinylated. Biotinylated DNA samples were hybridized to DNA probe in the SNP array and genotype call was 
determined based on ‘probe DNA: sample DNA’ hybridization.

For SSNP-phenotype association study, only 249 SNPs present in 3′ UTR microRNA binding sites and only 
786 individual fish from 3rd- and 4th-generation families (2010 and 2012 hatch years)17 with available phenotype 
measurements of interest were considered. Phenotypic data were rank transformed64, then data normality was 
checked by Kolmogorov-Smirnov and Shapiro-Wilk test to make sure that the traits are normally distributed 
to meet the assumption of quantitative trait association analyses. SNP-phenotype association was performed 
by quantitative trait analysis, linear and logistic methods in PLINK tool65 and all three methods gave consistent 
results, and results from quantitative trait analysis were reported. Quantitative association analysis was performed 
between SNP genotype and quantitative value of phenotype measurements of 786 individuals. Linear associ-
ation between SNP genotypes and phenotype measurement was performed to get correlation coefficient (R2) 
between the SNP allele and the phenotype. Logistic regression was performed to check if the effect of one SNP 
on the phenotype was independent of other SNPs. Associations of all reported SNPs were significant in linear 
and quantitative analysis after entering other SNPs as covariates in logistic method, suggesting that the effect of 
each SNP for association to the phenotype is independent from other SNPs. Population stratification analysis was 
performed using genome-wide IBS that is integrated in PLINK. Multidimensional scaling plot on N x N matrix 
of genome-wide IBS pairwise distances showed fairly homogeneous sample with no obvious population stratifi-
cation or significan clustering (Supplementary Dataset 1E).
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